Title | A Nash-Kuiper theorem for C1,15−δ immersions of surfaces in 3 dimensions |
Publication Type | Journal Article |
Year of Publication | 2018 |
Authors | De Lellis C., Inauen D., L. Székelyhidi Jr. |
Journal | Revista matemática iberoamericana |
Volume | 34 |
Pagination | 1119–1152 |
Date Published | August |
Publisher | Universidad de La Rioja ; Dialnet |
Type of Article | isometric |
ISSN | 0213-2230 |
Keywords | General Mathematics |
Abstract | We prove that and given a $C\^ 2$ Riemannian metric $g$ on the 2-dimensional disk $D_2$ and any short $C\^ 1$ immersion of $(D_2 and g)$ into $∖mathbb{R}\^ 3$ can be uniformly approximated with $C\^ {1 and \ensuremathα}$ isometric immersions for any $\ensuremathα\ensuremath<∖frac{1}{5}$. This statement improves previous results by Yu. F. Borisov and of a joint paper of the first and third author with Conti, S.. |
Notes | Rev. Mat. Iberoam. 34 (2018) no. 3, 1119-1152 |
URL | https://www.ems-ph.org/journals/show_abstract.php?issn=0213-2230&vol=34&iss=3&rank=9 |
DOI | 10.4171/rmi/1019 |
PDF:
Order:
2