Optimal Online Discrepancy Minimization

Victor Reis
Joint with Janardhan Kulkarni and Thomas Rothvoss
Princeton Theory Lunch
March 1, 2024
Warmup: edge orientation
Warmup: edge orientation
Warmup: edge orientation
Warmup: edge orientation

\[
\begin{align*}
\begin{pmatrix}
-1 & 0 & 0 & 0 & 0 & 1 & -1 & -1 \\
1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & -1 & 0 & 0
\end{pmatrix}
\end{align*}
\]
Beck-Fiala Theorem (1981)

For any vectors $v_1, \ldots, v_T \in [-1, 1]^n$ with at most d nonzeros each,

$$\|x_1 v_1 + \cdots + x_T v_T\|_\infty < 2d$$

for some choice of signs $x_1, \ldots, x_T \in \{\pm 1\}.$
Beck-Fiala Theorem (1981)

For any vectors $v_1, \ldots, v_T \in [-1, 1]^n$ with at most d nonzeros each,

$$\|x_1 v_1 + \cdots + x_T v_T\|_\infty < 2d$$

for some choice of signs $x_1, \ldots, x_T \in \{\pm 1\}$.

The Beck-Fiala Conjecture

Can we improve the above bound to $O(\sqrt{d})$?
Beck-Fiala Theorem (1981)

For any vectors $v_1, \ldots, v_T \in [-1, 1]^n$ with at most d nonzeros each,

$$\|x_1 v_1 + \cdots + x_T v_T\|_\infty < 2d$$

for some choice of signs $x_1, \ldots, x_T \in \{\pm 1\}$.

The Beck-Fiala Conjecture

Can we improve the above bound to $O(\sqrt{d})$?

The Komlós Conjecture

For $v_1, \ldots, v_T \in \mathbb{R}^n$ with $\|v_i\|_2 \leq 1$, do there exist $x_1, \ldots, x_T \in \{\pm 1\}$ with

$$\|x_1 v_1 + \cdots + x_T v_T\|_\infty \leq O(1)$$
Beck-Fiala Theorem (1981)

For any vectors $v_1, \ldots, v_T \in [-1, 1]^n$ with at most d nonzeros each,

$$\|x_1 v_1 + \cdots + x_T v_T\|_\infty < 2d$$

for some choice of signs $x_1, \ldots, x_T \in \{\pm 1\}$.

The Beck-Fiala Conjecture

Can we improve the above bound to $O(\sqrt{d})$?

The Komlós Conjecture

For $v_1, \ldots, v_T \in \mathbb{R}^n$ with $\|v_i\|_2 \leq 1$, do there exist $x_1, \ldots, x_T \in \{\pm 1\}$ with

$$\|x_1 v_1 + \cdots + x_T v_T\|_\infty \leq O(1)?$$

Best known bound $O(\sqrt{\log \min(n, T)})$ (Banaszczyk ’98, BDG ’16)
Introduction to online discrepancy

- Player given vectors $v_1, \ldots, v_T \in \mathbb{R}^n$ one at a time
Introduction to online discrepancy

- Player given vectors $v_1, \ldots, v_T \in \mathbb{R}^n$ one at a time
- Find $x_1, \ldots, x_T \in \{\pm 1\}$ so that $x_1v_1 + \cdots + x_tv_t$ is balanced for all $t \in [T]$
Introduction to online discrepancy

- Player given vectors $v_1, \ldots, v_T \in \mathbb{R}^n$ one at a time
- Find $x_1, \ldots, x_T \in \{\pm 1\}$ so that $x_1 v_1 + \cdots + x_t v_t$ is balanced for all $t \in [T]$
- Example: unit vectors, ℓ_2 discrepancy
Introduction to online discrepancy

- Player given vectors \(v_1, \ldots, v_T \in \mathbb{R}^n \) one at a time
- Find \(x_1, \ldots, x_T \in \{\pm 1\} \) so that \(x_1 v_1 + \cdots + x_t v_t \) is balanced for all \(t \in [T] \)
- Example: unit vectors, \(l_2 \) discrepancy
Introduction to online discrepancy

- Player given vectors \(v_1, \ldots, v_T \in \mathbb{R}^n \) one at a time
- Find \(x_1, \ldots, x_T \in \{\pm 1\} \) so that \(x_1 v_1 + \cdots + x_t v_t \) is balanced for all \(t \in [T] \)
- Example: unit vectors, \(\ell_2 \) discrepancy
Introduction to online discrepancy

- Player given vectors $v_1, \ldots, v_T \in \mathbb{R}^n$ one at a time
- Find $x_1, \ldots, x_T \in \{\pm 1\}$ so that $x_1 v_1 + \cdots + x_t v_t$ is balanced for all $t \in [T]$
- Example: unit vectors, ℓ_2 discrepancy
Introduction to online discrepancy

- Player given vectors $v_1, \ldots, v_T \in \mathbb{R}^n$ one at a time
- Find $x_1, \ldots, x_T \in \{\pm 1\}$ so that $x_1 v_1 + \cdots + x_t v_t$ is balanced for all $t \in [T]$
- Example: unit vectors, ℓ_2 discrepancy
Introduction to online discrepancy

- Player given vectors $v_1, \ldots, v_T \in \mathbb{R}^n$ one at a time
- Find $x_1, \ldots, x_T \in \{\pm 1\}$ so that $x_1 v_1 + \cdots + x_t v_t$ is balanced for all $t \in [T]$
- Example: unit vectors, ℓ_2 discrepancy
Introduction to online discrepancy

- Player given vectors $v_1, \ldots, v_T \in \mathbb{R}^n$ one at a time
- Find $x_1, \ldots, x_T \in \{\pm 1\}$ so that $x_1 v_1 + \cdots + x_t v_t$ is balanced for all $t \in [T]$
- Example: unit vectors, ℓ_2 discrepancy
Introduction to online discrepancy

- Player given vectors \(v_1, \ldots, v_T \in \mathbb{R}^n \) one at a time
- Find \(x_1, \ldots, x_T \in \{ \pm 1 \} \) so that \(x_1 v_1 + \cdots + x_t v_t \) is balanced for all \(t \in [T] \)
- Example: unit vectors, \(\ell_2 \) discrepancy

\[
\text{Adaptive adversary can always pick } v_t \text{ so that } \| \sum_{i=1}^t x_i v_i \|_2 \geq \sqrt{T}
\]
Introduction to online discrepancy

- Player given vectors $v_1, \ldots, v_T \in \mathbb{R}^n$ one at a time
- Find $x_1, \ldots, x_T \in \{\pm 1\}$ so that $x_1 v_1 + \cdots + x_t v_t$ is balanced for all $t \in [T]$.
- Example: unit vectors, ℓ_2 discrepancy.

- *Adaptive* adversary can always pick v_t so that $\| \sum_{i=1}^t x_i v_i \|_2 \geq \sqrt{T}$
- Player can also ensure $\leq \sqrt{T}$
Example II: Spencer’s hyperbolic cosine algorithm

- Player given vectors $v_1, \ldots, v_T \in [-1, 1]^n$ one at a time
- Find $x_1, \ldots, x_T \in \{\pm 1\}$ so that $\|x_1 v_1 + \cdots + x_t v_t\|_\infty$ small for all $t \in [T]$
Example II: Spencer’s hyperbolic cosine algorithm

- Player given vectors $v_1, \ldots, v_T \in [-1, 1]^n$ one at a time
- Find $x_1, \ldots, x_T \in \{\pm 1\}$ so that $\|x_1 v_1 + \cdots + x_t v_t\|_\infty$ small for all $t \in [T]$
- Move to the position $p_t := p_{t-1} + x_t v_t$ that minimizes the potential

$$\sum_{i=1}^{n} (e^{\alpha p_t(i)} + e^{-\alpha p_t(i)})$$
Example II: Spencer’s hyperbolic cosine algorithm

- Player given vectors $v_1, \ldots, v_T \in [-1, 1]^n$ one at a time
- Find $x_1, \ldots, x_T \in \{\pm 1\}$ so that $\|x_1 v_1 + \cdots + x_t v_t\|_\infty$ small for all $t \in [T]$
- Move to the position $p_t := p_{t-1} + x_t v_t$ that minimizes the potential

$$\sum_{i=1}^{n} \left(e^{\alpha p_t(i)} + e^{-\alpha p_t(i)} \right)$$

- $\alpha := \sqrt{\frac{2 \log(2n)}{T}}$ ensures $\|x_1 v_1 + \cdots + x_t v_t\|_\infty \leq \sqrt{2T \log(2n)}$
Example II: Spencer’s hyperbolic cosine algorithm

- Player given vectors $v_1, \ldots, v_T \in [-1, 1]^n$ one at a time
- Find $x_1, \ldots, x_T \in \{\pm 1\}$ so that $\|x_1 v_1 + \cdots + x_t v_t\|_\infty$ small for all $t \in [T]$
- Move to the position $p_t := p_{t-1} + x_t v_t$ that minimizes the potential
 \[
 \sum_{i=1}^{n} (e^{\alpha p_t(i)} + e^{-\alpha p_t(i)})
 \]
- $\alpha := \sqrt{\frac{2 \log(2n)}{T}}$ ensures $\|x_1 v_1 + \cdots + x_t v_t\|_\infty \leq \sqrt{2T \log(2n)}$
- Matching lower bound $\Omega(\sqrt{n \log(2n)})$ for $T = n$
Oblivious adversary

- Suppose adversary picks unit vectors v_1, \ldots, v_T in advance
Oblivious adversary

- Suppose adversary picks unit vectors v_1, \ldots, v_T \textit{in advance}

- Player still receives one at a time and must pick signs online
Oblivious adversary

- Suppose adversary picks unit vectors v_1, \ldots, v_T in advance
- Player still receives one at a time and must pick signs online
- If player deterministic, same as adaptive
Oblivious adversary

- Suppose adversary picks unit vectors v_1, \ldots, v_T in advance
- Player still receives one at a time and must pick signs online
- If player deterministic, same as adaptive
- What if player can use randomization?
Special case: edge orientation [Kalai ’01]

- Suppose edge vectors of the form $(0, 0, \ldots, 0, 1, 0, \ldots, 0, -1, 0, \ldots, 0)$
Special case: edge orientation \cite{Kalai01}

– Suppose edge vectors of the form $(0, 0, \ldots, 0, 1, 0, \ldots, 0, -1, 0, \ldots, 0)$
– For each coordinate $i \in [n]$, draw an infinite random $s_i \in \{0, 1\}^\mathbb{N}$
Suppose edge vectors of the form $(0,0,\ldots,0,1,0,\ldots,0,-1,0,\ldots,0)$

For each coordinate $i \in [n]$, draw an infinite random $s_i \in \{0,1\}^\mathbb{N}$

Upon receiving an edge $\{i,j\}$:
Special case: edge orientation [Kalai ’01]

- Suppose edge vectors of the form \((0, 0, \ldots, 0, 1, 0, \ldots, 0, -1, 0, \ldots, 0) \)
- For each coordinate \(i \in [n] \), draw an infinite random \(s_i \in \{0, 1\}^\mathbb{N} \)
- Upon receiving an edge \(\{i, j\} \):

 \[k := \text{first position where } s_i(k) \neq s_j(k), \text{ i.e. } \{s_i(k), s_j(k)\} = \{0, 1\} \]
Special case: edge orientation [Kalai ’01]

- Suppose edge vectors of the form \((0, 0, \ldots, 0, 1, 0, \ldots, 0, -1, 0, \ldots, 0)\)
- For each coordinate \(i \in [n]\), draw an infinite random \(s_i \in \{0, 1\}^\mathbb{N}\)
- Upon receiving an edge \(\{i, j\}\):
 - Let \(k := \text{first position where } s_i(k) \neq s_j(k)\), i.e. \(\{s_i(k), s_j(k)\} = \{0, 1\}\)
 - Orient edge from 0 to 1
Special case: edge orientation [Kalai ’01]

- Suppose *edge vectors* of the form \((0, 0, \ldots, 0, 1, 0, \ldots, 0, -1, 0, \ldots, 0)\)
- For each coordinate \(i \in [n]\), draw an infinite random \(s_i \in \{0, 1\}^\mathbb{N}\)
- Upon receiving an edge \(\{i, j\}\):
 - Let \(k := \text{first position where } s_i(k) \neq s_j(k)\), i.e. \(\{s_i(k), s_j(k)\} = \{0, 1\}\)
 - Orient edge from 0 to 1
 - Swap values of \(s_i(k)\) and \(s_j(k)\).
Suppose edge vectors of the form $(0,0,\ldots,0,1,0,\ldots,0,-1,0,\ldots,0)$

For each coordinate $i \in [n]$, draw an infinite random $s_i \in \{0,1\}^\mathbb{N}$

Upon receiving an edge $\{i,j\}$:
Let $k :=$ first position where $s_i(k) \neq s_j(k)$, i.e. $\{s_i(k), s_j(k)\} = \{0,1\}$

Orient edge from 0 to 1
Swap values of $s_i(k)$ and $s_j(k)$.

Theorem [Kalai ’01]
The above algorithm achieves $\|\sum_{i=1}^{t} x_i v_i\|_\infty \leq O(\log T)$ after T rounds.
Special case: edge orientation [Kalai ’01]

- Suppose edge vectors of the form \((0, 0, \ldots, 0, 1, 0, \ldots, 0, -1, 0, \ldots, 0)\)
- For each coordinate \(i \in [n]\), draw an infinite random \(s_i \in \{0, 1\}^\mathbb{N}\)
- Upon receiving an edge \(\{i, j\}\):
 - Let \(k := \) first position where \(s_i(k) \neq s_j(k)\), i.e. \(\{s_i(k), s_j(k)\} = \{0, 1\}\)
 - Orient edge from 0 to 1
 - Swap values of \(s_i(k)\) and \(s_j(k)\).

Theorem [Kalai ’01]
The above algorithm achieves \(\| \sum_{i=1}^{t} x_i v_i \|_\infty \leq O(\log T)\) after \(T\) rounds.

- Imbalance at a vertex upper bounded by the longest prefix ever used
Consider now $\|v_t\|_2 \leq 1$ and let $p_t :=$ position when v_t arrives.
Consider now $\|v_t\|_2 \leq 1$ and let $p_t := \text{position when } v_t \text{ arrives}$

Set $x_t := 1$ with probability $\frac{1}{2} - \frac{\langle p_t, v_t \rangle}{c}$, else $x_t := -1$; $c = O(\log(nT))$
Self-balancing random walk [ALS ’20]

- Consider now $\|v_t\|_2 \leq 1$ and let $p_t :=$ position when v_t arrives
- Set $x_t := 1$ with probability $\frac{1}{2} - \frac{\langle p_t, v_t \rangle}{c}$, else $x_t := -1$; $c = O(\log(nT))$

Theorem [ALS ’20]

All prefix sums $p_t = \sum_{i=1}^{t} x_i v_i$ are $O(\sqrt{c})$-subgaussian.
Self-balancing random walk [ALS ’20]

- Consider now $\|v_t\|_2 \leq 1$ and let $p_t :=$ position when v_t arrives
- Set $x_t := 1$ with probability $\frac{1}{2} - \frac{\langle p_t, v_t \rangle}{c}$, else $x_t := -1$; $c = O(\log(nT))$

Theorem [ALS ’20]

All prefix sums $p_t = \sum_{i=1}^{t} x_i v_i$ are $O(\sqrt{c})$-subgaussian.

- X is C-subgaussian:

\[\iff \mathbb{E}[\exp(\langle X, u \rangle^2 / C^2)] \leq 2 \text{ for all } u \in S^{n-1}\]
Consider now \(\|v_t\|_2 \leq 1 \) and let \(p_t := \text{position when } v_t \text{ arrives} \)

Set \(x_t := 1 \) with probability \(\frac{1}{2} - \frac{\langle p_t, v_t \rangle}{c} \), else \(x_t := -1 \); \(c = O(\log(nT)) \)

Theorem [ALS ’20]

All prefix sums \(p_t = \sum_{i=1}^{t} x_i v_i \) are \(O(\sqrt{c}) \)-subgaussian.

X is \(C \)-subgaussian:

\[
\iff \mathbb{E}[\exp(\langle X, u \rangle^2 / C^2)] \leq 2 \text{ for all } u \in S^{n-1}
\iff \Pr[|\langle X, u \rangle| \geq \lambda] \leq 2e^{-\lambda^2 / C^2} \text{ for all } u \in S^{n-1}, \lambda \geq 0
\]
Consider now $\|v_t\|_2 \leq 1$ and let $p_t :=$ position when v_t arrives

Set $x_t := 1$ with probability $\frac{1}{2} - \frac{\langle p_t, v_t \rangle}{c}$, else $x_t := -1$; $c = O(\log(nT))$

Theorem [ALS ’20]

All prefix sums $p_t = \sum_{i=1}^{t} x_i v_i$ are $O(\sqrt{c})$-subgaussian.

X is C-subgaussian:

\[\iff \mathbb{E}[\exp(\langle X, u \rangle^2 / C^2)] \leq 2 \text{ for all } u \in S^{n-1}\]
\[\iff \Pr[\|\langle X, u \rangle\| \geq \lambda] \leq 2e^{-\lambda^2 / C^2} \text{ for all } u \in S^{n-1}, \lambda \geq 0\]

Corollary [ALS ’20]

All prefix sums $\| \sum_{i=1}^{t} x_i v_i \|_\infty \leq O(\log(nT))$ with high probability.
Gaussian fixed point random walk [LSS ’21]

- Fix a parameter $\sigma \geq 1$
Fix a parameter $\sigma \geq 1$

Construct Markov chain on \mathbb{R} with $0, \pm 1$ steps and stationary $\mathcal{N}(0, \sigma^2)$
Gaussian fixed point random walk [LSS '21]

- Fix a parameter $\sigma \geq 1$
- Construct Markov chain on \mathbb{R} with $0, \pm 1$ steps and stationary $\mathcal{N}(0, \sigma^2)$
- $M_\sigma(x) \sim \{0, \pm 1\}$ and $g + M_\sigma(g) \sim g$ for $g \sim \mathcal{N}(0, \sigma^2)$
Gaussian fixed point random walk [LSS '21]

- Fix a parameter $\sigma \geq 1$
- Construct Markov chain on \mathbb{R} with $0, \pm 1$ steps and stationary $\mathcal{N}(0, \sigma^2)$
- $M_\sigma(x) \sim \{0, \pm 1\}$ and $g + M_\sigma(g) \sim g$ for $g \sim \mathcal{N}(0, \sigma^2)$
- At the start of the algorithm, sample $p_0 \sim \mathcal{N}(0, \sigma^2 I_n)$
Gaussian fixed point random walk [LSS ’21]

- Fix a parameter $\sigma \geq 1$
- Construct Markov chain on \mathbb{R} with 0, ± 1 steps and stationary $\mathcal{N}(0, \sigma^2)$
- $M_\sigma(x) \sim \{0, \pm 1\}$ and $g + M_\sigma(g) \sim g$ for $g \sim \mathcal{N}(0, \sigma^2)$
- At the start of the algorithm, sample $p_0 \sim \mathcal{N}(0, \sigma^2 I_n)$
- Upon receiving vector v_t: set $p_t := p_{t-1} + M_\sigma(\langle p_{t-1}, v_t \rangle) \cdot v_t$
Gaussian fixed point random walk \cite{LSS21}

- Fix a parameter $\sigma \geq 1$
- Construct Markov chain on \mathbb{R} with $0, \pm 1$ steps and stationary $N(0, \sigma^2)$
- $M_\sigma(x) \sim \{0, \pm 1\}$ and $g + M_\sigma(g) \sim g$ for $g \sim N(0, \sigma^2)$
- At the start of the algorithm, sample $p_0 \sim N(0, \sigma^2 I_n)$
- Upon receiving vector ν_t: set $p_t := p_{t-1} + M_\sigma(\langle p_{t-1}, \nu_t \rangle) \cdot \nu_t$
- Invariant: $p_t \sim N(0, \sigma^2 I_n)$ at all times

Theorem \cite{LSS21}

For $\sigma := p \log T$, all prefix sums are 2σ-subgaussian and all steps are ± 1.

Technical: construct M_σ so that $\Pr[M_\sigma(x) = 0] \leq e^{-\sigma^2}$ for all $x \in \mathbb{R}$.
Gaussian fixed point random walk [LSS ’21]

- Fix a parameter $\sigma \geq 1$
- Construct Markov chain on \mathbb{R} with $0, \pm 1$ steps and stationary $N(0, \sigma^2)$
- $M_\sigma(x) \sim \{0, \pm 1\}$ and $g + M_\sigma(g) \sim g$ for $g \sim N(0, \sigma^2)$
- At the start of the algorithm, sample $p_0 \sim N(0, \sigma^2 I_n)$
- Upon receiving vector ν_t: set $p_t := p_{t-1} + M_\sigma(\langle p_{t-1}, \nu_t \rangle) \cdot \nu_t$
- Invariant: $p_t \sim N(0, \sigma^2 I_n)$ at all times
- Output $p_T - p_0$.

Theorem [LSS ’21]

For $\sigma := p \log T$, all prefix sums are 2σ-subgaussian and all steps are ± 1.

Technical: construct M_σ so that $\Pr[M_\sigma(x) = 0] \leq e^{-\sigma^2}$ for all $x \in \mathbb{R}$.
Gaussian fixed point random walk [LSS ’21]

- Fix a parameter $\sigma \geq 1$
- Construct Markov chain on \mathbb{R} with $0, \pm 1$ steps and stationary $\mathcal{N}(0, \sigma^2)$
- $M_\sigma(x) \sim \{0, \pm 1\}$ and $g + M_\sigma(g) \sim g$ for $g \sim \mathcal{N}(0, \sigma^2)$
- At the start of the algorithm, sample $p_0 \sim \mathcal{N}(0, \sigma^2 I_n)$
- Upon receiving vector v_t: set $p_t := p_{t-1} + M_\sigma(\langle p_{t-1}, v_t \rangle) \cdot v_t$
- Invariant: $p_t \sim \mathcal{N}(0, \sigma^2 I_n)$ at all times
- Output $p_T - p_0$.

Theorem [LSS ’21]

For $\sigma := \sqrt{\log T}$, all prefix sums are 2σ-subgaussian and all steps are ± 1.
Gaussian fixed point random walk [LSS ’21]

- Fix a parameter $\sigma \geq 1$
- Construct Markov chain on \mathbb{R} with $0, \pm 1$ steps and stationary $\mathcal{N}(0, \sigma^2)$
- $M_\sigma(x) \sim \{0, \pm 1\}$ and $g + M_\sigma(g) \sim g$ for $g \sim \mathcal{N}(0, \sigma^2)$
- At the start of the algorithm, sample $p_0 \sim \mathcal{N}(0, \sigma^2 I_n)$
- Upon receiving vector ν_t: set $p_t := p_{t-1} + M_\sigma(\langle p_{t-1}, \nu_t \rangle) \cdot \nu_t$
- Invariant: $p_t \sim \mathcal{N}(0, \sigma^2 I_n)$ at all times
- Output $p_T - p_0$

Theorem [LSS ’21]

For $\sigma := \sqrt{\log T}$, all prefix sums are 2σ-subgaussian and all steps are ± 1.

Technical: construct M_σ so that $\Pr[M_\sigma(x) = 0] \leq e^{-\sigma^2}$ for all $x \in \mathbb{R}$.
Our contribution

Theorem [Kulkarni, R., Rothvoss ’23]

For $\|v_t\|_2 \leq 1$, there is an online algorithm against an oblivious adversary which keeps all prefix sums 10-subgaussian. In particular,

$$\|\sum_{i=1}^{t} x_i v_i\|_\infty \leq O(\sqrt{\log T}) \text{ for all } t \in [T] \text{ with high probability.}$$
Our contribution

Theorem [Kulkarni, R., Rothvoss ’23]

For $\|v_t\|_2 \leq 1$, there is an online algorithm against an oblivious adversary which keeps all prefix sums 10-subgaussian. In particular,

$$\|\sum_{i=1}^{t} x_i v_i\|_\infty \leq O(\sqrt{\log T}) \text{ for all } t \in [T] \text{ with high probability.}$$

Theorem [Kulkarni, R., Rothvoss ’23]

For any $n \geq 2$, there is a strategy for an oblivious adversary that yields a sequence of unit vectors $v_1, ..., v_T \in \mathbb{R}^n$ so that for any online algorithm, with probability at least $1 - 2^{-\text{poly}(T)}$,

$$\max_{t \in [T]} \left\| \sum_{i=1}^{t} x_i v_i \right\|_\infty \gtrsim \sqrt{\log T}.$$
Lower bound for an oblivious adversary

Theorem [Kulkarni, R., Rothvoss ’23]

For any \(n \geq 2 \), there is a strategy for an oblivious adversary that yields a sequence of unit vectors \(v_1, \ldots, v_T \in \mathbb{R}^n \) so that for any online algorithm, with probability at least \(1 - 2^{-\text{poly}(T)} \),

\[
\max_{t \in [T]} \left\| \sum_{i=1}^{t} x_i v_i \right\|_{\infty} \gtrsim \sqrt{\log T}.
\]
Lower bound for an oblivious adversary

Theorem [Kulkarni, R., Rothvoss ’23]
For any $n \geq 2$, there is a strategy for an oblivious adversary that yields a sequence of unit vectors $v_1, ..., v_T \in \mathbb{R}^n$ so that for any online algorithm, with probability at least $1 - 2^{-\text{poly}(T)}$,

$$\max_{t \in [T]} \left\| \sum_{i=1}^{t} x_i v_i \right\|_\infty \gtrsim \sqrt{\log T}.$$

- Proof sketch: split time horizon into blocks of size $k := \Theta(\log T)$
Lower bound for an oblivious adversary

Theorem [Kulkarni, R., Rothvoss ’23]

For any $n \geq 2$, there is a strategy for an oblivious adversary that yields a sequence of unit vectors $v_1, ..., v_T \in \mathbb{R}^n$ so that for any online algorithm, with probability at least $1 - 2^{-\text{poly}(T)}$,

$$\max_{t \in [T]} \left\| \sum_{i=1}^{t} x_i v_i \right\|_{\infty} \gtrsim \sqrt{\log T}.$$

- Proof sketch: split time horizon into blocks of size $k := \Theta(\log T)$
- Within each block, guess all k signs chosen by the player
Theorem [Kulkarni, R., Rothvoss ’23]

For any \(n \geq 2 \), there is a strategy for an oblivious adversary that yields a sequence of unit vectors \(v_1, ..., v_T \in \mathbb{R}^n \) so that for any online algorithm, with probability at least \(1 - 2^{-\text{poly}(T)} \),

\[
\max_{t \in [T]} \left\| \sum_{i=1}^{t} x_i v_i \right\|_\infty \gtrsim \sqrt{\log T}.
\]

- Proof sketch: split time horizon into blocks of size \(k := \Theta(\log T) \)
- Within each block, guess all \(k \) signs chosen by the player
- Simulate the strategy of adaptive adversary to get \(\Omega(\sqrt{k}) \) w.p. \(2^{-k} \)
Lower bound for an oblivious adversary

Theorem [Kulkarni, R., Rothvoss ’23]
For any $n \geq 2$, there is a strategy for an oblivious adversary that yields a sequence of unit vectors $v_1, ..., v_T \in \mathbb{R}^n$ so that for any online algorithm, with probability at least $1 - 2^{-\text{poly}(T)}$,

$$\max_{t \in [T]} \left\| \sum_{i=1}^{t} x_i v_i \right\|_{\infty} \gtrsim \sqrt{\log T}.$$

- Proof sketch: split time horizon into blocks of size $k := \Theta(\log T)$
- Within each block, guess all k signs chosen by the player
- Simulate the strategy of adaptive adversary to get $\Omega(\sqrt{k})$ w.p. 2^{-k}
- One of the blocks will succeed with probability $1 - (1 - 2^{-k})^{T/k}$.
ε-nets

P ⊆ \mathbb{R}^n \text{ so that, for all } \|v\|_2 \leq 1, \text{ there is } p \in P \text{ with } \|p - v\|_2 \leq \varepsilon.
ε-nets

- $P \subseteq \mathbb{R}^n$ so that, for all $\|v\|_2 \leq 1$, there is $p \in P$ with $\|p - v\|_2 \leq \varepsilon$.
- There exists an ε-net with $|P| \leq (3/\varepsilon)^n$.

![Image of a sphere with points distributed evenly, likely representing an ε-net]

Overview of the algorithm

Theorem [Kulkarni, R., Rothvoss '23]

Let $T = (V, E)$ be a rooted tree with vectors $\|v_e\|_2 \leq 1$ on edges. Then there is a distribution D over $\{-1, 1\}^E$ so that for $x \sim D$, $P_e \in P$ $x_e v_e$ is 10-subgaussian for every $i \in V$.

[Diagram: A rooted tree with a series of vertices labeled as "children labeled with ϵ-net" and a label "depth T".]
Overview of the algorithm

Theorem [Kulkarni, R., Rothvoss '23]

Let $T = (V, E)$ be a rooted tree with vectors $\|v_e\|_2 \leq 1$ on edges. Then there is a distribution D over $\{-1, 1\}^E$ so that for $x \sim D$, $P_{e \in P_i} x_e v_e$ is 10-subgaussian for every $i \in V$.

![Diagram of a rooted tree with annotations for children labeled with ϵ-net and $v'_1 \approx v_1$.]
Overview of the algorithm

Theorem [Kulkarni, R., Rothvoss '23]

Let $T = (V, E)$ be a rooted tree with vectors $\|v_e\|_2 \leq 1$ on edges. Then there is a distribution D over $\{-1, 1\}^E$ so that for $x \sim D$, $P_{e \in P} x_e v_e$ is 10-subgaussian for every $i \in V$.

![Diagram of a rooted tree with annotations: start, children labeled with ε-net, $v'_1 \approx v_1$, $v'_2 \approx v_2$, depth T.]
Overview of the algorithm

Theorem [Kulkarni, R., Rothvoss ’23]

Let \(T = (V, E) \) be a rooted tree with vectors \(\|v_e\|_2 \leq 1 \) on edges. Then there is a distribution \(\mathcal{D} \) over \(\{-1, 1\}^E \) so that for \(x \sim \mathcal{D} \),

\[
\sum_{e \in P_i} x_e v_e \text{ is 10-subgaussian for every } i \in V.
\]
Banaszczyk prefix balancing

Theorem [Banaszczyk ’12]

For any $v_1, \ldots, v_T \in \mathbb{R}^n$ with $\|v_i\|_2 \leq 1$ and any convex body $K \subseteq \mathbb{R}^n$ with $\gamma_n(K) \geq 1 - \frac{1}{2T}$, there are signs $x_1, \ldots, x_T \in \{\pm 1\}$ so that

$$\sum_{i=1}^{t} x_i v_i \in 5K \quad \forall t = 1, \ldots, T.$$
Banaszczyk prefix balancing

Theorem [Banaszczyk ’12]

For any \(v_1, \ldots, v_T \in \mathbb{R}^n \) with \(\|v_i\|_2 \leq 1 \) and any convex body \(K \subseteq \mathbb{R}^n \) with \(\gamma_n(K) \geq 1 - \frac{1}{2T} \), there are signs \(x_1, \ldots, x_T \in \{\pm 1\} \) so that

\[
\sum_{i=1}^{T} x_i v_i \in 5K \quad \forall t = 1, \ldots, T.
\]

Theorem [Banaszczyk ’98]

For any convex body \(K \subseteq \mathbb{R}^n \) with \(\gamma_n(K) \geq \frac{1}{2} \) and \(u \in \mathbb{R}^n \) with \(\|u\|_2 \leq \frac{1}{5} \), there is a convex body \((K * u) \subseteq (K + u) \cup (K - u) \) with \(\gamma_n(K * u) \geq \gamma_n(K) \).
Banaszczyk prefix balancing

Theorem [Banaszczyk ’12]

For any \(v_1, \ldots, v_T \in \mathbb{R}^n \) with \(\|v_i\|_2 \leq 1 \) and any convex body \(K \subseteq \mathbb{R}^n \) with \(\gamma_n(K) \geq 1 - \frac{1}{2T} \), there are signs \(x_1, \ldots, x_T \in \{\pm 1\} \) so that

\[
\sum_{i=1}^{t} x_i v_i \in 5K \quad \forall t = 1, \ldots, T.
\]

Theorem [Banaszczyk ’98]

For any convex body \(K \subseteq \mathbb{R}^n \) with \(\gamma_n(K) \geq \frac{1}{2} \) and \(u \in \mathbb{R}^n \) with \(\|u\|_2 \leq \frac{1}{5} \), there is a convex body \((K * u) \subseteq (K + u) \cup (K - u) \) with \(\gamma_n(K * u) \geq \gamma_n(K) \).

- Define \(K_T := K \) and \(K_{t-1} := (K_t * v_t) \cap K \).
Banaszczyk prefix balancing

Theorem [Banaszczyk ’12]

For any \(v_1, \ldots, v_T \in \mathbb{R}^n \) with \(\|v_i\|_2 \leq 1 \) and any convex body \(K \subseteq \mathbb{R}^n \) with \(\gamma_n(K) \geq 1 - \frac{1}{2T} \), there are signs \(x_1, \ldots, x_T \in \{\pm 1\} \) so that

\[
\sum_{i=1}^{t} x_i v_i \in 5K \quad \forall t = 1, \ldots, T.
\]

Theorem [Banaszczyk ’98]

For any convex body \(K \subseteq \mathbb{R}^n \) with \(\gamma_n(K) \geq \frac{1}{2} \) and \(u \in \mathbb{R}^n \) with \(\|u\|_2 \leq \frac{1}{5} \), there is a convex body \((K * u) \subseteq (K + u) \cup (K - u) \) with \(\gamma_n(K * u) \geq \gamma_n(K) \).

- Define \(K_T := K \) and \(K_{t-1} := (K_t * v_t) \cap K \).
- Show by induction \(\gamma(K_t) \geq 1 - \frac{T-t+1}{2T} \), then iteratively find \(x_1, \ldots, x_T \)
For any $v_1, \ldots, v_T \in \mathbb{R}^n$ with $\|v_i\|_2 \leq 1$ and any convex body $K \subseteq \mathbb{R}^n$ with $\gamma_n(K) \geq 1 - \frac{1}{2T}$, there are signs $x_1, \ldots, x_T \in \{\pm 1\}$ so that

$$\sum_{i=1}^{t} x_i v_i \in 5K \quad \forall t = 1, \ldots, T.$$
Banaszczyk prefix balancing for trees

Theorem [Banaszczyk ’12]

For any $v_1, \ldots, v_T \in \mathbb{R}^n$ with $\|v_i\|_2 \leq 1$ and any convex body $K \subseteq \mathbb{R}^n$ with $\gamma_n(K) \geq 1 - \frac{1}{2T}$, there are signs $x_1, \ldots, x_T \in \{\pm 1\}$ so that

$$\sum_{i=1}^{t} x_i v_i \in 5K \quad \forall t = 1, \ldots, T.$$

Theorem [Kulkarni, R., Rothvoss ’23]

Let $T = (V, E)$ be a rooted tree with vectors $\|v_e\|_2 \leq 1$ on edges. Let $K \subseteq \mathbb{R}^n$ be a convex body with $\gamma_n(K) \geq 1 - \frac{1}{2|E|}$. Then there are signs $x \in \{-1, 1\}^E$ so that for every root-vertex path P_i,

$$\sum_{e \in P_i} x_e v_e \in 5K \quad \forall i \in V.$$
Theorem [Banaszczyk ’12]
For any $v_1, \ldots, v_T \in \mathbb{R}^n$ with $\|v_i\|_2 \leq 1$ and any convex body $K \subseteq \mathbb{R}^n$ with $\gamma_n(K) \geq 1 - \frac{1}{2T}$, there are signs $x_1, \ldots, x_T \in \{\pm 1\}$ so that

$$\sum_{i=1}^{t} x_i v_i \in 5K \quad \forall t = 1, \ldots, T.$$

Theorem [Kulkarni, R., Rothvoss ’23]
Let $T = (V, E)$ be a rooted tree with vectors $\|v_e\|_2 \leq 1$ on edges.
Let $K \subseteq \mathbb{R}^n$ be a convex body with $\gamma_n(K) \geq 1 - \frac{1}{2|E|}$.
Then there are signs $x \in \{-1, 1\}^E$ so that for every root-vertex path P_i,

$$\sum_{e \in P_i} x_e v_e \in 5K \quad \forall i \in V.$$

- Analogous proof with $K_i := \left(\bigcap_{j \in \text{children}_i} (K_j * v_{\{i,j\}}) \right) \cap K.$
Theorem [Kulkarni, R., Rothvoss ’23]

Let $T = (V, E)$ be a rooted tree with vectors $\|v_e\|_2 \leq 1$ on edges. Then there is a distribution \mathcal{D} over $\{-1, 1\}^E$ so that for $x \sim \mathcal{D}$,

$$\sum_{e \in P_i} x_e v_e$$

is 10-subgaussian for every $i \in V$.

Idea: clone each edge N times, find a coloring, sample random clone
Cloning: coloring \Rightarrow distribution

Theorem [Kulkarni, R., Rothvoss ’23]

Let $\mathcal{T} = (V, E)$ be a rooted tree with vectors $\|v_e\|_2 \leq 1$ on edges. Then there is a distribution \mathcal{D} over $\{-1, 1\}^E$ so that for $x \sim \mathcal{D}$,

$$\sum_{e \in P_i} x_e v_e \text{ is } 10\text{-subgaussian for every } i \in V.$$
Cloning: coloring \implies distribution

Theorem [Kulkarni, R., Rothvoss ’23]

Let $\mathcal{T} = (V, E)$ be a rooted tree with vectors $\|v_e\|_2 \leq 1$ on edges. Then there is a distribution \mathcal{D} over $\{-1, 1\}^E$ so that for $x \sim \mathcal{D}$,

$$\sum_{e \in P_i} x_e v_e \text{ is } 10\text{-subgaussian for every } i \in V.$$
Theorem [Kulkarni, R., Rothvoss ’23]

Let $\mathcal{T} = (V, E)$ be a rooted tree with vectors $\|v_e\|_2 \leq 1$ on edges. Then there is a distribution \mathcal{D} over $\{-1, 1\}^E$ so that for $x \sim \mathcal{D}$,

$$\sum_{e \in P_i} x_e v_e$$

is 10-subgaussian for every $i \in V$.

- Idea: clone each edge N times, find a coloring, sample random clone
- Define a convex body K and show $\gamma_{Nn}(K) \geq 1 - \frac{1}{N^{1+\delta}} \geq 1 - \frac{1}{2N|E|}$
Body of subgaussian distributions

Take any $C > 2$ and define

$$K := \left\{ (y^{(1)}, \ldots, y^{(N)}) \in \mathbb{R}^{Nn} \mid Y \sim \{y^{(1)}, \ldots, y^{(N)}\} \text{ is } C \text{-subgaussian} \right\}.$$
Body of subgaussian distributions

- Take any $C > 2$ and define

 $$K := \left\{ (y^{(1)}, \ldots, y^{(N)}) \in \mathbb{R}^{Nn} \mid Y \sim \{y^{(1)}, \ldots, y^{(N)}\} \text{ is } C\text{-subgaussian} \right\}.$$

- Need to show $\gamma_{Nn}(K) \geq 1 - 1/N^{1+\delta}$
Body of subgaussian distributions

- Take any $C > 2$ and define

$$K := \left\{ (y^{(1)}, \ldots, y^{(N)}) \in \mathbb{R}^{Nn} \mid Y \sim \{y^{(1)}, \ldots, y^{(N)}\} \text{ is } C\text{-subgaussian} \right\}.$$

- Need to show $\gamma_{Nn}(K) \geq 1 - 1/N^{1+\delta}$

- By a net argument, suffices to consider a single unit vector $w \in S^{n-1}$:

$$K_w := \left\{ (y^{(1)}, \ldots, y^{(N)}) \in \mathbb{R}^{Nn} \mid E_{\ell \sim [N]} \left[\exp \left(\frac{1}{C^2} \left\langle w, y^{(\ell)} \right\rangle^2 \right) \right] \leq 2 \right\}$$
Body of subgaussian distributions

- Take any $C > 2$ and define

$$K := \left\{ (y^{(1)}, \ldots, y^{(N)}) \in \mathbb{R}^{Nn} \mid Y \sim \{y^{(1)}, \ldots, y^{(N)}\} \text{ is } C\text{-subgaussian} \right\}.$$

- Need to show $\gamma_{Nn}(K) \geq 1 - 1/N^{1+\delta}$

- By a net argument, suffices to consider a single unit vector $w \in S^{n-1}$:

$$K_w := \left\{ (y^{(1)}, \ldots, y^{(N)}) \in \mathbb{R}^{Nn} \mid \mathbb{E}_{\ell \sim [N]} \left[\exp \left(\frac{1}{C^2} \langle w, y^{(\ell)} \rangle^2 \right) \right] \leq 2 \right\}$$

- Concentration inequality: heavy-tailed random variables $\exp(\frac{1}{C^2} g_{\ell}^2)$
Body of subgaussian distributions

- Take any $C > 2$ and define

\[K := \left\{ (y^{(1)}, \ldots, y^{(N)}) \in \mathbb{R}^{Nn} \mid Y \sim \{y^{(1)}, \ldots, y^{(N)}\} \text{ is } C\text{-subgaussian} \right\}. \]

- Need to show $\gamma_{Nn}(K) \geq 1 - 1/N^{1+\delta}$

- By a net argument, suffices to consider a single unit vector $w \in S^{n-1}$:

\[K_w := \left\{ (y^{(1)}, \ldots, y^{(N)}) \in \mathbb{R}^{Nn} \mid \mathbb{E}_{\ell \sim [N]} \left[\exp \left(\frac{1}{C^2} \left\langle w, y^{(\ell)} \right\rangle^2 \right) \right] \leq 2 \right\} \]

- Concentration inequality: heavy-tailed random variables $\exp(\frac{1}{C^2}g_{\ell}^2)$

- $X_{\ell} := \exp(\frac{1}{C^2}g_{\ell}^2)$ satisfy $\mathbb{E}[X_{\ell}^p] < \infty$ for $p < C^2/2$ (want $p > 2$)
Lemma

Let $p \geq 2$ and X_1, \ldots, X_N be centered, indep. r.v.'s with $\mathbb{E}[|X_i|^p] = O_p(1)$. Then

$$\Pr[X_1 + \cdots + X_N > N] \leq \frac{O_p(1)}{N^{p/2}}.$$
Concentration for heavy-tailed random variables

Lemma

Let $p \geq 2$ and X_1, \ldots, X_N be centered, indep. r.v.'s with $\mathbb{E}[|X_i|^p] = O_p(1)$. Then

$$\Pr[X_1 + \cdots + X_N > N] \leq \frac{O_p(1)}{N^{p/2}}.$$

- **Proof for $p = 2$:**

 $$\Pr[X_1 + \cdots + X_N > N] \leq \Pr[(X_1 + \cdots + X_N)^2 > N^2]$$
Lemma

Let $p \geq 2$ and X_1, \ldots, X_N be centered, indep. r.v.'s with $\mathbb{E}[|X_i|^p] = O_p(1)$. Then

$$\Pr[X_1 + \cdots + X_N > N] \leq \frac{O_p(1)}{N^{p/2}}.$$

Proof for $p = 2$:

$$\Pr[X_1 + \cdots + X_N > N] \leq \Pr[(X_1 + \cdots + X_N)^2 > N^2]$$

$$\leq \mathbb{E}[(X_1 + \cdots + X_N)^2]/N^2.$$
Concentration for heavy-tailed random variables

Lemma

Let $p \geq 2$ and X_1, \ldots, X_N be centered, indep. r.v.'s with $\mathbb{E}[|X_i|^p] = O_p(1)$. Then

$$\text{Pr}[X_1 + \cdots + X_N > N] \leq \frac{O_p(1)}{N^{p/2}}.$$

Proof for $p = 2$:

$$\text{Pr}[X_1 + \cdots + X_N > N] \leq \text{Pr}[(X_1 + \cdots + X_N)^2 > N^2]$$
$$\leq \mathbb{E}[(X_1 + \cdots + X_N)^2]/N^2$$
$$\leq \sum_{i=1}^{N} \mathbb{E}[X_i^2] + \sum_{i \neq j} \mathbb{E}[X_i] \mathbb{E}[X_j]$$
$$= \frac{O(1)}{N^2} + 0 = O(1/N).$$
Concentration for heavy-tailed random variables

Lemma

Let $p \geq 2$ and X_1, \ldots, X_N be centered, indep. r.v.’s with $\mathbb{E}[|X_i|^p] = O_p(1)$. Then

$$\Pr[X_1 + \cdots + X_N > N] \leq \frac{O_p(1)}{N^{p/2}}.$$

- In general, follows by Markov + Rosenthal’s inequality:
Concentration for heavy-tailed random variables

Lemma

Let \(p \geq 2 \) and \(X_1, \ldots, X_N \) be centered, indep. r.v.’s with \(\mathbb{E}[|X_i|^p] = O_p(1) \). Then

\[
\Pr[X_1 + \cdots + X_N > N] \leq \frac{O_p(1)}{N^{p/2}}.
\]

▶ In general, follows by Markov + Rosenthal’s inequality:

Rosenthal ’70

Let \(p \geq 2 \) and \(X_1, \ldots, X_N \) centered, indep. r.v.’s with \(\mathbb{E}[|X_\ell|^p] < \infty \). Then

\[
\mathbb{E}[|X_1 + \cdots + X_N|^p]^{1/p} \leq 2^p \cdot \max \left\{ \left(\sum_{i=1}^{N} \mathbb{E}[|X_i|^p] \right)^{1/p}, \left(\sum_{i=1}^{N} \mathbb{E}[X_i^2] \right)^{1/2} \right\}.
\]
Online algorithm

- Given T, build depth T tree where children are labeled with ϵ-net
Online algorithm

- Given T, build depth T tree where children are labeled with ε-net
- Find a 10-subgaussian distribution \mathcal{D} on its edges and sample $x \sim \mathcal{D}$
Online algorithm

- Given T, build depth T tree where children are labeled with ε-net
- Find a 10-subgaussian distribution \mathcal{D} on its edges and sample $x \sim \mathcal{D}$
- Keep track of position in the tree (starting at root)
Online algorithm

- Given T, build depth T tree where children are labeled with ε-net
- Find a 10-subgaussian distribution \mathcal{D} on its edges and sample $x \sim \mathcal{D}$
- Keep track of position in the tree (starting at root)
- When receiving a vector, find closest child and move there

Subgaussian norm is $4.999 \cdot (2 + \delta) < 10$.
Online algorithm

- Given T, build depth T tree where children are labeled with ε-net
- Find a 10-subgaussian distribution \mathcal{D} on its edges and sample $x \sim \mathcal{D}$
- Keep track of position in the tree (starting at root)
- When receiving a vector, find closest child and move there
- Output sign corresponding to edges visited
Online algorithm

- Given T, build depth T tree where children are labeled with ε-net
- Find a 10-subgaussian distribution \mathcal{D} on its edges and sample $x \sim \mathcal{D}$
- Keep track of position in the tree (starting at root)
- When receiving a vector, find closest child and move there
- Output sign corresponding to edges visited
- If T unknown: compactness yields sequence of distributions \mathcal{D}_t^*:

$$\mathcal{D}_t^* = \Pi_{\{\pm 1\}^E} (\mathcal{D}_{t+1}^*).$$
Online algorithm

- Given T, build depth T tree where children are labeled with ε-net.
- Find a 10-subgaussian distribution \mathcal{D} on its edges and sample $x \sim \mathcal{D}$.
- Keep track of position in the tree (starting at root).
- When receiving a vector, find closest child and move there.
- Output sign corresponding to edges visited.
- If T unknown: compactness yields sequence of distributions \mathcal{D}_t^*:
 \[
 \mathcal{D}_t^* = \prod_{\{\pm 1\}^{E_t}} (\mathcal{D}_{t+1}^*).
 \]
- Subgaussian norm is $4.999 \cdot (2 + \delta) < 10$.
Open problems

Polynomial time algorithm

Given oblivious $v_1, \ldots, v_T \in \mathbb{R}^n$ with $\|v_t\|_2 \leq 1$, does there exist a polynomial time online algorithm against an oblivious adversary which keeps all signed prefix sums $O(1)$-subgaussian?
Open problems

Polynomial time algorithm
Given oblivious \(v_1, \ldots, v_T \in \mathbb{R}^n\) with \(\|v_t\|_2 \leq 1\), does there exist a polynomial time online algorithm against an oblivious adversary which keeps all signed prefix sums \(O(1)\)-subgaussian?

Oblivious edge orientation
Given oblivious edge vectors \(v_1, \ldots, v_T \in \mathbb{R}^n\), can we find online signs \(x_1, \ldots, x_T \in \{\pm 1\}\) so that \(\|\sum_{i=1}^{T} x_i v_i\|_\infty \leq O(\sqrt[3]{\log T})\) w.h.p.?
Open problems

Polynomial time algorithm
Given oblivious \(v_1, \ldots, v_T \in \mathbb{R}^n \) with \(\|v_t\|_2 \leq 1 \), does there exist a polynomial time online algorithm against an oblivious adversary which keeps all signed prefix sums \(O(1) \)-subgaussian?

Oblivious edge orientation
Given oblivious edge vectors \(v_1, \ldots, v_T \in \mathbb{R}^n \), can we find online signs \(x_1, \ldots, x_T \in \{\pm 1\} \) so that \(\| \sum_{i=1}^{T} x_i v_i \|_{\infty} \leq O(\sqrt[3]{\log T}) \) w.h.p.?

- Main theorem: \(O(\sqrt{\log T}) \), also \(\Omega(\sqrt[3]{\log \min(n, T)}) \) [AANRSW’98]
Open problems

Polynomial time algorithm
Given oblivious $v_1, \ldots, v_T \in \mathbb{R}^n$ with $\|v_t\|_2 \leq 1$, does there exist a polynomial time online algorithm against an oblivious adversary which keeps all signed prefix sums $O(1)$-subgaussian?

Oblivious edge orientation
Given oblivious edge vectors $v_1, \ldots, v_T \in \mathbb{R}^n$, can we find online signs $x_1, \ldots, x_T \in \{\pm 1\}$ so that $\|\sum_{i=1}^T x_i v_i\|_1 \leq O(\sqrt[3]{\log T})$ w.h.p.?

- Main theorem: $O(\sqrt{\log T})$, also $\Omega(\sqrt[3]{\log \min(n, T)})$ [AANRSW’98]

Oblivious Spencer
Given oblivious $v_1, \ldots, v_n \in [-1, 1]^n$, can we find online signs $x_1, \ldots, x_n \in \{\pm 1\}$ so that $\|\sum_{i=1}^n x_i v_i\|_\infty \leq O(\sqrt{n})$ w.h.p.?
Open problems

Polynomial time algorithm
Given oblivious \(v_1, \ldots, v_T \in \mathbb{R}^n \) with \(\|v_t\|_2 \leq 1 \), does there exist a polynomial time online algorithm against an oblivious adversary which keeps all signed prefix sums \(O(1) \)-subgaussian?

Oblivious edge orientation
Given oblivious edge vectors \(v_1, \ldots, v_T \in \mathbb{R}^n \), can we find online signs \(x_1, \ldots, x_T \in \{\pm 1\} \) so that \(\| \sum_{i=1}^{T} x_i v_i \|_1 \leq O(3^{\sqrt{\log T}}) \) w.h.p.?

▶ Main theorem: \(O(\sqrt{\log T}) \), also \(\Omega(3^{\sqrt{\log \min(n,T)}}) \) [AANRSW’98]

Oblivious Spencer
Given oblivious \(v_1, \ldots, v_n \in [-1,1]^n \), can we find online signs \(x_1, \ldots, x_n \in \{\pm 1\} \) so that \(\| \sum_{i=1}^{n} x_i v_i \|_\infty \leq O(\sqrt{n}) \) w.h.p.
Open problems

Polynomial time algorithm
Given oblivious $v_1, \ldots, v_T \in \mathbb{R}^n$ with $||v_t||_2 \leq 1$, does there exist a polynomial time online algorithm against an oblivious adversary which keeps all signed prefix sums $O(1)$-subgaussian?

Oblivious edge orientation
Given oblivious edge vectors $v_1, \ldots, v_T \in \mathbb{R}^n$, can we find online signs $x_1, \ldots, x_T \in \{\pm 1\}$ so that $\| \sum_{i=1}^T x_i v_i \|_1 \leq O\left(3^{\sqrt{\log T}}\right)$ w.h.p.?

- Main theorem: $O\left(\sqrt{\log T}\right)$, also $\Omega\left(3^{\sqrt{\log \min(n,T)}}\right)$ [AANRSW’98]

Oblivious Spencer
Given oblivious $v_1, \ldots, v_n \in [-1, 1]^n$, can we find online signs $x_1, \ldots, x_n \in \{\pm 1\}$ so that $\| \sum_{i=1}^n x_i v_i \|_\infty \leq O(\sqrt{n})$ w.h.p.?

Thanks for your attention!