Processing math: 0%
Your browser does not support the canvas element.

Jincheng Yang

Institute for Advanced Study

%--Paired Delimiters-- \newcommand{\abs}[1]{\left\lvert #1 \right\rvert} \newcommand{\ang}[1]{\left\langle #1 \right\rangle} \newcommand{\bkt}[1]{\left\lbrack #1 \right\rbrack} \newcommand{\nor}[1]{\left\lVert #1 \right\rVert} \newcommand{\pth}[1]{\left( #1 \right)} \newcommand{\set}[1]{\left\lbrace #1 \right\rbrace} \newcommand{\abset}[1]{\abs{\set{#1}}} \newcommand{\ptset}[1]{\pth{\set{#1}}} %--Operators-- \newcommand{\grad}{\nabla} \newcommand{\La}{\Delta} \renewcommand{\div}{\operatorname{div}} \newcommand{\curl}{\operatorname{curl}} \newcommand{\tr}{\operatorname{tr}} \newcommand{\Hess}{\operatorname{Hess}} \newcommand{\mm}{\mathcal{M}} \newcommand{\inv}{^{-1}} \newcommand{\tensor}{\otimes} \newcommand{\cross}{\times} \newcommand{\weak}[1]{\xrightharpoonup{#1}} %--Notations-- \newcommand{\Vol}{\mathrm{Vol}} \newcommand{\loc}{\mathrm{loc}} \renewcommand{\dim}{\mathrm{dim}} \newcommand{\Span}{\mathrm{Span}} \newcommand{\diam}{\mathrm{diam}} \newcommand{\Id}{\mathrm{Id}} \newcommand{\Lip}{\mathrm{Lip}} \newcommand{\dist}{\mathrm{dist}} \newcommand{\inv}{^{-1}} %--Algebra-- \newcommand{\hfsq}[1]{\frac{\abs{#1} ^2}{2}} %--Sets-- \newcommand{\R}{\mathbb{R}} \newcommand{\RR}[1]{\R ^{#1}} \newcommand{\Rd}{\RR d} \newcommand{\Rn}{\RR n} \renewcommand{\S}{\mathbb{S}} \renewcommand{\Z}{\mathbb{Z}} \newcommand{\T}{\mathbb{T}} \newcommand{\ssubset}{\subset \subset} \newcommand{\spt}{\operatorname{spt}} \newcommand{\supp}{\operatorname{supp}} \newcommand{\diam}{\mathrm{diam}} \newcommand{\diag}{\operatorname{diag}} \renewcommand{\dim}{\mathrm{dim}} \newcommand{\dimH}{\mathrm{dim} _\mathcal{H}} \newcommand{\Sing}{\mathrm{Sing}} \newcommand{\Vol}{\mathrm{Vol}} \newcommand{\inds}[1]{\mathbf1_{\set{#1}}} \newcommand{\ind}[1]{\mathbf1_{#1}} %--Summations-- \newcommand{\SUM}[3]{\sum \cnt{#1}{#2}{#3}} \newcommand{\PROD}[3]{\prod \cnt{#1}{#2}{#3}} \newcommand{\cnt}[3]{ _{#1 = #2} ^{#3} } \newcommand{\seq}[2]{\set{#1 _{#2}} _{#2}} \newcommand{\seqi}[2]{\set{#1 _{#2}} \cnt{#2}1i} %--Superscript and Subscript \newcommand{\pp}[1]{^{(#1)}} \newcommand{\bp}[1]{_{(#1)}} \newcommand{\pps}[2][1]{^{#2 + #1}} \newcommand{\bps}[2][1]{_{#2 + #1}} \newcommand{\pms}[2][1]{^{#2 - #1}} \newcommand{\bms}[2][1]{_{#2 - #1}} %--Notations-- \newcommand{\loc}{\mathrm{loc}} \newcommand{\Span}{\operatorname{Span}} \newcommand{\argmin}{\operatorname{argmin}} \newcommand{\argmax}{\operatorname{argmax}} \newcommand{\osc}{\operatorname{osc}} \newcommand{\Id}{\mathrm{Id}} \newcommand{\Lip}{\operatorname{Lip}} \newcommand{\Leb}{\operatorname{Leb}} \newcommand{\PV}{\mathrm{P.V.}} \newcommand{\dist}{\operatorname{dist}} \newcommand{\at}[1]{\bigr\rvert _{#1}} \newcommand{\At}[1]{\biggr\rvert _{#1}} \newcommand{\half}{\frac12} %--Text-- \newcommand{\inn}{\text{ in }} \newcommand{\onn}{\text{ on }} \renewcommand{\ae}{\text{ a.e. }} \newcommand{\st}{\text{ s.t. }} \newcommand{\forr}{\text{ for }} \newcommand{\as}{\text{ as }} %--Differential-- \newcommand{\d}{\mathop{\kern0pt\mathrm{d}}\!{}} \newcommand{\dt}{\d t} \newcommand{\dx}{\d x} \newcommand{\dy}{\d y} \newcommand{\ptil}{\partial} \newcommand{\pt}{\ptil _t} \newcommand{\pfr}[2]{\frac{\partial #1}{\partial #2}} \newcommand{\dfr}[2]{\frac{\mathrm{d} #1}{\mathrm{d} #2}} \newcommand{\ddt}{\dfr{}t} \newcommand{\pthf}[2]{\pth{\frac{#1}{#2}}} %--Integral-- \newcommand{\intR}{\int _0 ^\infty} \newcommand{\intRn}{\int _{\Rn}} \newcommand{\intRd}{\int _{\Rd}} \newcommand{\fint}{-\!\!\!\!\!\!\int} \newcommand{\intset}[1]{\int _{\set{#1}}} %--Greek-- \newcommand{\e}{\varepsilon} \newcommand{\vp}{\varphi} %--Norm-- \newcommand{\nmL}[2]{\nor{#2} _{L ^#1}}

Research Blog

Jensen's Approximation

2021, February 05

Introduction

Given a continuous function u \in C (\mathbb T ^n), consider \newcommand{\xo}{x _0} \newcommand{\ue}{u ^\e} \newcommand{\xos}{x _0 ^*} \newcommand{\Pd}{P ^\delta} \newcommand{\ve}{v _\e} \begin{align*} \ue (\xo) := \sup _x \set{ u (x) - \frac1\e \abs{x - \xo} ^2 } = \sup _h \set{ u (\xo - h) - \frac1\e \abs h ^2. }. \end{align*} Think each of the function inside \set{} as a function of \xo, there are two intepretations:

  1. \ue is a sup of a family of paraboloids (concave of opening \frac2\e). (Left)
  2. \ue is a sup of a family of translations of u (h horizontally, \frac1\e\abs h ^2 downwards). (Right)

Jensen's Approximation Solution

It has the following properties.

  1. \ue (\xo) = u (\xos) - \frac1\e \abs{x - \xos} ^2 for some \xos. \ue (\xo) = u (\xo - h ^*) - \frac1\e \abs{h ^*} ^2.

    This is because the sup is attainable in a compact set.

  2. \ue (\xo) \ge u(\xo).

    By definition, set x = \xo.

  3. \ue is \frac2\e \diam(\mathbb T)-Lipschitz.

    This is because for every x, u (x) - \frac1\e\abs{x - \xo} ^2 is \frac2\e \diam(\mathbb T)-Lipschitz in \xo.

  4. \ue decreases as \e \to 0.

    Because u (x) - \frac1\e\abs{x - \xo} ^2 decreases as \e \to 0.

  5. \abs{\xos - \xo} ^2 \le \e \osc u.

    Because u (\xo) \le u (\xos) - \frac1\e\abs{\xos - \xo} ^2.

  6. 0 \le \ue (\xo) - u (\xo) \le u (\xos) - u (\xo).

    Because 1. and 2.

Lemma.

  1. \ue \in C (\mathbb T ^n).
  2. \ue \downarrow u uniformly as \e \to 0.
  3. For every \xo there exists a concave paraboloid of opening 2/\e that touches \ue by below at \xo. Hence \ue is C ^{1,1} by below. In particular, \ue is punctually second order differentiable almost everywhere.

Proof.

  1. We even have Lipschitz continuity from Property 3.
  2. Property 4. implies monotonocity. Uniformily can be seen from \begin{align*} \ue (\xo) - u (\xo) \le u (\xos) - u(\xo) \to 0 \end{align*} uniformly since \xos \to \xo uniformly and u is uniform continuous.
  3. Because Property 1. asserts that the sup is attained by \xos, \ue is touched by a paraboloid by below.

Jensenn’s Approximate Solutions

Theorem. Suppose u is a viscosity subsolution of F (D ^2 u) = 0, we have that \ue is a viscosity subsolution of F (D ^2 u) = 0. In particular F (D ^2 \ue) \ge 0 a.e.

Proof.

Let P (x) touches \ue at \xo by above. Then it touches a translation of u by above (using the second intepretation mentioned at the beginning): P (\xo) = \ue (\xo) = u (\xo - h ^*) - \frac1\e \abs{h ^*} ^2.

Consider \begin{align*} Q (x) = P (x + h ^*) + \frac1\e \abs{h ^\ast} ^2. \end{align*} Then Q touches u by above at \xos. Since F (D ^2 u) \ge 0 in the viscosity sense, \begin{align*} 0 \le F (D ^2 Q) = F(D ^2 P). \end{align*} Therefore \ue is a viscosity subsolution.

Uniqueness

Theorem. Let u be a viscosity subsolution and v be a viscosity supersolution to F (D ^2 w) = 0 in \Omega. Then \begin{align*} u - v \in \underline S (\lambda/n, \Lambda). \end{align*}

Proof.

It suffices to show f := u ^\e - \ve \in \underline S (\lambda/n, \Lambda) in the interior because S is closed under uniform convergence. Let P be a paraboloid that touches f from above at \xo.

By Approximation theorem, \ue and \ve are again viscosity sub/supersolutions, and punctually second order differentiable almost everywhere. In particular, if they are both punctually second order differentiable at \xo, then \begin{align*} 0 \le F (D ^2 \ue (\xo)) - F (D ^2 \ve (\xo)) \le \mathcal M ^+ (D ^2 f (\xo); \lambda/n, \Lambda) \le \mathcal M ^+ (D ^2 P (\xo); \lambda/n, \Lambda) \end{align*} which finishes the proof. The problem is that we don’t know if \ue and \ve are punctually second order differentiable at \xo.

To overcome this, we fix a small r > 0 and define \begin{align*} \Pd (x) = P (x) + \delta \abs{x - \xo} ^2 - \delta r ^2. \end{align*} That is, we pinch \Pd a little such that it bends more downward without changing its value on \partial B _r (\xo). Then we still have \Pd > f on \partial B _r (\xo) but \Pd < f at \xo. Define w = \Pd - f. Let \Gamma _w be the convex envelope of -w ^- \ind{B _r (\xo)}, then since w can be touched from above by a paraboloid with uniform opening at any given point (\ue can be touched by below, \ve can be touched from above by a paraboloid of opening 2/\e, and \Pd is a paraboloid), by Lemma 3.5 we know that the contact set \set{w = \Gamma _w} has positive measure.

Let x _1 be a point in B _r intersect \set{w = \Gamma _w} intersect the punctual second order differentiability set of \ue - \ve. Then at this point, D ^2 w (x _1) = D ^2 \Gamma _w (x _1) is nonnegative, so \begin{align*} 0 &\le F (D ^2 \ue (x _1)) - F (D ^2 \ve (x _1)) \newline &\le F (D ^2 \ue (x _1) + D ^2 w (x _1)) - F (D ^2 \ve (x _1)) \newline &\le \mathcal M ^+ (D ^2 w (x _1) + D ^2 f (x _1); \lambda/n, \Lambda) \newline &\le \mathcal M ^+ (D ^2 \Pd; \lambda/n, \Lambda) \newline &\le \mathcal M ^+ (D ^2 P; \lambda/n, \Lambda) + 2 \Lambda \delta. \end{align*} Finally take \delta \to 0.

Corollary. The Dirichlet problem \begin{align*} \begin{cases} F (D ^2 u) = 0 & \inn \Omega, \newline u = \vp & \onn \partial \Omega \end{cases} \end{align*} has at most one viscosity solution u \in C (\bar \Omega).

Recent Posts

22 Jan 2021

De Giorgi

14 Apr 2020

Lorentz Space