| Title | Area minimizing currents mod $2Q$: linear regularity theory |
| Publication Type | Journal Article |
| Year of Publication | 2022 |
| Authors | De Lellis C., Hirsch J., Marchese A., Stuvard S. |
| Journal | Comm. Pure Appl. Math. |
| Volume | 75 |
| Start Page | 83 |
| Type of Article | Q-valued |
| Keywords | area minimizing currents $\modp$, Dirichlet integral, linearization., Minimal surfaces, multiple valued functions, regularity theory |
| Abstract | We establish a theory of $Q$-valued functions minimizing a suitable generalization of the Dirichlet integral. In a second paper the theory will be used to approximate efficiently area minimizing currents $\modp$ when $p=2Q$, and to establish a first general partial regularity theorem for every $p$ in any dimension and codimension. |
| Notes | Comm. Pure Appl. Math. 75 (2022), no. 1, 83-127 |
| URL | https://doi.org/10.1002/cpa.21964 |
| DOI | 10.1002/cpa.21964 |
PDF:
Order:
7