TitleA Nash-Kuiper theorem for C1,15δ immersions of surfaces in 3 dimensions
Publication TypeJournal Article
Year of Publication2018
AuthorsDe Lellis C., Inauen D., L. Székelyhidi Jr.
JournalRevista matemática iberoamericana
Volume34
Pagination1119–1152
Date PublishedAugust
PublisherUniversidad de La Rioja ; Dialnet
Type of Articleisometric
ISSN0213-2230
KeywordsGeneral Mathematics
Abstract

We prove that and given a $C\^ 2$ Riemannian metric $g$ on the 2-dimensional disk $D_2$ and any short $C\^ 1$ immersion of $(D_2 and g)$ into $mathbb{R}\^ 3$ can be uniformly approximated with $C\^ {1 and \ensuremathα}$ isometric immersions for any $\ensuremathα\ensuremath<frac{1}{5}$. This statement improves previous results by Yu. F. Borisov and of a joint paper of the first and third author with Conti, S..

Notes

Rev. Mat. Iberoam. 34 (2018) no. 3, 1119-1152

URLhttps://www.ems-ph.org/journals/show_abstract.php?issn=0213-2230&vol=34&iss=3&rank=9
DOI10.4171/rmi/1019
Order: 
2