Processing math: 0%
Your browser does not support the canvas element.

Jincheng Yang

Institute for Advanced Study

%--Paired Delimiters-- \newcommand{\abs}[1]{\left\lvert #1 \right\rvert} \newcommand{\ang}[1]{\left\langle #1 \right\rangle} \newcommand{\bkt}[1]{\left\lbrack #1 \right\rbrack} \newcommand{\nor}[1]{\left\lVert #1 \right\rVert} \newcommand{\pth}[1]{\left( #1 \right)} \newcommand{\set}[1]{\left\lbrace #1 \right\rbrace} \newcommand{\abset}[1]{\abs{\set{#1}}} \newcommand{\ptset}[1]{\pth{\set{#1}}} %--Operators-- \newcommand{\grad}{\nabla} \newcommand{\La}{\Delta} \renewcommand{\div}{\operatorname{div}} \newcommand{\curl}{\operatorname{curl}} \newcommand{\tr}{\operatorname{tr}} \newcommand{\Hess}{\operatorname{Hess}} \newcommand{\mm}{\mathcal{M}} \newcommand{\inv}{^{-1}} \newcommand{\tensor}{\otimes} \newcommand{\cross}{\times} \newcommand{\weak}[1]{\xrightharpoonup{#1}} %--Notations-- \newcommand{\Vol}{\mathrm{Vol}} \newcommand{\loc}{\mathrm{loc}} \renewcommand{\dim}{\mathrm{dim}} \newcommand{\Span}{\mathrm{Span}} \newcommand{\diam}{\mathrm{diam}} \newcommand{\Id}{\mathrm{Id}} \newcommand{\Lip}{\mathrm{Lip}} \newcommand{\dist}{\mathrm{dist}} \newcommand{\inv}{^{-1}} %--Algebra-- \newcommand{\hfsq}[1]{\frac{\abs{#1} ^2}{2}} %--Sets-- \newcommand{\R}{\mathbb{R}} \newcommand{\RR}[1]{\R ^{#1}} \newcommand{\Rd}{\RR d} \newcommand{\Rn}{\RR n} \renewcommand{\S}{\mathbb{S}} \renewcommand{\Z}{\mathbb{Z}} \newcommand{\T}{\mathbb{T}} \newcommand{\ssubset}{\subset \subset} \newcommand{\spt}{\operatorname{spt}} \newcommand{\supp}{\operatorname{supp}} \newcommand{\diam}{\mathrm{diam}} \newcommand{\diag}{\operatorname{diag}} \renewcommand{\dim}{\mathrm{dim}} \newcommand{\dimH}{\mathrm{dim} _\mathcal{H}} \newcommand{\Sing}{\mathrm{Sing}} \newcommand{\Vol}{\mathrm{Vol}} \newcommand{\inds}[1]{\mathbf1_{\set{#1}}} \newcommand{\ind}[1]{\mathbf1_{#1}} %--Summations-- \newcommand{\SUM}[3]{\sum \cnt{#1}{#2}{#3}} \newcommand{\PROD}[3]{\prod \cnt{#1}{#2}{#3}} \newcommand{\cnt}[3]{ _{#1 = #2} ^{#3} } \newcommand{\seq}[2]{\set{#1 _{#2}} _{#2}} \newcommand{\seqi}[2]{\set{#1 _{#2}} \cnt{#2}1i} %--Superscript and Subscript \newcommand{\pp}[1]{^{(#1)}} \newcommand{\bp}[1]{_{(#1)}} \newcommand{\pps}[2][1]{^{#2 + #1}} \newcommand{\bps}[2][1]{_{#2 + #1}} \newcommand{\pms}[2][1]{^{#2 - #1}} \newcommand{\bms}[2][1]{_{#2 - #1}} %--Notations-- \newcommand{\loc}{\mathrm{loc}} \newcommand{\Span}{\operatorname{Span}} \newcommand{\argmin}{\operatorname{argmin}} \newcommand{\argmax}{\operatorname{argmax}} \newcommand{\osc}{\operatorname{osc}} \newcommand{\Id}{\mathrm{Id}} \newcommand{\Lip}{\operatorname{Lip}} \newcommand{\Leb}{\operatorname{Leb}} \newcommand{\PV}{\mathrm{P.V.}} \newcommand{\dist}{\operatorname{dist}} \newcommand{\at}[1]{\bigr\rvert _{#1}} \newcommand{\At}[1]{\biggr\rvert _{#1}} \newcommand{\half}{\frac12} %--Text-- \newcommand{\inn}{\text{ in }} \newcommand{\onn}{\text{ on }} \renewcommand{\ae}{\text{ a.e. }} \newcommand{\st}{\text{ s.t. }} \newcommand{\forr}{\text{ for }} \newcommand{\as}{\text{ as }} %--Differential-- \newcommand{\d}{\mathop{\kern0pt\mathrm{d}}\!{}} \newcommand{\dt}{\d t} \newcommand{\dx}{\d x} \newcommand{\dy}{\d y} \newcommand{\ptil}{\partial} \newcommand{\pt}{\ptil _t} \newcommand{\pfr}[2]{\frac{\partial #1}{\partial #2}} \newcommand{\dfr}[2]{\frac{\mathrm{d} #1}{\mathrm{d} #2}} \newcommand{\ddt}{\dfr{}t} \newcommand{\pthf}[2]{\pth{\frac{#1}{#2}}} %--Integral-- \newcommand{\intR}{\int _0 ^\infty} \newcommand{\intRn}{\int _{\Rn}} \newcommand{\intRd}{\int _{\Rd}} \newcommand{\fint}{-\!\!\!\!\!\!\int} \newcommand{\intset}[1]{\int _{\set{#1}}} %--Greek-- \newcommand{\e}{\varepsilon} \newcommand{\vp}{\varphi} %--Norm-- \newcommand{\nmL}[2]{\nor{#2} _{L ^#1}}

Research Blog

Vector-Valued Maximal Function

2020, November 07

For f \in L ^1 _\loc (\Rn), we can define

\begin{align*} \mm f (x) := \sup _{r > 0} \fint _{B _x (r)} |f (y)| \d y. \end{align*}

\newcommand{\vf}{\boldsymbol f} \newcommand{\vg}{\boldsymbol g} \newcommand{\vb}{\boldsymbol b} \newcommand{\vM}{\boldsymbol{\mathcal M}}

Consider the space of function sequence \vf = \set{f _j} \cnt j1\infty \in \pth{L^p (\Rn)} _\tensor, define

\begin{align*} | \vf (x) | = \pth{ \SUM j1i |f _j (x)| ^2 } ^\half = \nor{\set{f _j (x)} \cnt j1\infty} _{\ell^2} \end{align*}

We say \vf \in L ^p if \abs{\vf} \in L ^p (\Rn), or \nor{\vf} _{L ^p} = \nor{f _j (x)} _{L ^p _x \ell ^2 _j}.

Vector-valued maximal operator \vM is defined by

\begin{align*} \vM \vf (x) = \pth{ \SUM j1\infty |\mm f _j (x)| ^2 } ^\half = \nor{\set{\mm f _j (x)} \cnt j1\infty} _{\ell^2} . \end{align*}

Then:

Theorem. Let 1 \le p < \infty, assume \vf \in L ^p. Then

  1. \vM \vf is finite a.e.
  2. \vM is weak-type (1, 1).
  3. \vM is strong-type (p, p), 1 < p < \infty.

Remark. The case p = \infty is wrong. Think f _j = \ind{(2 ^{j}, 2 ^{j + 1})}.

We will prove this theorem first for p = 2, then for p = 1, then for p \in (1, 2), then for p \in (2, \infty).

Proof for p = 2

Case p = 2 is natural, because \mm is bounded on L^2, and L ^2 _x \ell ^2 _j = L ^2_{x, j}.

Proof for p = 1

When p = 1, we want to prove for all \alpha > 0,

\begin{align*} \abset{ \vM \vf > \alpha } \le \frac A\alpha \nmL1\vf. \end{align*}

Assume \vf \ge 0. We have Calder'on-Zygmund decomposition, that is, we have a collection \set{Q _k} disjoint cubes, \vf = \vg + \vb = \vg + \sum _k \vb _k, such that

  1. \abs{\vg} = \abs{\vf} \le \alpha in \Rn \setminus \bigcup _k Q _k, and \vg = 0 in Q _k.
  2. \vb _k is supported in Q _k, and \fint _{Q _k} \abs{\vb _k} \le A \alpha.
  3. \sum _k \abs{Q _k} \le \frac A\alpha \nor\vf _{L ^1}.

Because \abs{\vg} \le \min \set{\alpha, \abs{\vf}},

\begin{align*} \abset{ \vM \vg > \frac\alpha2 } \le \frac4{\alpha ^2} \nmL2{\vM \vg} ^2 \le \frac A{\alpha ^2} \nmL2\vg ^2 \le \frac A\alpha \nmL1\vf. \end{align*}

it suffices to show

\begin{align*} \abset{ \vM \vb > \frac\alpha2 } \le \frac A\alpha \nmL1\vf. \end{align*}

Denote \bar \vb _k = \fint _{Q _k} \vb _k \le A\alpha, and \bar \vb = \sum _k \bar \vb _k \ind{Q _k}. Then

\begin{align*} \abset{ \vM \bar \vb > \frac\alpha2 } \le \frac4{\alpha ^2} \nmL2{\vM \bar \vb} ^2 \le \frac A{\alpha ^2} \nmL2{\bar \vb} ^2 \le A ^3 \sum _k |Q _k| \le \frac A\alpha \nmL1\vf. \end{align*}

Similarly

\begin{align*} \abset{ c \vM \bar \vb > \frac\alpha2 } \le \frac A\alpha \nmL1\vf. \end{align*}

We want to show that

\begin{align*} \vM \vb (x) \le c \vM \bar \vb (x) \qquad x \notin \bigcup _k Q _k ^* \end{align*}

where Q _k ^* = 2 Q _k. This would end the proof because

\begin{align*} \abset{ \vM \vb (x) > \frac\alpha2 } &\le \abset{ c \vM \bar \vb > \frac\alpha2 } + \abset{ \vM \vb (x) > c \vM \bar \vb } \\&\le \frac A\alpha \nmL1\vf + \sum _k |Q _k ^*| \\&\le \frac A\alpha \nmL1\vf. \end{align*}

To see why c \vM \bar \vb bound \vM \vb away from Q _k ^*, it suffices to prove for each coordinate,

\begin{align*} \mm b _j (x) \le c \mm \bar b _j (x) \qquad x \notin \bigcup _k Q _k ^* \end{align*}

then the \ell ^2 norm are controlled. Let B = B (x, r), and consider

\begin{align*} \fint _B b _j (x) \d x = \frac1{|B|} \sum _k \int _{B \cap Q _k} b _j (x) \d x. \end{align*}

If x \notin Q _k ^*, B \cap Q _k \neq \varnothing, then Q _k \subset 3 B, so

\begin{align*} \fint _B b _j \d x \le \frac1{|B|} \int _{3B} b _j \d x = \frac1{|B|} \int _{3B} \bar b _j \d x \le 3 ^n M \bar b _j (x). \end{align*}

Proof for 1 < p < 2

By Marcinkiewicz interpolation, we have all the strong type bound for 1 < p \le 2.

Proof for 2 < p < \infty

First we introduce the weighted maximal inequality.

Proposition. Let \mu < < \mathcal L ^n be absolute continuous with respect to the Lebesgue measure, that is \d \mu = \omega (x) \d x for some \omega \in L^1_{\loc}. Then \begin{align*} \mu \ptset{ \mm f (x) > \alpha } \le \frac A\alpha \nor{f} _{L^1(\mm \omega \d x)} \end{align*} and \begin{align*} \nor{\mm f} _{L ^q(\omega \d x)} \le A _q \nor f_{L ^q (\mm \omega \d x)}. \end{align*} Here A and A _q are independent from \omega.

Proof.

The case q = \infty is trivial, and the case 1 < q < \infty is by Marcinkiewicz interpolation.

For x \in \set{\mm f (x) > \alpha}, there exists B _x such that

\begin{align*} |B _x| < \frac1\alpha \int _{B _x} |f (y)| \d y. \end{align*}

Then \begin{align*} \mu (5 B _x) = \int _{5 B _x} \omega \d x &\le A |B _x| \mm \omega (y), \qquad \forall y \in B _x \\& \le \frac A\alpha \int _{B _x} |f (y)| \mm \omega (y) \d y. \end{align*}

Fincally, we choose a disjoint subselection of B _{x _k} such that 5 B _{x _k} is a covering of \set{\mm f (x) > \alpha}.


Back to the case \vf = \set{f _j} \cnt j1i, by proposition case q = 2 we have

\begin{align*} \nor{\mm f _j} _{L ^2(\omega \d x)} \le A _2 \nor{f _j} _{L ^2 (\mm \omega \d x)}. \end{align*}

Take \ell ^2 norm,

\begin{align*} \nor{\vM \vf} _{L ^2(\omega \dx)} \le A _2 \nor{\vf} _{L ^2 (\mm \omega \d x)}, \end{align*}

that is

\begin{align*} \int (\vM \vf) ^2 \omega \d x \le A \int |\vf| ^2 (\mm \omega) \d x. \end{align*}

Then by duality, set q = \pthf p2 ^*,

\begin{align*} \nmL p{\vM \vf} &= \nmL{\frac p2}{(\vM \vf) ^2} \\&= \sup _{\nmL q{\omega} = 1} \int (\vM \vf) ^2 \omega \d x \\& \le \sup _{\nmL q{\omega} = 1} A \int |\vf| ^2 (\mm \omega) \d x \\& \le A \nmL{\frac p2}{\vf ^2} \sup _{\nmL q{\omega} = 1} \nmL{q}{\mm \omega} \\& \le A \nmL p \vf. \end{align*}

Remark. We can replace \ell ^2 by \ell ^q for 1 < q \le \infty, by setting \vM _q \vf (x) = \nor{M f _j (x)}_{\ell ^q}. For q < \infty, one start the proof for p = q, then interpolate (1, q), then bootstrap to (q, \infty). For q = \infty, \vM _\infty \vf \le M (|\vf| _\infty). However q = 1 doesn't work.

Remark. If \mm \omega is comparible to \omega, then the two weights in the proposition are the same. This is called A _1 condition.

Recent Posts

22 Jan 2021

De Giorgi

14 Apr 2020

Lorentz Space