Processing math: 0%
Your browser does not support the canvas element.

Jincheng Yang

Institute for Advanced Study

%--Paired Delimiters-- \newcommand{\abs}[1]{\left\lvert #1 \right\rvert} \newcommand{\ang}[1]{\left\langle #1 \right\rangle} \newcommand{\bkt}[1]{\left\lbrack #1 \right\rbrack} \newcommand{\nor}[1]{\left\lVert #1 \right\rVert} \newcommand{\pth}[1]{\left( #1 \right)} \newcommand{\set}[1]{\left\lbrace #1 \right\rbrace} \newcommand{\abset}[1]{\abs{\set{#1}}} \newcommand{\ptset}[1]{\pth{\set{#1}}} %--Operators-- \newcommand{\grad}{\nabla} \newcommand{\La}{\Delta} \renewcommand{\div}{\operatorname{div}} \newcommand{\curl}{\operatorname{curl}} \newcommand{\tr}{\operatorname{tr}} \newcommand{\Hess}{\operatorname{Hess}} \newcommand{\mm}{\mathcal{M}} \newcommand{\inv}{^{-1}} \newcommand{\tensor}{\otimes} \newcommand{\cross}{\times} \newcommand{\weak}[1]{\xrightharpoonup{#1}} %--Notations-- \newcommand{\Vol}{\mathrm{Vol}} \newcommand{\loc}{\mathrm{loc}} \renewcommand{\dim}{\mathrm{dim}} \newcommand{\Span}{\mathrm{Span}} \newcommand{\diam}{\mathrm{diam}} \newcommand{\Id}{\mathrm{Id}} \newcommand{\Lip}{\mathrm{Lip}} \newcommand{\dist}{\mathrm{dist}} \newcommand{\inv}{^{-1}} %--Algebra-- \newcommand{\hfsq}[1]{\frac{\abs{#1} ^2}{2}} %--Sets-- \newcommand{\R}{\mathbb{R}} \newcommand{\RR}[1]{\R ^{#1}} \newcommand{\Rd}{\RR d} \newcommand{\Rn}{\RR n} \renewcommand{\S}{\mathbb{S}} \renewcommand{\Z}{\mathbb{Z}} \newcommand{\T}{\mathbb{T}} \newcommand{\ssubset}{\subset \subset} \newcommand{\spt}{\operatorname{spt}} \newcommand{\supp}{\operatorname{supp}} \newcommand{\diam}{\mathrm{diam}} \newcommand{\diag}{\operatorname{diag}} \renewcommand{\dim}{\mathrm{dim}} \newcommand{\dimH}{\mathrm{dim} _\mathcal{H}} \newcommand{\Sing}{\mathrm{Sing}} \newcommand{\Vol}{\mathrm{Vol}} \newcommand{\inds}[1]{\mathbf1_{\set{#1}}} \newcommand{\ind}[1]{\mathbf1_{#1}} %--Summations-- \newcommand{\SUM}[3]{\sum \cnt{#1}{#2}{#3}} \newcommand{\PROD}[3]{\prod \cnt{#1}{#2}{#3}} \newcommand{\cnt}[3]{ _{#1 = #2} ^{#3} } \newcommand{\seq}[2]{\set{#1 _{#2}} _{#2}} \newcommand{\seqi}[2]{\set{#1 _{#2}} \cnt{#2}1i} %--Superscript and Subscript \newcommand{\pp}[1]{^{(#1)}} \newcommand{\bp}[1]{_{(#1)}} \newcommand{\pps}[2][1]{^{#2 + #1}} \newcommand{\bps}[2][1]{_{#2 + #1}} \newcommand{\pms}[2][1]{^{#2 - #1}} \newcommand{\bms}[2][1]{_{#2 - #1}} %--Notations-- \newcommand{\loc}{\mathrm{loc}} \newcommand{\Span}{\operatorname{Span}} \newcommand{\argmin}{\operatorname{argmin}} \newcommand{\argmax}{\operatorname{argmax}} \newcommand{\osc}{\operatorname{osc}} \newcommand{\Id}{\mathrm{Id}} \newcommand{\Lip}{\operatorname{Lip}} \newcommand{\Leb}{\operatorname{Leb}} \newcommand{\PV}{\mathrm{P.V.}} \newcommand{\dist}{\operatorname{dist}} \newcommand{\at}[1]{\bigr\rvert _{#1}} \newcommand{\At}[1]{\biggr\rvert _{#1}} \newcommand{\half}{\frac12} %--Text-- \newcommand{\inn}{\text{ in }} \newcommand{\onn}{\text{ on }} \renewcommand{\ae}{\text{ a.e. }} \newcommand{\st}{\text{ s.t. }} \newcommand{\forr}{\text{ for }} \newcommand{\as}{\text{ as }} %--Differential-- \newcommand{\d}{\mathop{\kern0pt\mathrm{d}}\!{}} \newcommand{\dt}{\d t} \newcommand{\dx}{\d x} \newcommand{\dy}{\d y} \newcommand{\ptil}{\partial} \newcommand{\pt}{\ptil _t} \newcommand{\pfr}[2]{\frac{\partial #1}{\partial #2}} \newcommand{\dfr}[2]{\frac{\mathrm{d} #1}{\mathrm{d} #2}} \newcommand{\ddt}{\dfr{}t} \newcommand{\pthf}[2]{\pth{\frac{#1}{#2}}} %--Integral-- \newcommand{\intR}{\int _0 ^\infty} \newcommand{\intRn}{\int _{\Rn}} \newcommand{\intRd}{\int _{\Rd}} \newcommand{\fint}{-\!\!\!\!\!\!\int} \newcommand{\intset}[1]{\int _{\set{#1}}} %--Greek-- \newcommand{\e}{\varepsilon} \newcommand{\vp}{\varphi} %--Norm-- \newcommand{\nmL}[2]{\nor{#2} _{L ^#1}}

Research Blog

Nontangential Maximal Function

2020, November 10

Introduction

We are interested in the relations between a function f defined on \Rn and a corresponding function F defined on \RR{n+1}_+. For instance, F (\cdot, t) = f * \Phi _t for some convolution kernel \Phi. We define the nontangential maximal function

\begin{align*} F ^* (x) := \sup _{|x - y| < t} |F (y, t)| = \sup _{\Gamma (x)} |F|. \end{align*}

Here \Gamma (x) = \set{(y, t): \abs{y - x} < t} is a cone centered at x with aperture 1. We may also define cone with aperture a by \Gamma _a (x) = \set{(y, t): \abs{y - x} < at}, and corresponding F ^* _a (x).

Proposition. Let \Phi has a non-increasing, bounded, integrable radial majorant. Then if F (x, t) = f * \Phi _t (x), then F ^* (x) \le c \mm f (x).

Carleson Measure

\newcommand{\cN}{\mathcal N} \newcommand{\cC}{\mathcal C} For a ball B = B _r (x _0) \subset \Rn, let T (B) \subset \RR{n+1}_+ be the cone with base B:

\begin{align*} T (B) = \set{ (x, t): \abs{x - x _0} \le r - t } = \RR{n+1} _+ \setminus \bigcup _{x \notin B} \Gamma (x). \end{align*}

In general for an open set O \subset \Rn, we define

\begin{align*} T (O) = \RR{n+1} _+ \setminus \bigcup _{x \notin O} \Gamma (x). \end{align*}

It is easy to see

\begin{align*} A \subset B \Rightarrow B ^c \subset A ^c \Rightarrow \bigcup _{x \notin B} \Gamma (x) \subset \bigcup _{x \notin A} \Gamma (x) \Rightarrow T (A) \subset T (B) \end{align*}

and

\begin{align*} (x, t) \in T (A) \cap T (B) &\Leftrightarrow (x, t) \notin \bigcup _{x \notin B} \Gamma (x) \cup \bigcup _{x \notin A} \Gamma (x) \newline &\Leftrightarrow (x, t) \notin \bigcup _{x \notin A \cap B} \Gamma (x) \newline &\Leftrightarrow (x, t) \in T (A \cap B) \end{align*}

so T (A) \cap T (B) = T (A \cap B). As for the union,

\begin{align*} (x, t) \in T (A) \cup T (B) &\Leftrightarrow (x, t) \notin \bigcup _{x \notin A} \Gamma (x) \cap \bigcup _{x \notin B} \Gamma (x) \newline &\Rightarrow (x, t) \notin \bigcup _{x \notin A \cup B} \Gamma (x) \newline &\Leftrightarrow (x, t) \in T (A \cup B). \end{align*}

so T (A) \cap T (B) \subset T (A \cap B).

Consider the following two spaces:

\begin{align*} \cN &= \set{F: \RR{n+1} _+ \to \R \text{ measurable function with } F ^* \in L^1(\Rn)}, \newline \cC &= \set{\mu \text{ Borel measure on $\RR{n+1} _+$}: \mu (T (B)) \le C |B| \text{ for all $B$ for some $C < \infty$}}. \end{align*}

These two spaces equipped with norm

\begin{align*} \nor{F} _{\cN} &= \nor{F ^*} _{L ^1 (\Rn)}, \newline \nor{\mu} _{\cC} &= \sup _B \frac{\mu (T (B))}{|B|} \newline &= \sup _{x \in \Rn} \underbrace{\sup _{B \ni x} \frac{\mu (T (B))}{|B|}} _{:=C (\d\mu) (x)}. \end{align*}

are Banach spaces. \cC is called the Carleson measure. The main theorem is the following.

Theorem. If F \in \cN and \mu \in \cC, then \begin{align} \int _{\RR{n+1}_+} F (x, t) \d \mu (x, t) &\le c \intRn F ^* (x) C (\d \mu) (x) \d x \\ &\le c \nor{F} _\cN \nor{\d\mu} _\cC. \end{align}

Proof.

The proof is based on the following two observations:

  1. \set{\abs F > \alpha} \subset T \pth{ \set{ F ^* > \alpha}}.
  2. \mu (T(B)) \le \abs B for all B implies \mu (T(O)) \le c \abs O for all O \subset \Rn.

Let’s see why they are true. Assume F > 0 for simplicity. For the first one,

\begin{align*} (x, t) \in \set{F > \alpha} &\Rightarrow \forall y \in B _t (x), F ^* (y) > \alpha \newline &\Rightarrow (x, t) \in T (B _t (x)) \subset T \pth{ \set{ F ^* > \alpha } }. \end{align*}

For the second one, pick (x, t) \in T (O), then B _t (x) \subset O. Let \seq Q k be a Whitney decomposition of O, such that \diam (Q _k) \sim \dist (Q _k, O ^c). Let Q _k be the cube that contains x, and let B _k be a ball centered at Q _k with radius c \diam (Q _k). Then by choosing c large enough, B _t (x) \subset B _k, and (t, x) \in T (B _k). Therefore, T (O) \subset \bigcup _k T (B _k), and

\begin{align*} \mu (T(O)) \le \sum _k \mu (T(B _k)) \end{align*}

Now for any x \in Q _k \subset B _k,

\begin{align*} \mu (T(B _k)) \le C (\d \mu) (x) |B _k|, \end{align*}

therefore

\begin{align*} \mu (T(B _k)) \le \frac1{|Q _k|} \int _{Q _k} C (\d \mu) (x) \d x |B _k| = c \int _{Q _k} C (\d \mu) (x) \d x, \end{align*}

thus

\begin{align*} \mu (T (O)) \le c \sum _k \int _{Q _k} C (\d \mu) (x) \dx = c \int _O C (\d \mu) (x) \d x. \end{align*}

After these two observations, we have

\begin{align*} \mu \ptset{F > \alpha} \le \mu( T( \set{F ^* > \alpha})) \le c \intset{F ^* > \alpha} C (\d\mu) (x) \d x. \end{align*}

Integrate with respect to \alpha,

\begin{align*} \int _{\RR{n+1}_+} F \d \mu \le c \intRn F ^* (x) C (\d\mu) (x) \d x. \end{align*}

The Effect of Aperture

We now show that the choice of aperture is not important.

Proposition. Recall that for a > 0, \begin{align*} F ^* _a (x) = \sup _{(y, t) \in \Gamma _a (x)} |F (y, t)| = \sup _{|y - x| \le at} |F (y, t)|. \end{align*} Then for any a \ge b > 0, \begin{align*} \abset{F ^* _a > \alpha} \le c _{a, b} \abset{F ^* _b > \alpha}, \qquad \forall \alpha > 0. \end{align*} Integrating with respect to \alpha gives \nmL1{F _a ^*} \le c _{a,b} \nmL1{F _b ^*}.

Note that F ^* _a \ge F ^* _b pointwisely, so the above inequalities are comparible.

Proof.

Denote O = \set{F ^* _b > \alpha}. For x \in \set{F ^* _a > \alpha}, there exists (\bar x, t) with F (\bar x, t) > \alpha and x \in B _{at} (\bar x). For every x \in B _{bt} (\bar x) we have F ^* _b (x) > \alpha, so B _{bt} (\bar x) \subset O. If we set B = B _{(a + b) t} (x) \supset B _{bt} (\bar x), then

\begin{align*} \frac{|O \cap B|}{|B|} \ge \frac{B _{bt} (\bar x)}{|B|} \ge \pthf b{a+b} ^n. \end{align*}

This shows that

\begin{align*} \mm \ind O (x) \ge \pthf b{a+b} ^n. \end{align*}

Therefore,

\begin{align*} \abset{F ^* _a > \alpha} \le \abset{\mm \ind O \ge \pthf b{a+b} ^n} \le c_n \pthf{a+b}b ^n \nmL1{\ind O} = c _n \pthf{a+b}b ^n \abset{F ^* _b > \alpha}. \end{align*}

Atomic Decomposition

Theorem. Any F \in \cN can be written as \begin{align*} F = \sum _k \lambda _k a _k \end{align*} where a _k are atoms, \lambda _k \ge 0, and \begin{align*} \sum _k \lambda _k \le c \nor{F}_{\cN}. \end{align*} Here a \in \cN is an atom if a is supported in the tent T (B) of some ball B with \nor{a}_{L ^\infty} \le |B| ^{-1}, so that a ^* (x) \le |B| \inv when x \in B and a ^* (x) = 0 when x \notin B, and \nor{a} _{\cN} \le 1.

Proof.

We denote the dyadic level sets of F ^* by O ^j = \set{F ^* > 2 ^j}, then \supp F \subset \bigcup _{j \in \Z} T (O ^j). Moreover, we Whitney decompose O ^j into Q ^j _k, so that

\begin{align*} T (O ^j) = \bigcup _k T (B ^j _k) \cap (Q ^j _k \times (0, \infty)). \end{align*}

Denote

\begin{align*} \Delta ^j _k = T (B ^j _k) \cap (Q ^j _k \times (0, \infty)) \cap (T (O ^j) \setminus T(O ^{j + 1})). \end{align*}

Then \supp F is the disjoint union of \Delta _k ^j. Now set \lambda ^j _k a ^j _k = F \ind{\Delta _k ^j}, where \lambda ^j _k = 2 ^{j + 1} \abs{B _k ^j}. Then a ^j _k is an atom and

\begin{align*} \sum _{j, k} \lambda _k ^j = \sum _{j, k} 2 ^{j + 1} |B _k ^j| = c \sum _{j, k} 2 ^{j + 1} |Q _k ^j| = c \sum _j 2 ^{j + 1} |O ^j| \le c \nmL1{F ^*} = c \nor F _{\cN}. \end{align*}

Recent Posts

22 Jan 2021

De Giorgi

14 Apr 2020

Lorentz Space