Nontangential Maximal Function
Introduction
We are interested in the relations between a function f defined on \Rn and a corresponding function F defined on \RR{n+1}_+. For instance, F (\cdot, t) = f * \Phi _t for some convolution kernel \Phi. We define the nontangential maximal function
\begin{align*} F ^* (x) := \sup _{|x - y| < t} |F (y, t)| = \sup _{\Gamma (x)} |F|. \end{align*}
Here \Gamma (x) = \set{(y, t): \abs{y - x} < t} is a cone centered at x with aperture 1. We may also define cone with aperture a by \Gamma _a (x) = \set{(y, t): \abs{y - x} < at}, and corresponding F ^* _a (x).
Proposition. Let \Phi has a non-increasing, bounded, integrable radial majorant. Then if F (x, t) = f * \Phi _t (x), then F ^* (x) \le c \mm f (x).
Carleson Measure
\newcommand{\cN}{\mathcal N} \newcommand{\cC}{\mathcal C} For a ball B = B _r (x _0) \subset \Rn, let T (B) \subset \RR{n+1}_+ be the cone with base B:
\begin{align*} T (B) = \set{ (x, t): \abs{x - x _0} \le r - t } = \RR{n+1} _+ \setminus \bigcup _{x \notin B} \Gamma (x). \end{align*}
In general for an open set O \subset \Rn, we define
\begin{align*} T (O) = \RR{n+1} _+ \setminus \bigcup _{x \notin O} \Gamma (x). \end{align*}
It is easy to see
\begin{align*} A \subset B \Rightarrow B ^c \subset A ^c \Rightarrow \bigcup _{x \notin B} \Gamma (x) \subset \bigcup _{x \notin A} \Gamma (x) \Rightarrow T (A) \subset T (B) \end{align*}
and
\begin{align*} (x, t) \in T (A) \cap T (B) &\Leftrightarrow (x, t) \notin \bigcup _{x \notin B} \Gamma (x) \cup \bigcup _{x \notin A} \Gamma (x) \newline &\Leftrightarrow (x, t) \notin \bigcup _{x \notin A \cap B} \Gamma (x) \newline &\Leftrightarrow (x, t) \in T (A \cap B) \end{align*}
so T (A) \cap T (B) = T (A \cap B). As for the union,
\begin{align*} (x, t) \in T (A) \cup T (B) &\Leftrightarrow (x, t) \notin \bigcup _{x \notin A} \Gamma (x) \cap \bigcup _{x \notin B} \Gamma (x) \newline &\Rightarrow (x, t) \notin \bigcup _{x \notin A \cup B} \Gamma (x) \newline &\Leftrightarrow (x, t) \in T (A \cup B). \end{align*}
so T (A) \cap T (B) \subset T (A \cap B).
Consider the following two spaces:
\begin{align*} \cN &= \set{F: \RR{n+1} _+ \to \R \text{ measurable function with } F ^* \in L^1(\Rn)}, \newline \cC &= \set{\mu \text{ Borel measure on $\RR{n+1} _+$}: \mu (T (B)) \le C |B| \text{ for all $B$ for some $C < \infty$}}. \end{align*}
These two spaces equipped with norm
\begin{align*} \nor{F} _{\cN} &= \nor{F ^*} _{L ^1 (\Rn)}, \newline \nor{\mu} _{\cC} &= \sup _B \frac{\mu (T (B))}{|B|} \newline &= \sup _{x \in \Rn} \underbrace{\sup _{B \ni x} \frac{\mu (T (B))}{|B|}} _{:=C (\d\mu) (x)}. \end{align*}
are Banach spaces. \cC is called the Carleson measure. The main theorem is the following.
Theorem. If F \in \cN and \mu \in \cC, then \begin{align} \int _{\RR{n+1}_+} F (x, t) \d \mu (x, t) &\le c \intRn F ^* (x) C (\d \mu) (x) \d x \\ &\le c \nor{F} _\cN \nor{\d\mu} _\cC. \end{align}
Proof.
The proof is based on the following two observations:
- \set{\abs F > \alpha} \subset T \pth{ \set{ F ^* > \alpha}}.
- \mu (T(B)) \le \abs B for all B implies \mu (T(O)) \le c \abs O for all O \subset \Rn.
Let’s see why they are true. Assume F > 0 for simplicity. For the first one,
\begin{align*} (x, t) \in \set{F > \alpha} &\Rightarrow \forall y \in B _t (x), F ^* (y) > \alpha \newline &\Rightarrow (x, t) \in T (B _t (x)) \subset T \pth{ \set{ F ^* > \alpha } }. \end{align*}
For the second one, pick (x, t) \in T (O), then B _t (x) \subset O. Let \seq Q k be a Whitney decomposition of O, such that \diam (Q _k) \sim \dist (Q _k, O ^c). Let Q _k be the cube that contains x, and let B _k be a ball centered at Q _k with radius c \diam (Q _k). Then by choosing c large enough, B _t (x) \subset B _k, and (t, x) \in T (B _k). Therefore, T (O) \subset \bigcup _k T (B _k), and
\begin{align*} \mu (T(O)) \le \sum _k \mu (T(B _k)) \end{align*}
Now for any x \in Q _k \subset B _k,
\begin{align*} \mu (T(B _k)) \le C (\d \mu) (x) |B _k|, \end{align*}
therefore
\begin{align*} \mu (T(B _k)) \le \frac1{|Q _k|} \int _{Q _k} C (\d \mu) (x) \d x |B _k| = c \int _{Q _k} C (\d \mu) (x) \d x, \end{align*}
thus
\begin{align*} \mu (T (O)) \le c \sum _k \int _{Q _k} C (\d \mu) (x) \dx = c \int _O C (\d \mu) (x) \d x. \end{align*}
After these two observations, we have
\begin{align*} \mu \ptset{F > \alpha} \le \mu( T( \set{F ^* > \alpha})) \le c \intset{F ^* > \alpha} C (\d\mu) (x) \d x. \end{align*}
Integrate with respect to \alpha,
\begin{align*} \int _{\RR{n+1}_+} F \d \mu \le c \intRn F ^* (x) C (\d\mu) (x) \d x. \end{align*}
The Effect of Aperture
We now show that the choice of aperture is not important.
Proposition. Recall that for a > 0, \begin{align*} F ^* _a (x) = \sup _{(y, t) \in \Gamma _a (x)} |F (y, t)| = \sup _{|y - x| \le at} |F (y, t)|. \end{align*} Then for any a \ge b > 0, \begin{align*} \abset{F ^* _a > \alpha} \le c _{a, b} \abset{F ^* _b > \alpha}, \qquad \forall \alpha > 0. \end{align*} Integrating with respect to \alpha gives \nmL1{F _a ^*} \le c _{a,b} \nmL1{F _b ^*}.
Note that F ^* _a \ge F ^* _b pointwisely, so the above inequalities are comparible.
Proof.
Denote O = \set{F ^* _b > \alpha}. For x \in \set{F ^* _a > \alpha}, there exists (\bar x, t) with F (\bar x, t) > \alpha and x \in B _{at} (\bar x). For every x \in B _{bt} (\bar x) we have F ^* _b (x) > \alpha, so B _{bt} (\bar x) \subset O. If we set B = B _{(a + b) t} (x) \supset B _{bt} (\bar x), then
\begin{align*} \frac{|O \cap B|}{|B|} \ge \frac{B _{bt} (\bar x)}{|B|} \ge \pthf b{a+b} ^n. \end{align*}
This shows that
\begin{align*} \mm \ind O (x) \ge \pthf b{a+b} ^n. \end{align*}
Therefore,
\begin{align*} \abset{F ^* _a > \alpha} \le \abset{\mm \ind O \ge \pthf b{a+b} ^n} \le c_n \pthf{a+b}b ^n \nmL1{\ind O} = c _n \pthf{a+b}b ^n \abset{F ^* _b > \alpha}. \end{align*}
Atomic Decomposition
Theorem. Any F \in \cN can be written as \begin{align*} F = \sum _k \lambda _k a _k \end{align*} where a _k are atoms, \lambda _k \ge 0, and \begin{align*} \sum _k \lambda _k \le c \nor{F}_{\cN}. \end{align*} Here a \in \cN is an atom if a is supported in the tent T (B) of some ball B with \nor{a}_{L ^\infty} \le |B| ^{-1}, so that a ^* (x) \le |B| \inv when x \in B and a ^* (x) = 0 when x \notin B, and \nor{a} _{\cN} \le 1.
Proof.
We denote the dyadic level sets of F ^* by O ^j = \set{F ^* > 2 ^j}, then \supp F \subset \bigcup _{j \in \Z} T (O ^j). Moreover, we Whitney decompose O ^j into Q ^j _k, so that
\begin{align*} T (O ^j) = \bigcup _k T (B ^j _k) \cap (Q ^j _k \times (0, \infty)). \end{align*}
Denote
\begin{align*} \Delta ^j _k = T (B ^j _k) \cap (Q ^j _k \times (0, \infty)) \cap (T (O ^j) \setminus T(O ^{j + 1})). \end{align*}
Then \supp F is the disjoint union of \Delta _k ^j. Now set \lambda ^j _k a ^j _k = F \ind{\Delta _k ^j}, where \lambda ^j _k = 2 ^{j + 1} \abs{B _k ^j}. Then a ^j _k is an atom and
\begin{align*} \sum _{j, k} \lambda _k ^j = \sum _{j, k} 2 ^{j + 1} |B _k ^j| = c \sum _{j, k} 2 ^{j + 1} |Q _k ^j| = c \sum _j 2 ^{j + 1} |O ^j| \le c \nmL1{F ^*} = c \nor F _{\cN}. \end{align*}