TitleFine Structure of Singularities in Area-Minimizing Currents Mod(q)
Publication TypeJournal Article
Year of Publication2024
AuthorsDe Lellis C, Minter P, Skorobogatova A
Type of ArticleInterior regularity
Abstract

We study fine structural properties related to the interior regularity of m-dimensional area minimizing currents mod(q) in arbitrary codimension. We show: (i) the set of points where at least one tangent cone is translation invariant along m1 directions is locally a connected C1,β submanifold, and moreover such points have unique tangent cones; (ii) the remaining part of the singular set is countably (m2)-rectifiable, with a unique flat tangent cone (with multiplicity) at Hm2-a.e. flat singular point. These results are consequences of fine excess decay theorems as well as almost monotonicity of a universal frequency function.

Order: 
17