Library hnat

Natural numbers and their properties. Vladimir Voevodsky . Apr. - Sep. 2011



This file contains the formulations and proofs of general properties of natural numbers from the univalent perspecive.

Preambule


Settings

Add Rec LoadPath "../Generalities".
Add Rec LoadPath "../hlevel1".
Add Rec LoadPath "../hlevel2".

Unset Automatic Introduction.
Imports.

Require Export algebra1 .

To up-stream files

Equality on nat


Basic properties of paths on nat and the proofs of isdeceq and isaset for nat .


Theorem nopathsOtoSx: forall x:nat, paths O (S x) -> empty.
Proof. intro.
set (f:= fun n:nat => match n with
O => true|
S m => false
end).

apply ( negf ( @maponpaths _ _ f 0 ( S x ) ) nopathstruetofalse ) . Defined.

Corollary nopathsSxtoO ( x : nat ) : paths (S x) O -> empty.
Proof. intros x X. apply (nopathsOtoSx x (pathsinv0 X)). Defined.

Lemma noeqinjS ( x x':nat) : (paths x x' -> empty) -> (paths (S x) (S x') -> empty).
Proof. set (f:= fun n:nat => match n with
O => O|
S m => m
end).

intro. intro. intro X. apply ( negf ( @maponpaths _ _ f ( S x ) ( S x' ) ) X ) . Defined.

Theorem isdeceqnat: isdeceq nat.
Proof. unfold isdeceq. intro x . induction x as [ | x IHx ] . intro x' . destruct x'. apply (ii1 (idpath O)). apply (ii2 (nopathsOtoSx x')). intro x' . destruct x'. apply (ii2 (nopathsSxtoO x)). destruct (IHx x') as [ p | e ]. apply (ii1 (maponpaths S p)). apply (ii2 (noeqinjS _ _ e)). Defined.

Theorem isisolatedn ( n : nat ) : isisolated _ n .
Proof. intro. unfold isisolated . intro x' . apply isdeceqnat . Defined.

Theorem isasetnat: isaset nat.
Proof. apply (isasetifdeceq _ isdeceqnat). Defined.

Definition natset : hSet := hSetpair _ isasetnat .
Canonical Structure natset .

Definition eqnat ( a b : nat ) : hProp := hProppair _ ( isasetnat a b ) .

Semi-boolean equality or eqh on nat .


Fixpoint eqbnat (n m : nat ) : bool :=
match n,m with
 | S n , S m => eqbnat n m
 | O , O => true
 | O , S m => false
 | S m , 0 => false
end.

Definition eqh ( n m : nat ) : hProp := hProppair ( paths ( eqbnat n m ) true ) ( isasetbool _ _ ) .

Lemma isdecpropeqh ( n m : nat ) : isdecprop ( eqh n m ) .
Proof. intros . apply ( isdecproppaths isdeceqbool ( eqbnat n m ) true ) . Defined .

Lemma isrefleqh ( n : nat ) : eqh n n .
Proof. intro . induction n . simpl . apply idpath . simpl . assumption . Defined .

Definition eqhtopaths ( n m : nat ) : eqh n m -> paths n m .
Proof . intro n. induction n as [ | n IHn ] . intro m . destruct m as [ | m ] . intro . apply idpath . intro X . simpl in X . destruct ( nopathsfalsetotrue X ) . intro m . destruct m as [ | m ] . intro X . simpl in X . destruct ( nopathsfalsetotrue X ) . intro X . set ( a := IHn m X ) . apply ( maponpaths S a ) . Defined .

Definition pathstoeqh ( n m : nat ) : paths n m -> eqh n m .
Proof. intros n m e . destruct e . simpl . apply isrefleqh . Defined.

Definition weqeqhtopaths ( n m : nat ) : weq ( eqh n m ) ( paths n m ) .
Proof. intros . assert ( is1 : isaprop ( eqh n m ) ) . apply ( pr22 ( eqh n m ) ) . assert ( is2 : isaprop ( paths n m ) ) . set ( a:= isasetnat n m ) . simpl in a . assumption .
split with ( eqhtopaths _ _ ) . apply ( isweqimplimpl ( eqhtopaths _ _ ) ( pathstoeqh _ _ ) is1 is2 ) . Defined.

Definition neqh ( n m : nat ) : hProp := hProppair ( paths ( eqbnat n m ) false ) ( isasetbool _ _ ) .

Lemma neqhtonegpaths ( n m : nat ) : neqh n m -> neg ( paths n m ) .
Proof. intros n m ne . intro e . destruct e . destruct ( nopathstruetofalse ( pathscomp0 ( pathsinv0 ( isrefleqh n ) ) ne ) ) . Defined .

S : nat -> nat is a decidable inclusion .


Lemma invmaponpathsS ( n m : nat ) : paths ( S n ) ( S m ) -> paths n m .
Proof. intros n m e . apply ( eqhtopaths n m ( pathstoeqh ( S n ) ( S m ) e ) ) . Defined.

Theorem isinclS : isincl S .
Proof. apply ( isinclbetweensets S isasetnat isasetnat invmaponpathsS ) . Defined .

Theorem isdecinclS : isdecincl S .
Proof. intro n . apply isdecpropif . apply ( isinclS n ) . destruct n as [ | n ] . assert ( nh : neg ( hfiber S 0 ) ) . intro hf . destruct hf as [ m e ] . apply ( nopathsSxtoO _ e ) . apply ( ii2 nh ) . apply ( ii1 ( hfiberpair _ n ( idpath _ ) ) ) . Defined .

Inequalities on nat .


Boolean "less or equal" or leb on nat .


Fixpoint leb (n m : nat) : bool :=
match n,m with
 | S n , S m => leb n m
 | O, _ => true
 | _, _ => false
end.

Semi-boolean "less or equal" or leh and "greater" or gth on nat .



Note that due to its definition leh automatically has the property that leh n m <-> leh ( S n ) ( S m ) .

Definition leh ( n m : nat ) : hProp := hProppair ( paths ( leb n m ) true ) ( isasetbool _ _ ) .

Lemma isdecpropleh ( n m : nat ) : isdecprop ( leh n m ) .
Proof. intros . apply ( isdecproppaths isdeceqbool ( leb n m ) true ) . Defined .

Lemma lehtrans ( n m k : nat ) : leh n m -> leh m k -> leh n k .
Proof. intro. induction n as [ | n IHn ] . intros m k X X0 . simpl. apply idpath.
intros m k X X0. destruct m as [ | m ] . apply (fromempty (nopathsfalsetotrue X)). destruct k as [ | k ] . apply (fromempty (nopathsfalsetotrue X0)). simpl. simpl in X . simpl in X0 . apply (IHn m k). assumption . assumption . Defined.
Hint Resolve lehtrans : natarith .

Lemma lehrefl (n:nat): leh n n .
Proof. intros. induction n as [ | n IHn ] . split . simpl. assumption. Defined.
Hint Resolve lehrefl : natarith .

Definition lehpo : po nat := popair leh ( dirprodpair lehtrans lehrefl ).


Lemma lehnsn (n:nat): leh n (S n) .
Proof. intro. induction n as [ | n IHn ] . apply ( idpath true ) . assumption. Defined.
Hint Resolve lehnsn : natarith .

Lemma neglehsnn (n:nat): neg ( leh ( S n ) n).
Proof. intro. induction n as [ | n IHn ] . simpl. intro X. apply (nopathsfalsetotrue X). assumption. Defined.

Lemma lehimpllehs ( n m : nat ) : leh n m -> leh n ( S m ) .
Proof. intros n m is . apply ( lehtrans n m ( S m ) is ( lehnsn m ) ) . Defined .

Lemma lehsimplleh ( n m : nat ) : leh ( S n ) m -> leh n m .
Proof. intros n m is . apply ( lehtrans ( S n ) m ( S m ) is ( lehnsn m ) ) . Defined .

Lemma leh0implis0 (n:nat) : leh n 0 -> paths n 0.
Proof. intro. destruct n as [ | n ] . intro. apply idpath. intro X. apply (fromempty (nopathsfalsetotrue X)). Defined.

Lemma neglehsn0 ( n : nat ) : neg ( leh ( S n ) 0 ) .
Proof. intros n H . set ( int := leh0implis0 ( S n ) H ) . simpl in H . apply ( nopathsfalsetotrue H ) . Defined .

Lemma lehchoice ( n m : nat ) : leh n m -> coprod ( leh ( S n ) m ) ( paths n m ) .
Proof . intros n m . revert n . induction m as [ | m IHm ] . intros n l . apply ( ii2 ( leh0implis0 _ l ) ) . intros n l . destruct n as [ | n ] . apply ( ii1 ( idpath true ) ) . destruct ( IHm n l ) as [ l' | e ] . apply ( ii1 l' ) . apply ( ii2 ( maponpaths S e ) ) . Defined .

Semi-boolean "greater" or gth on nat and its properties .



Note that due to its definition gth automatically has the property that gth n m <-> gth ( S n ) ( S m ) .

Definition gth ( n m : nat ) : hProp := hProppair ( paths ( leb n m ) false ) ( isasetbool _ _ ) .

Lemma isdecpropgth ( n m : nat ) : isdecprop ( gth n m ) .
Proof. intros . apply ( isdecproppaths isdeceqbool ( leb n m ) false ) . Defined .

Lemma neggthnn ( n : nat ) : neg ( gth n n ) .
Proof. intros n is . induction n as [ | n IHn ] . apply ( nopathstruetofalse is ) . apply ( IHn is ) . Defined .

Lemma gthtrans ( n m k : nat ) : gth n m -> gth m k -> gth n k .
Proof. intro. induction n as [ | n IHn ] . intros m k X X0. apply (fromempty (nopathstruetofalse X)). intros m k X X0 . destruct m as [ | m ] . apply (fromempty (nopathstruetofalse X0 )). destruct k as [ | k ] . apply ( idpath false ) . apply (IHn m k) . assumption . assumption . Defined.

Lemma gthasymm ( n m : nat ) : gth n m -> gth m n -> empty .
Proof. intros n m is is' . apply ( neggthnn n ( gthtrans _ _ _ is is' ) ) . Defined .

Lemma gthsnn ( n : nat ) : gth ( S n ) n .
Proof . intro n . induction n as [ | n IHn ] . apply ( idpath false ) . assumption . Defined .

Lemma gthimplgths ( n m : nat ) : gth n m -> gth ( S n ) m .
Proof. intros n m is . apply ( gthtrans ( S n ) n m ( gthsnn n ) is ) . Defined .

Lemma neggth0n ( n : nat ) : neg ( gth 0 n ) .
Proof. intros n is . apply ( nopathstruetofalse is ) . Defined .

Lemma gthchoice ( n m : nat ) : gth n m -> coprod ( gth n ( S m ) ) ( paths n ( S m ) ) .
Proof. intro n . induction n as [ | n IHn ] . intros m g . destruct ( neggth0n _ g ) . intro m . destruct m as [ | m ] . intro . destruct n as [ | n ] . apply ( ii2 ( idpath _ ) ) . apply ( ii1 ( idpath false ) ) . intro g . destruct ( IHn m g ) as [ g' | e ] . apply ( ii1 g' ) . apply ( ii2 ( maponpaths S e ) ) . Defined .

Semi-boolean " greater or equal " or geh and " less " or lth


Definition geh ( n m : nat ) := leh m n .

Definition lth ( n m : nat ) := gth m n .

Lemma gehtrans ( n m k : nat ) : geh n m -> geh m k -> geh n k .
Proof . intros n m k g1 g2 . apply ( lehtrans _ _ _ g2 g1 ) . Defined .

Definition gehpo : po nat := popair geh ( dirprodpair gehtrans lehrefl ).

Lemma lthtrans ( n m k : nat ) : lth n m -> lth m k -> lth n k .
Proof. intros n m k l1 l2 . apply ( gthtrans _ _ _ l2 l1 ) . Defined .

Lemma lth1implis0 ( n : nat ) : lth n 1 -> paths n 0 .
Proof. intros n l . destruct n as [ | n ] . apply idpath . destruct ( neggth0n n l ) . Defined .

Lemmas including a combination of leh , gth , geh and lth .


Lemma neglehgth ( n m : nat ) : leh n m -> gth n m -> empty .
Proof. intros n m is is' . apply ( nopathsfalsetotrue ( pathscomp0 ( pathsinv0 is' ) is ) ) . Defined .

Lemma gthimplgeh ( n m : nat ) : gth n m -> geh n m .
Proof. intros n m g . simpl . destruct ( boolchoice ( leb m n ) ) . assumption . destruct ( gthasymm _ _ g i ) . Defined .

Lemma gehsnimplgth ( n m : nat ) : geh n ( S m ) -> gth n m .
Proof. intro n . induction n as [ | n IHn ] . intros m X . destruct ( neglehsn0 _ X ) . intros m X . destruct m as [ | m ] . apply ( idpath false ) . apply ( IHn m X ) . Defined .

Lemma gthimplgehsn ( n m : nat ) : gth n m -> geh n ( S m ) .
Proof. intro n . induction n as [ | n IHn ] . intros m X . destruct ( neggth0n _ X ) . intros m X . destruct m as [ | m ] . apply ( idpath true ) . apply ( IHn m X ) . Defined .

Lemma lehsnimpllth ( n m : nat ) : leh ( S n ) m -> lth n m .
Proof. intros n m X . apply ( gehsnimplgth m n X ) . Defined .

Lemma lthimpllehsn ( n m : nat ) : lth n m -> leh ( S n ) m .
Proof. intros n m X . apply ( gthimplgehsn m n X ) . Defined .

Lemma gthgehtrans ( n m k : nat ) : gth n m -> geh m k -> gth n k .
Proof. intro. induction n as [ | n IHn ] . intros m k X X0. apply (fromempty (nopathstruetofalse X)). intros m k X X0 . destruct m as [ | m ] . set ( e := leh0implis0 k X0 ) . rewrite e . apply ( idpath false ) . destruct k as [ | k ] . apply ( idpath false ) . apply (IHn m k) . assumption . assumption . Defined.

Lemma gehgthtrans ( n m k : nat ) : geh n m -> gth m k -> gth n k .
Proof. intro. induction n as [ | n IHn ] . intros m k X X0. destruct m as [ | m ] . apply (fromempty (nopathstruetofalse X0 ) ). destruct ( neglehsn0 _ X ) . intros m k X X0 . destruct k as [ | k ] . apply ( idpath false ) . destruct m as [ | m ] . apply (fromempty (nopathstruetofalse X0 ) ). apply (IHn m k) . assumption . assumption . Defined.

Lemma lthlehtrans ( n m k : nat ) : lth n m -> leh m k -> lth n k .
Proof . intros n m k l1 l2 . apply ( gehgthtrans k m n l2 l1 ) . Defined .

Lemma lehlthtrans ( n m k : nat ) : leh n m -> lth m k -> lth n k .
Proof . intros n m k l1 l2 . apply ( gthgehtrans k m n l2 l1 ) . Defined .

Some properties of plus on nat


The structure of the additive ablelian unitary monoid on nat


Lemma natplusl0 ( n : nat ) : paths ( 0 + n ) n .
Proof . intros . apply idpath . Defined .

Lemma natplusr0 ( n : nat ) : paths ( n + 0 ) n .
Proof . intro . induction n as [ | n IH n ] . apply idpath . simpl . apply ( maponpaths S IH ) . Defined .
Hint Resolve natplusr0: natarith .

Lemma plusnsm ( n m : nat ) : paths ( n + S m ) ( S n + m ) .
Proof. intro . simpl . induction n as [ | n IHn ] . auto with natarith . simpl . intro . apply ( maponpaths S ( IHn m ) ) . Defined .
Hint Resolve plusnsm : natarith .

Lemma natpluscomm ( n m : nat ) : paths ( n + m ) ( m + n ) .
Proof. intro. induction n as [ | n IHn ] . intro . auto with natarith . intro . set ( int := IHn ( S m ) ) . set ( int2 := pathsinv0 ( plusnsm n m ) ) . set ( int3 := pathsinv0 ( plusnsm m n ) ) . set ( int4 := pathscomp0 int2 int ) . apply ( pathscomp0 int4 int3 ) . Defined .
Hint Resolve natpluscomm : natarith .

Lemma natplusassoc ( n m k : nat ) : paths ( ( n + m ) + k ) ( n + ( m + k ) ) .
Proof . intro . induction n as [ | n IHn ] . auto with natarith . intros . simpl . apply ( maponpaths S ( IHn m k ) ) . Defined.
Hint Resolve natplusassoc : natarith .

Definition addabmonoidnat : abmonoid := abmonoidpair ( setwithbinoppair natset ( fun n m : nat => n + m ) ) ( dirprodpair ( dirprodpair natplusassoc ( @isunitalpair natset _ 0 ( dirprodpair natplusl0 natplusr0 ) ) ) natpluscomm ) .

The structure of a partially ordered by leh additive abelian unitary monoid on nat


Lemma lehmplusnm ( n m : nat ) : leh m ( n + m ) .
Proof. intros . induction n as [ | n IHn ] . simpl . apply lehrefl . simpl . apply ( lehtrans _ _ _ IHn ( lehnsn _ ) ) . Defined .

Lemma lehnplusnm ( n m : nat ) : leh n ( n + m ) .
Proof. intros . rewrite ( natpluscomm n m ) . apply ( lehmplusnm m n ) . Defined .

Lemma neggthmplusnm ( n m : nat ) : neg ( gth m ( n + m ) ) .
Proof. intros . intro g . apply ( neglehgth _ _ ( lehmplusnm n m ) g ) . Defined .

Lemma neggthnplusnm ( n m : nat ) : neg ( gth n ( n + m ) ) .
Proof. intros . intro g . apply ( neglehgth _ _ ( lehnplusnm n m ) g ) . Defined .

Lemma lehandplusl ( n m k : nat ) : leh n m -> leh ( k + n ) ( k + m ) .
Proof. intros n m k l . induction k as [ | k IHk ] . assumption . assumption . Defined .

Lemma lehandplusr ( n m k : nat ) : leh n m -> leh ( n + k ) ( m + k ) .
Proof. intros . rewrite ( natpluscomm n k ) . rewrite ( natpluscomm m k ) . apply lehandplusl . assumption . Defined .

Lemma lehandpluslinv ( n m k : nat ) : leh ( k + n ) ( k + m ) -> leh n m .
Proof. intros n m k l . induction k as [ | k IHk ] . assumption . apply ( IHk l ) . Defined .

Lemma lehandplusrinv ( n m k : nat ) : leh ( n + k ) ( m + k ) -> leh n m .
Proof. intros n m k l . rewrite ( natpluscomm n k ) in l . rewrite ( natpluscomm m k ) in l . apply ( lehandpluslinv _ _ _ l ) . Defined .


Cancellation properties of plus on nat


Lemma pathsitertoplus ( n m : nat ) : paths ( iteration S n m ) ( n + m ) .
Proof. intros . induction n as [ | n IHn ] . apply idpath . simpl . apply ( maponpaths S IHn ) . Defined .

Lemma isinclplusn ( n : nat ) : isincl ( fun m : nat => m + n ) .
Proof. intro . induction n as [ | n IHn ] . apply ( isofhlevelfhomot 1 _ _ ( fun m : nat => pathsinv0 ( natplusr0 m ) ) ) . apply ( isofhlevelfweq 1 ( idweq nat ) ) . apply ( isofhlevelfhomot 1 _ _ ( fun m : nat => pathsinv0 ( plusnsm m n ) ) ) . simpl . apply ( isofhlevelfgf 1 _ _ isinclS IHn ) . Defined.

Lemma iscontrhfiberplusn ( n m : nat ) ( is : geh m n ) : iscontr ( hfiber ( fun i : nat => i + n ) m ) .
Proof. intros . apply iscontraprop1 . apply isinclplusn . induction m as [ | m IHm ] . set ( e := leh0implis0 _ is ) . split with 0 . apply e . destruct ( lehchoice _ _ is ) as [ l | e ] . set ( j := IHm l ) . destruct j as [ j e' ] . split with ( S j ) . simpl . apply ( maponpaths S e' ) . split with 0 . simpl . assumption . Defined .

Lemma neghfiberplusn ( n m : nat ) ( is : lth m n ) : neg ( hfiber ( fun i : nat => i + n ) m ) .
Proof. intros. intro h . destruct h as [ i e ] . rewrite ( pathsinv0 e ) in is . destruct ( neglehgth _ _ ( lehmplusnm i n ) is ) . Defined .

Lemma isdecinclplusn ( n : nat ) : isdecincl ( fun i : nat => i + n ) .
Proof. intros . intro m . apply isdecpropif . apply ( isinclplusn _ m ) . destruct ( boolchoice ( leb n m ) ) as [ i | ni ] . apply ( ii1 ( pr21 ( iscontrhfiberplusn n m i ) ) ) . apply ( ii2 ( neghfiberplusn n m ni ) ) . Defined .

Some properties of minus on nat


Lemma plusminusnmm ( n m : nat ) ( is : leh m n ) : paths ( ( n - m ) + m ) n .
Proof . intro n . induction n as [ | n IH n] . intro m . intro lh . simpl . apply ( leh0implis0 _ lh ) . intro m . destruct m as [ | m ] . intro . simpl . rewrite ( natplusr0 n ) . apply idpath . simpl . intro lh . rewrite ( plusnsm ( n - m ) m ) . apply ( maponpaths S ( IH m lh ) ) . Defined .

plus and gth


Lemma gthandplusl ( n m k : nat ) : gth n m -> gth ( k + n ) ( k + m ) .
Proof. intros n m k l . induction k as [ | k IHk ] . assumption . assumption . Defined .

Lemma gthandplusr ( n m k : nat ) : gth n m -> gth ( n + k ) ( m + k ) .
Proof. intros . rewrite ( natpluscomm n k ) . rewrite ( natpluscomm m k ) . apply gthandplusl . assumption . Defined .

Lemma gthandpluslinv ( n m k : nat ) : gth ( k + n ) ( k + m ) -> gth n m .
Proof. intros n m k l . induction k as [ | k IHk ] . assumption . apply ( IHk l ) . Defined .

Lemma gthandplusrinv ( n m k : nat ) : gth ( n + k ) ( m + k ) -> gth n m .
Proof. intros n m k l . rewrite ( natpluscomm n k ) in l . rewrite ( natpluscomm m k ) in l . apply ( gthandpluslinv _ _ _ l ) . Defined .

Some properties of mult on nat


Basic algebraic properties of mult on nat


Lemma multn0 ( n : nat ) : paths ( n * 0 ) 0 .
Proof. intro n . induction n as [ | n IHn ] . apply idpath . simpl . assumption . Defined .
Hint Resolve multn0 : natarith .

Lemma multsnm ( n m : nat ) : paths ( ( S n ) * m ) ( m + n * m ) .
Proof. intros . apply idpath . Defined .
Hint Resolve multsnm : natarith .

Lemma multnsm ( n m : nat ) : paths ( n * ( S m ) ) ( n + n * m ) .
Proof. intro n . induction n as [ | n IHn ] . intro . simpl . apply idpath . intro m . simpl . apply ( maponpaths S ) . rewrite ( pathsinv0 ( natplusassoc n m ( n * m ) ) ) . rewrite ( natpluscomm n m ) . rewrite ( natplusassoc m n ( n * m ) ) . apply ( maponpaths ( fun x : nat => m + x ) ( IHn m ) ) . Defined .
Hint Resolve multnsm : natarith .

Lemma natmultcomm ( n m : nat ) : paths ( n * m ) ( m * n ) .
Proof. intro . induction n as [ | n IHn ] . intro . auto with natarith . intro m . rewrite ( multsnm n m ) . rewrite ( multnsm m n ) . apply ( maponpaths ( fun x : _ => m + x ) ( IHn m ) ) . Defined .

Lemma natrdistr ( n m k : nat ) : paths ( ( n + m ) * k ) ( n * k + m * k ) .
Proof . intro . induction n as [ | n IHn ] . auto with natarith . simpl . intros . rewrite ( natplusassoc k ( n * k ) ( m * k ) ) . apply ( maponpaths ( fun x : _ => k + x ) ( IHn m k ) ) . Defined .

Lemma natldistr ( n m k : nat ) : paths ( n * ( m + k ) ) ( n * m + n * k ) .
Proof . intros n m . induction m as [ | m IHm ] . simpl . intro . rewrite ( multn0 n ) . auto with natarith . simpl . intro . rewrite ( multnsm n ( m + k ) ) . rewrite ( multnsm n m ) . rewrite ( natplusassoc _ _ _ ) . apply ( maponpaths ( fun x : _ => n + x ) ( IHm k ) ) . Defined .

Lemma natmultassoc ( n m k : nat ) : paths ( ( n * m ) * k ) ( n * ( m * k ) ) .
Proof. intro . induction n as [ | n IHn ] . auto with natarith . intros . simpl . rewrite ( natrdistr m ( n * m ) k ) . apply ( maponpaths ( fun x : _ => m * k + x ) ( IHn m k ) ) . Defined .

Lemma natmultl1 ( n : nat ) : paths ( 1 * n ) n .
Proof. simpl . auto with natarith . Defined .
Hint Resolve natmultl1 : natarith .

Lemma natmultr1 ( n : nat ) : paths ( n * 1 ) n .
Proof. intro n . rewrite ( natmultcomm n 1 ) . auto with natarith . Defined .
Hint Resolve natmultr1 : natarith .

Definition multabmonoidnat : abmonoid := abmonoidpair ( setwithbinoppair natset ( fun n m : nat => n * m ) ) ( dirprodpair ( dirprodpair natmultassoc ( @isunitalpair natset _ 1 ( dirprodpair natmultl1 natmultr1 ) ) ) natmultcomm ) .

Multiplication and comparisons ( leh gth etc . )


Lemma lehandmultl ( n m k : nat ) : leh n m -> leh ( k * n ) ( k * m ) .
Proof. intros n m k l . induction k as [ | k IHk ] . auto with natarith. simpl . apply ( lehtrans _ _ _ ( lehandplusr n m ( k * n ) l ) ( lehandplusl ( k * n ) ( k * m ) m IHk ) ) . Defined .

Lemma lehandmultr ( n m k : nat ) : leh n m -> leh ( n * k ) ( m * k ) .
Proof . intros n m k l . rewrite ( natmultcomm n k ) . rewrite ( natmultcomm m k ) . apply ( lehandmultl n m k l ) . Defined .

Lemma lehandmultlinv ( n m k : nat ) ( is : gth k 0 ) : leh ( k * n ) ( k * m ) -> leh n m .
Proof . intro n . induction n as [ | n IHn ] . intros . apply ( idpath true ) . intros m k . destruct m as [ | m ] . intros g l . rewrite ( multn0 k ) in l . rewrite ( multnsm k n ) in l . set ( l' := lehtrans _ _ _ ( lehnplusnm k ( k * n ) ) l ) . destruct ( neglehgth _ _ l' g ) . intros g l . rewrite ( multnsm k n ) in l . rewrite ( multnsm k m ) in l . set ( l' := lehandpluslinv _ _ _ l ) . apply ( IHn m k g l' ) . Defined .

Lemma lehandmultrinv ( n m k : nat ) ( is : gth k 0 ) : leh ( n * k ) ( m * k ) -> leh n m .
Proof. intros n m k is l . rewrite ( natmultcomm n k ) in l . rewrite ( natmultcomm m k ) in l . apply ( lehandmultlinv n m k is l ) . Defined .

Lemma lthandmultl ( n m k : nat ) ( is : gth k 0 ) : lth n m -> lth ( k * n ) ( k * m ) .
Proof. intro n . induction n as [ | n IHn ] . intros m k is l . destruct m as [ | m ] . destruct ( neggthnn _ l ) . rewrite ( multn0 k ) . rewrite ( multnsm k m ) . apply ( gehgthtrans _ _ _ ( lehnplusnm k ( k * m ) ) is ) . intro m . destruct m as [ | m ] . intros k g l . destruct ( neggth0n _ l ) . intros k g l . rewrite ( multnsm k n ) . rewrite ( multnsm k m ) . apply ( gthandplusl _ _ k ) . apply ( IHn m k g l ) . Defined .

Lemma lthandmultr ( n m k : nat ) ( is : gth k 0 ) : lth n m -> lth ( n * k ) ( m * k ) .
Proof . intros n m k l . rewrite ( natmultcomm n k ) . rewrite ( natmultcomm m k ) . apply ( lthandmultl n m k l ) . Defined .

Lemma lthandmultlinv ( n m k : nat ) ( is : gth k 0 ) : lth ( k * n ) ( k * m ) -> lth n m .
Proof . intro n . induction n as [ | n IHn ] . intros m k is l . destruct m as [ | m ] . destruct ( neggthnn _ l ) . simpl . apply idpath . intro m . destruct m as [ | m ] . intros k g l . rewrite ( multn0 k ) in l . destruct ( neggth0n _ l ) . intros k g l . rewrite ( multnsm k n ) in l . rewrite ( multnsm k m ) in l . set ( l' := gthandpluslinv _ _ _ l ) . apply ( IHn m k g l' ) . Defined .

Lemma lthandmultrinv ( n m k : nat ) ( is : gth k 0 ) : lth ( n * k ) ( m * k ) -> lth n m .
Proof. intros n m k is l . rewrite ( natmultcomm n k ) in l . rewrite ( natmultcomm m k ) in l . apply ( lthandmultlinv n m k is l ) . Defined .

Division with a remainder on nat


Definition natdivrem ( n m : nat ) ( is : gth m 0 ) : dirprod nat nat .
Proof. intros . induction n as [ | n IHn ] . intros . apply ( dirprodpair 0 0 ) . destruct ( leb m ( S ( pr22 IHn ) ) ) . apply ( dirprodpair ( S ( pr21 IHn ) ) 0 ) . apply ( dirprodpair ( pr21 IHn ) ( S ( pr22 IHn ) ) ) . Defined .

Definition natdiv ( n m : nat ) ( is : gth m 0 ) := pr21 ( natdivrem n m is ) .
Definition natrem ( n m : nat ) ( is : gth m 0 ) := pr22 ( natdivrem n m is ) .

Lemma lthnatrem ( n m : nat ) ( is : gth m 0 ) : lth ( natrem n m is ) m .
Proof. intro . destruct n as [ | n ] . unfold natrem . simpl . intros. assumption . unfold natrem . unfold natdivrem . simpl . intros m is . fold ( natdivrem n m is ) . destruct ( boolchoice ( leb m (S (pr22 (natdivrem n m is))) ) ) as [ t | nt ] . rewrite t . simpl . assumption . rewrite nt . simpl . assumption . Defined .

Theorem natdivremrule ( n m : nat ) ( is : gth m 0 ) : paths n ( ( natrem n m is ) + ( natdiv n m is ) * m ) .
Proof. intro . induction n as [ | n IHn ] . simpl . intros . apply idpath . intros m is . unfold natrem . unfold natdiv . unfold natdivrem . simpl . fold ( natdivrem n m is ) . destruct ( boolchoice ( leb m ( S ( pr22 ( natdivrem n m is ) ) ) ) ) as [ t | nt ] .

rewrite t . simpl . set ( is' := lthnatrem n m is ) . destruct ( gthchoice _ _ is' ) as [ h | e ] . destruct ( neglehgth _ _ t h ) . fold ( natdiv n m is ) . set ( e'' := maponpaths S ( IHn m is ) ) . change (S (natrem n m is + natdiv n m is * m) ) with ( S ( natrem n m is ) + natdiv n m is * m ) in e'' . rewrite ( pathsinv0 e ) in e'' . apply e'' .

rewrite nt . simpl . apply ( maponpaths S ( IHn m is ) ) . Defined .

Lemma lehmultnatdiv ( n m : nat ) ( is : gth m 0 ) : leh ( mult ( natdiv n m is ) m ) n .
Proof . intros . set ( e := natdivremrule n m is ) . set ( int := natdiv n m is * m ) . rewrite e . unfold int . apply ( lehmplusnm _ _ ) . Defined .

Theorem natdivremunique ( m i j i' j' : nat ) ( lj : lth j m ) ( lj' : lth j' m ) ( e : paths ( j + i * m ) ( j' + i' * m ) ) : dirprod ( paths i i' ) ( paths j j' ) .
Proof. intros m i . induction i as [ | i IHi ] .

intros j i' j' lj lj' . intro e . simpl in e . rewrite ( natplusr0 j ) in e . rewrite e in lj . destruct i' . simpl in e . rewrite ( natplusr0 j' ) in e . apply ( dirprodpair ( idpath _ ) e ) . simpl in lj . rewrite ( natpluscomm m ( i' * m ) ) in lj . rewrite ( pathsinv0 ( natplusassoc _ _ _ ) ) in lj . destruct ( neggthmplusnm _ _ lj ) .

intros j i' j' lj lj' e . destruct i' as [ | i' ] . simpl in e . rewrite ( natplusr0 j' ) in e . rewrite ( pathsinv0 e ) in lj' . rewrite ( natpluscomm m ( i * m ) ) in lj' . rewrite ( pathsinv0 ( natplusassoc _ _ _ ) ) in lj' . destruct ( neggthmplusnm _ _ lj' ) .

simpl in e . rewrite ( natpluscomm m ( i * m ) ) in e . rewrite ( natpluscomm m ( i' * m ) ) in e . rewrite ( pathsinv0 ( natplusassoc j _ _ ) ) in e . rewrite ( pathsinv0 ( natplusassoc j' _ _ ) ) in e . set ( e' := invmaponpathsincl _ ( isinclplusn m ) _ _ e ) . set ( ee := IHi j i' j' lj lj' e' ) . apply ( dirprodpair ( maponpaths S ( pr21 ee ) ) ( pr22 ee ) ) . Defined .

Exponentiation natpower n m ( " n to the power m " ) on nat


Fixpoint natpower ( n m : nat ) := match m with
O => 1 |
S m' => n * ( natpower n m' ) end .

Fcatorial on nat


Fixpoint factorial ( n : nat ) := match n with
0 => 1 |
S n' => ( S n' ) * ( factorial n' ) end .

The order-preserving functions di i : nat -> nat whose image is the complement to one element i .


Definition di ( i : nat ) ( x : nat ) : nat :=
match leb i x with
false => x |
true => S x
end .

Lemma lehdinsn ( i n : nat ) : leh ( di i n ) ( S n ) .
Proof . intros . unfold di . destruct ( leb i n ) . apply lehrefl . apply lehnsn . Defined .

Lemma gehdinn ( i n : nat ) : geh ( di i n ) n .
Proof. intros . unfold di . destruct ( leb i n ) . apply lehnsn . apply lehrefl . Defined .

Lemma isincldi ( i : nat ) : isincl ( di i ) .
Proof. intro . apply ( isinclbetweensets ( di i ) isasetnat isasetnat ) . intros x x' . unfold di . intro e. destruct ( boolchoice ( leb i x ) ) as [ nel | l ] . rewrite nel in e . destruct ( boolchoice ( leb i x' ) ) as [ nel' | l' ] . rewrite nel' in e . apply ( invmaponpathsS _ _ e ) . rewrite l' in e . destruct e . set ( e' := gthimplgths _ _ l' ) . simpl in e' . destruct ( nopathstruetofalse ( pathscomp0 ( pathsinv0 nel ) e' ) ) . rewrite l in e . destruct ( boolchoice ( leb i x' ) ) as [ nel' | l' ] . rewrite nel' in e . rewrite e in l . set ( e' := gthimplgths _ _ l ) . simpl in e' . destruct ( nopathstruetofalse ( pathscomp0 ( pathsinv0 nel' ) e' ) ) . rewrite l' in e . assumption . Defined .

Lemma neghfiberdi ( i : nat ) : neg ( hfiber ( di i ) i ) .
Proof. intros i hf . unfold di in hf . destruct hf as [ j e ] . destruct ( boolchoice ( leb i j ) ) as [ l | g ] . rewrite l in e . destruct e . apply ( neglehsnn j l ) . rewrite g in e . destruct e . assert ( e : paths ( leb ( S j ) ( S j ) ) true ) . apply lehrefl . apply ( nopathstruetofalse ( pathscomp0 ( pathsinv0 e ) g ) ) . Defined.

Lemma iscontrhfiberdi ( i j : nat ) ( ne : neg ( paths i j ) ) : iscontr ( hfiber ( di i ) j ) .
Proof. intros . apply iscontraprop1 . apply ( isincldi i j ) . destruct ( boolchoice ( leb i j ) ) as [ nel | l ] . destruct j as [ | j ] . destruct i as [ | i ] . destruct ( ne ( idpath _ ) ) . simpl in nel . destruct ( nopathsfalsetotrue nel ) . split with j . unfold di . destruct ( boolchoice ( leb i j ) ) as [ nel' | l' ] . rewrite nel' . apply idpath . destruct ( gthchoice _ _ l' ) as [ h | h ] . destruct ( nopathstruetofalse ( pathscomp0 ( pathsinv0 nel ) h ) ) . destruct ( ne h ) . split with j . unfold di . rewrite l . apply idpath . Defined .

Lemma isdecincldi ( i : nat ) : isdecincl ( di i ) .
Proof. intro i . intro j . apply isdecpropif . apply ( isincldi i j ) . destruct ( boolchoice ( eqbnat i j ) ) as [ eq | neq ] . assert ( e := eqhtopaths _ _ eq ) . destruct e . apply ( ii2 ( neghfiberdi i ) ) . apply ( ii1 ( pr21 ( iscontrhfiberdi i j ( neqhtonegpaths _ _ neq ) ) ) ) . Defined .

Inductive types le with values in Type .



This part is included for illustration purposes only . In practice it is easier to work with leh than with le .


A generalization of le and its properties .


Inductive leF { T : Type } ( F : T -> T ) ( t : T ) : T -> Type := leF_O : leF F t t | leF_S : forall t' : T , leF F t t' -> leF F t ( F t' ) .

Lemma leFiter { T : UU } ( F : T -> T ) ( t : T ) ( n : nat ) : leF F t ( iteration F n t ) .
Proof. intros . induction n as [ | n IHn ] . apply leF_O . simpl . unfold funcomp . apply leF_S . assumption . Defined .

Lemma leFtototal2withnat { T : UU } ( F : T -> T ) ( t t' : T ) ( a : leF F t t' ) : total2 ( fun n : nat => paths ( iteration F n t ) t' ) .
Proof. intros. induction a as [ | b H0 IH0 ] . split with O . apply idpath . split with ( S ( pr21 IH0 ) ) . simpl . apply ( @maponpaths _ _ F ( iteration F ( pr21 IH0 ) t ) b ) . apply ( pr22 IH0 ) . Defined.
Lemma total2withnattoleF { T : UU } ( F : T -> T ) ( t t' : T ) ( a : total2 ( fun n : nat => paths ( iteration F n t ) t' ) ) : leF F t t' .
Proof. intros . destruct a as [ n e ] . destruct e . apply leFiter. Defined .

Lemma leFtototal2withnat_l0 { T : UU } ( F : T -> T ) ( t : T ) ( n : nat ) : paths ( leFtototal2withnat F t _ (leFiter F t n)) ( tpair _ n ( idpath (iteration F n t) ) ) .
Proof . intros . induction n as [ | n IHn ] . apply idpath . simpl .
set ( h := fun ne : total2 ( fun n0 : nat => paths ( iteration F n0 t ) ( iteration F n t ) ) => tpair ( fun n0 : nat => paths ( iteration F n0 t ) ( iteration F ( S n ) t ) ) ( S ( pr21 ne ) ) ( maponpaths F ( pr22 ne ) ) ) . apply ( @maponpaths _ _ h _ _ IHn ) . Defined.

Lemma isweqleFtototal2withnat { T : UU } ( F : T -> T ) ( t t' : T ) : isweq ( leFtototal2withnat F t t' ) .
Proof . intros . set ( f := leFtototal2withnat F t t' ) . set ( g := total2withnattoleF F t t' ) .
assert ( egf : forall x : _ , paths ( g ( f x ) ) x ) . intro x . induction x as [ | y H0 IHH0 ] . apply idpath . simpl . simpl in IHH0 . destruct (leFtototal2withnat F t y H0 ) as [ m e ] . destruct e . simpl . simpl in IHH0. apply ( @maponpaths _ _ ( leF_S F t (iteration F m t) ) _ _ IHH0 ) .
assert ( efg : forall x : _ , paths ( f ( g x ) ) x ) . intro x . destruct x as [ n e ] . destruct e . simpl . apply leFtototal2withnat_l0 .
apply ( gradth _ _ egf efg ) . Defined.

Definition weqleFtototalwithnat { T : UU } ( F : T -> T ) ( t t' : T ) : weq ( leF F t t' ) ( total2 ( fun n : nat => paths ( iteration F n t ) t' ) ) := weqpair _ ( isweqleFtototal2withnat F t t' ) .

Inductive types le with values in Type are in hProp


Definition le ( n : nat ) : nat -> Type := leF S n .
Definition le_n := leF_O S .
Definition le_S := leF_S S .

Theorem isaprople ( n m : nat ) : isaprop ( le n m ) .
Proof. intros . apply ( isofhlevelweqb 1 ( weqleFtototalwithnat S n m ) ) . apply invproofirrelevance . intros x x' . set ( i := @pr21 _ (fun n0 : nat => paths (iteration S n0 n) m) ) . assert ( is : isincl i ) . apply ( isinclpr21 _ ( fun n0 : nat => isasetnat (iteration S n0 n) m ) ) . apply ( invmaponpathsincl _ is ) . destruct x as [ n1 e1 ] . destruct x' as [ n2 e2 ] . simpl . set ( int1 := pathsinv0 ( pathsitertoplus n1 n ) ) . set ( int2 := pathsinv0 (pathsitertoplus n2 n ) ) . set ( ee1 := pathscomp0 int1 e1 ) . set ( ee2 := pathscomp0 int2 e2 ) . set ( e := pathscomp0 ee1 ( pathsinv0 ee2 ) ) . apply ( invmaponpathsincl _ ( isinclplusn n ) n1 n2 e ) . Defined .

Comparison between le with values in Type and leh .


Lemma letoleh ( n m : nat ) : le n m -> leh n m .
Proof . intros n m H . induction H as [ | m H0 IHH0 ] . apply lehrefl . apply lehimpllehs . assumption . Defined .

Lemma lehtole ( n m : nat ) : leh n m -> le n m .
Proof. intros n m H . induction m . assert ( int := leh0implis0 n H ) . clear H . destruct int . apply le_n .
 set ( int2 := lehchoice n ( S m ) H ) . destruct int2 as [ isleh | iseq ] . apply ( le_S n m ( IHm isleh ) ) . destruct iseq . apply le_n . Defined .

Lemma isweqletoleh ( n m : nat ) : isweq ( letoleh n m ) .
Proof. intros . set ( is1 := isaprople n m ) . set ( is2 := isasetbool ( leb n m ) true ) . apply ( isweqimplimpl ( letoleh n m ) ( lehtole n m ) is1 is2 ) . Defined .

Definition weqletoleh ( n m : nat ) := weqpair _ ( isweqletoleh n m ) .

Corollary isdecprople ( n m : nat ) : isdecprop ( le n m ) .
Proof. intros . apply ( isdecpropweqb ( weqletoleh n m ) ( isdecpropleh n m ) ) . Defined .