De Giorgi
Introduction
Let \Omega \subset \Rd be a smooth bounded domain. Let A: \Omega \to \mathcal M ^{d \times d} (\R) be a measurable matrix-valued function such that it is uniformly elliptic: there exists 0 < \lambda \le \Lambda such that \begin{align*} \lambda \ \Id \le A (x) \le \Lambda \ \Id, \qquad \forall x \in \Omega. \end{align*}
We say u \in H ^1 (\Omega) is a subsolution in \Omega of \begin{align*} - \div (A \grad u) = 0 \end{align*} if for every \vp \in H _0 ^1 (\Omega) such that \vp \ge 0, we have \begin{align*} \ang{\grad u, \grad \vp} _A := \int _{\Omega} (\grad u) ^\top (A \grad \vp) \dx \le 0. \end{align*}
De Giorgi’s First Lemma: Small Energy to Boundedness
Lemma. Let u br a subsolution in B _2. There exists a universal small \delta > 0, such that if \nor{u} _{L ^2(B _2)} \le \delta, then u \le 1 \inn B _1.
Proof.
Define \begin{align*} r _k &= 1 + 2 ^{-k}, & B \bp k &= B _{r _k} (0), & \ind{B \bp {k + 1}} &\le \vp _k \le \ind{B \bp k}. \end{align*} Denote \begin{align*} c _k &= 1 - 2 ^{-k}, & u _k &= (u - c _k) _+, & \Omega _k &= \set{\vp _k u _k > 0}, & \ind k &= \ind{\Omega _k}. \end{align*}
Denote energy \begin{align*} U _k = \nmL2{\vp _k u _k} ^2 = \int (\vp _k u _k) ^2 \dx. \end{align*}
- Hölder’s inequality. For p = (1/2 - 1/d) \inv, \begin{align*} \nmL2{\vp _k u _k} \le \nmL p{\vp _k u _k} \nmL d{\ind k}. \end{align*}
-
Sobolev inequality. \begin{align*} \nmL p{\vp _k u _k} \lesssim \nmL2{\grad (\vp _k u _k)}. \end{align*}
-
Caccioppoli inequality. \begin{align*} \nmL2{\grad (\vp _k u _k)} \lesssim _{\lambda, \Lambda} \nmL2{u _k \grad \vp _k}. \end{align*}
-
|\grad \vp _k| \le C ^k \vp \bms k, u _k \le u \bms k, so \begin{align*} \nmL2{u _k \grad \vp _k} \le C ^k \nmL2{u \bms k \vp \bms k}. \end{align*}
-
L ^d of indicator, \begin{align*} \nmL d{\ind k} = | \Omega _k | ^\frac1d. \end{align*}
-
\vp _k u _k > 0 implies \vp \bms k = 1, u \bms k > 2 ^{-k}. \begin{align*} | \Omega _k | \le \abset{ \vp \bms k u \bms k > 2 ^{-k} }. \end{align*}
-
Tchebyshev inequality. \begin{align*} \abset{ \vp \bms k u \bms k > 2 ^{-k} } \le 2 ^{2k} \nmL2{\vp \bms k u \bms k} ^2 . \end{align*}
Conclusion: \begin{align*} U _k \lesssim C ^k U \bms k ^{1 + 2/d}. \end{align*} If U _0 < \delta sufficiently small, then U _k \to 0. That is, \nor{(u - 1) _+} _{L ^2 (B _1)} = 0, u \le 1 in B _1.
De Giorgi’s Second Lemma: Boundedness to Oscillation Decay
Lemma.
Let u be a subsolution in B _2, satisfying
- u \le 1 in B _2.
- \abs{\set{u < 0} \cap B _1} > \mu.
Then u \le 1 - \eta in B _{1/2} for some universal \eta > 0.
Proof.
Recall \begin{align*} c _k &= 1 - 2 ^{-k}, & u _k &= (u - c _k) _+, \end{align*} we define \begin{align*} w _k &= 2 \cdot 2 ^k u _k = 2 (w \bms k - 1) _+ \le 2. \end{align*}
Claim that there exists a universal K such that w _{K + 2} \equiv 0 in B _{1/2}.
Otherwise, for any k \le K, w \bps[2] k \not\equiv 0 in B _{1/2}, then \begin{align*} w \bps[2] k \not\equiv 0 \inn B _{1/2} & \Rightarrow \abs{\set{w \bps[2] k > 0} \cap B _{1/2}} > 0 \newline & \Rightarrow \abs{\set{w \bps k > 1} \cap B _{1/2}} > 0 \newline \text{(by the first lemma)} & \Rightarrow \nor{w \bps k} _{L ^2 (B _1)} > \delta \newline & \Rightarrow \nor{w \bps k} _{L ^\infty (B _1)} \abs{\set{w \bps k > 0} \cap B _1} ^\frac12 > \delta \newline & \Rightarrow \abs{\set{w \bps k > 0} \cap B _1} > \pthf{\delta}{2} ^2 \newline & \Rightarrow \abs{\set{w _k > 1} \cap B _1} > \pthf{\delta}{2} ^2. \end{align*}
Then
-
w _k has large top. \begin{align*} \abs{\set{w _k > 1} \cap B _1} > \pthf{\delta}{2} ^2. \end{align*}
-
w _k has large base. \begin{align*} \abs{\set{w _k < 0} \cap B _1} \ge \abs{\set{u < 0} \cap B _1} > \mu. \end{align*}
-
w _k has bounded energy. This is because w _k is a subsolution in B _2, by energy inequality \begin{align*} \nor{\grad w _k} _{L ^2 (B _1)} \le C \nor{w _k} _{L ^2 (B _2)} \le C _0. \end{align*}
By isoperimetric inequality, w _k has large sides, that is, \begin{align*} \abs{\set{0 < w _k < 1} \cap B _1} > \alpha. \end{align*} Since \set{0 < w _k < 1} = \set{c _k < u < c _{k + 1}} are pairwise disjoint, if we let K be so large such that \mu + K \alpha > |B _1|, then we must have w _{K + 2} \equiv 0 in B _\frac12, so u _{K + 2} = 0, u \le c _{K + 2}. This finishes the proof by setting \eta = 2 ^{-K - 2}.
Tools (six inequalities, ethics).
Caccioppoli inequality. If u is a nonnegative subsolution, then \begin{align*} \nmL2{\grad (\vp u)} \lesssim _{\lambda, \Lambda} \nmL2{u \grad \vp}. \end{align*}
Proof.
Since \vp ^2 u \in H ^1 _0 (\Rn) is nonnegative, \begin{align*} 0 \ge \ang{\grad (\vp ^2 u), \grad u} _A &= \ang{\vp \grad u, \vp \grad u} _A + 2\ang{u \grad \vp, \vp \grad u} _A \newline &= \ang{\vp \grad u + u \grad \vp, \vp \grad u + u \grad \vp} _A - \ang{u \grad \vp, u \grad \vp} _A \newline &= \ang{\grad (\vp u), \grad (\vp u)} _A - \ang{u \grad \vp, u \grad \vp} _A. \end{align*} By ellipticity of A, \begin{align*} \lambda \nmL2{\grad (\vp u)} ^2 \le \Lambda \nmL2{u \grad \vp} ^2. \end{align*}
Energy inequality. If u is a nonnegative subsolution, then \begin{align*} \nor{\grad u} _{L ^2 (B _1)} \lesssim _{\lambda, \Lambda} \nor{u} _{L ^2 (B _2)}. \end{align*}
Proof.
Choose \vp to be a cutoff such that \ind{B _1} \le \vp \le \ind{B _2}, and use the Caccioppoli inequality.
Hölder's inequality. For p = (1/r - 1/q) \inv, \begin{align*} \nmL r{fg} \le \nmL pf \nmL qg. \end{align*}
Isoperimetric inequality. If u \in H ^1 (B _1), \nmL2{\grad u}^2 \le C _0, denote
then \begin{align*} C _0 |D| \ge C _1 (|A| |C| ^{1 - \frac1n}) ^2. \end{align*}
- \set{u \ge 1} = C
- \set{u \le 0} = A
- \set{0 < u < 1} = D
Proof.
Without loss of generality assume 0 \le u \le 1, so A = \set{u = 0}, C = \set{u = 1}. Fix x \in C.
If \sigma is a direction such that the ray \set{x + t \sigma} _{t \ge 0} pierces through A, then the variation on this ray is greater than 1, \begin{align*} 1 \le \int _0 ^{D _\sigma} \abs{\ddt u(x + r \sigma)} \d r \le \int _0 ^{D _\sigma} |\grad u (x + r \sigma)| \d r, \end{align*} where D _\sigma is the distance at which x + D _\sigma \sigma \in \partial B _1. If \Sigma is the set of all such \sigma, then \begin{align*} \abs{\Sigma} \le \int _\Sigma \int _0 ^{D _\sigma} |\grad u (x + r \sigma)| \d r \d \sigma &= \int _\Sigma \int _0 ^{D _\sigma} \frac{|\grad u (x + r \sigma)|}{r ^{n - 1}} r ^{n - 1} \d r \d \sigma \newline &= \int _{B _1} \frac{|\grad u (y)|}{|y - x| ^{n - 1}} \dy. \end{align*} Since a circular sector with center x, radius 2 and angle \Sigma will cover A, we have |A| \lesssim |\Sigma|. Now integrate x over C, \begin{align*} \abs{A} \abs{C} &\lesssim \int _{C} \int _{B _1} \frac{|\grad u (y)|}{|y - x| ^{n - 1}} \dy \dx = \int _{B _1} |\grad u (y)| \int _{C} \frac{1}{|y - x| ^{n - 1}} \dx \dy. \end{align*} For all set with the same measure as C, The integral \int _{C} \frac{1}{|y - x| ^{n - 1}} \dx is minimized when C is a ball centered at y, so \begin{align*} \int _{C} \frac{1}{|y - x| ^{n - 1}} \dx \lesssim |C| ^{\frac1n}. \end{align*} Therefore, \begin{align*} \abs{A} \abs{C} &\lesssim |C ^\frac1n| \int _{B _1} |\grad u (y)| \dy. \end{align*} Finally, using \supp (\grad u) \subset D, \begin{align*} \int _{B _1} |\grad u (y)| \dy \le \nor{\grad u} _{L ^2(B _1)} \nor{\ind D} _{L ^2 (B _1)} \le (C _0 |D|) ^\frac12. \end{align*}
Sobolev inequality. For u \in H ^1 (\Rd), for p = (1/2 - 1/d) \inv, \begin{align*} \nmL2{\grad u} \lesssim \nmL pu. \end{align*}
Proof.
We show a p < (1/2 - 1/d) \inv version. If \grad u = f and u is compactly supported, then \begin{align*} u = \La \inv \div \grad u = \div \La \inv f = f * \grad \Gamma \end{align*} where \Gamma is the fundamental solution to the Laplace equation, and \begin{align*} \grad \Gamma (x) = \frac{c _d}{|x| ^d}x \in L ^q _\loc \end{align*} for any q < \frac{d}{d - 1}. By Young’s convolution inequality, \begin{align*} \nmL p u \le \nmL 2 f \nmL q{\grad \Gamma} \end{align*} with 1 + p \inv = 2 \inv + q \inv.
Tchebyshev inequality. \begin{align*} \abset{u > \alpha} \le \frac{\nmL1u}\alpha \qquad \Rightarrow \qquad \abset{u > \alpha} \le \frac{\nmL2u ^2}{\alpha ^2}. \end{align*}