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Abstract

In these notes, we explain the proof of the Milnor conjecture on quadratic forms
by Orlov–Vishik–Voevodsky. This is the last talk of the IAS Milnor Conjecture
reading seminar during the 22/23 academic year.
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1 Introduction
The purpose of these notes is to prove the Milnor conjecture on quadratic forms [OVV07]:
for a field k of characteristic 0

(1) GrI∗W (k) ∼= KM
∗ (k)/2,

where GrI∗W (k) denotes the associated graded ring of the Witt ring with a filtration given
by the powers of the ideal I of even dimensional quadratic forms. By the Milnor conjecture
[Voe03b, Voe03a] we may identify KM

∗ (k)/2 with étale cohomology with Z/2-coefficients,
and thus

(2) GrI∗W (k) ∼= H∗ét(k;Z/2).
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Hence, the graded Witt ring is identified with étale cohomology groups that are often
easy to compute in practice.

In order to prove the conjecture, we establish the exactness of the fundamental se-
quence

(3) KM
∗−n(k)

a·−→ KM
∗ (k)→ KM

∗ (K(Qa)),

where a = (a1, . . . , an) ∈ (k\{0, 1})×n, and Qa is the norm quadric, i.e., the vanishing
locus of the form 〈〈a1, . . . , an−1〉〉−〈an〉 on P2n−1 . Above, the first summand is the Pfister
form, and 〈a〉 is the form ax2. In other words, Eq. 3 characterizes the kernel of the
pullback map from the Milnor K-theory of k to that of the function field of the norm
quadric Qa: the kernel is principal, and generated by the pure symbol a ∈ KM

n (k).
In fact, Orlov–Vishik–Voevodsky [OVV07] also characterize the kernel of a·. However,

since this is not necessary for our purposes, we do not provide the details of the more
refined result here.

Background and conventions

We will use the theory of motivic cohomology, see [Voe03b, Voe03a, VSF00, MVW06]
for reference. Motivic cohomology gives a bigraded cohomology theory of schemes. In
particular we have the following identifications

Hn,n(k;Z) ∼= KM
n (k)

H2n,n(X;Z) ∼= CHn(X)

first of which we will use extensively later.
Moreover, the following basic fact, which is essentially just Grothendieck vanishing

applied to motivic cohomology (see e.g. [MVW06]), will be useful throughout the paper.

Lemma 1 (Vanishing lemma). Let X be a smooth variety of dimension d, and let A be
an Abelian group. Then

Hm+i,m(X,A) ∼= 0

if i > d.

2 Witt ring and the I-filtration
Here we recall some basic facts from the theory of quadratic forms. Our main reference
is [EL72]. We will work over a fixed base field k (of characteristic 0, or at least not 2).
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A quadratic space is a finite dimensional k vector space V equipped with a nondegen-
erate quadratic form q : V → k. All quadratic forms are diagonalizable. We will denote
by 〈a1, . . . , ar〉 the diagonal quadratic form a1x

2
1 + · · · arx2r. There are obvious notions of

direct sums and tensor products of quadratic spaces. The Pfister form is denoted/defined
by

(4) 〈〈a1, . . . , ar〉〉 := 〈1,−a1〉 ⊗ · · · ⊗ 〈1,−ar〉.

The Grothendieck–Witt ring GW (k) is defined as the group completion of the Abelian
monoid that is formed by the isomorphism classes of quadratic spaces. It is a ring, with
multiplication given by the tensor product. The hyperbolic form h = 〈1,−1〉 is isomorphic
to 〈a,−a〉 for all a ∈ k×, and therefore it has the curious property that

(5) h⊗ q ∼= h⊕ dim(q).

Hence Zh ⊂ GW (k) is an ideal. The quotient ring

(6) W (k) := GW(k)/Zh

is called the Witt ring.
If there exists 0 6= v ∈ V such that q(v) = 0, q is called isotropic. A quadratic form

that is not isotropic is anisotropic. Any quadratic form is of form q ∼= qa ⊕ h⊕m, where
qa is the anisotropic part of q. By Witt’s cancellation theorem, the isomorphism class
of qa is well defined. As every quadratic forms admits an embedding to a large enough
hyperbolic space (e.g. h⊗ q), the elements of W (k) correspond to isomorphism classes of
anisotropic quadratic forms.

The kernel I ⊂ W (k) of the rank map

(7) rank : W (k)→ Z/2

is called the fundamental ideal. The I-adic filtration will play a prominent role in this
talk. The associated graded ring GrI∗W (k) is by definition

(8) GrInW (k) := In/In+1.

The Hauptsatz of Arason–Pfister [AP71] gives strong restrictions to quadratic forms that
belong to powers of fundamental ideal.

Theorem 2 (Hauptsatz [AP71]). If q is anisotropic form of positive dimension that
belongs to In, then

(9) dim(q) ≥ 2n.
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In particular, the I-adic filtration of W (k) is Hausdorff. The Pfister forms provide a
generating system for the I-graded Witt ring.

Lemma 3. The group GrInW (k) is generated as an abelian group by the classes of n-fold
Pfister forms 〈〈a1, . . . , an〉〉.

Proof. It is enough to show that I/I2 is generated by quadratic forms of form 〈1,−a〉.
But this is easy: as I/I2 is 2-torsion, we have that

〈1, b〉+ 〈1, c〉 = 〈b, c〉 ∈ GrI1W (k)

and as quadratic forms of the form 〈b, c〉 generate the fundamental ideal I, the claim
follows.

Hence, one may define a surjective ring homomorphism from the tensor algebra T ∗(k×) �
GrI∗W (k) by the formula

(10) (a1, . . . , ar) 7→ 〈〈a1, . . . ar〉〉 ∈ GrIrW (k).

By the classification of twofold Pfister forms, this descends into a surjective ring homo-
morphism

(11) s : KM
∗ (k)/2 � GrI∗W (k)

The main result of this talk is that s is an isomorphism. In order to prove that, we need
to prove the injectivity of s. The following partial result was known already in 1972.

Theorem 4. The map
s : KM

∗ (k)/2→ GrI∗W (k)

is injective on pure symbols a = (a1, . . . , ar).

Proof. This follows from [EL72, Theorem 3.2].

3 Fundamental exact sequence
Here we prove that the sequence of Eq. 3 is exact. We begin by stating a very general
fact. Recall that if X is a smooth variety over k, then Č(X) is the simplicial scheme with
Č(X)n ∼= X ×k · · · ×k X (n+ 1 copies). It may be regarded as a subobject of Spec(k) in
the sense that for a commutative ring R

(12) Č(X)(R) '

{
∗ if X has an R-point;
∅ otherwise.
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Lemma 5. For all n ≥ 0, the sequence

(13) 0→ Hn,n−1(Č(X);Z/2)
τ−→ KM

n (k)/2→ KM
n (K(X))/2

is exact. The map τ corresponds to multiplication by the nontrivial element in H0,1(k;Z/2) =
µ2(k).

Proof. This exact sequence will come (essentially) from a long exact sequence induced by
a cofibre sequence of motivic complexes. Note that there is a map of motives over k

(14) τ : Z/2→ Z/2(1)

that corresponds to the nontrivial element of

Hom(Z/2,Z/2(1)) = H0,1(k;Z/2)(15)
= {±1} ⊂ k×. (Z/2(1) ' Gm[1], see [MVW06])

By the Beilinson–Lichtenbaum conjectures [Voe03a, §6], the canonical map

(16) RΓZar(−;Z/2(n))→ τ≤n (RΓét(−;Z/2))

is an equivalence. Moreover, multiplication by τ induces the canonical maps between
truncations1

(17) τ : τ≤n (RΓét(−;Z/2))→ τ≤n+1 (RΓét(−;Z/2)) .

Hence, we obtain cofibre sequences

(18) RΓZar(−;Z/2(n− 1))
τ−→ RΓZar(−;Z/2(n))→ RΓZar(−;Hn,n(Z/2)[n]),

where Hn,n(Z/s) is sheafification of the bidegree (n, n) motivic cohomology with Z/2
coefficients.

From Eq. 18, we obtain the exact sequence

(19) 0→ RnΓ(−;Z/2(n− 1))→ RnΓ(−;Z/2(n))→ Γ(−;Hn,n(Z/2)).

Evaluating the above on Č(X), and using Beilinson–Lichtembaum conjecture and the fact
that the canonical map Č(X)→ Spec(k) is an étale-local equivalence, Eq. 19 transforms
into

(20) 0→ Hn,n−1(Č(X);Z/2)→ Hn,n(k,Z/2) = KM
∗ (k)/2→ Γ(Č(X);Hn,n(Z/2)).

1I didn’t check this, but it seems reasonable. The case n = 0 is immediate from the definitions, and
the other cases should not be much more difficult. Most likely the general case is a formal consequence
of the case n = 0.
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As Hn,n(Z/2) is a homotopy invariant sheaf with transfers, pulling back to a Zariski dense
open subscheme induces an injective homomorphism [MVW06, Lecture 11]. Checking
compatibility with the simplicial structure, we deduce that the pullback

(21) Γ(Č(X);Hn,n(Z/2)) ↪→ Γ(Č(X);Hn,n(Z/2))

is injective. The result follows by combining Eq. 20 and Eq. 21.

Consider then a pure symbol a = (a1, ..., an), and for simplicity, denote

(22) Xa := Č(Qa)

As a = 0 ∈ KM
∗ (K(Qa)), we obtain a factorization

(23)
KM
∗−n(k)

0 H∗,∗−1(Xa;Z/2) KM
∗ (k) KM

∗ (K(Qa))

α
a·

τ

from the exactness of Eq. 13. It remains to be show that α is surjective.
Let us denote byMa the Rost motive, which is a direct summand of the motiveM(Qa)

of Qa [Ros98]. By [Voe03a, §4] we have a distinguished triangle of motives

(24) M(Xa)(2
n−1 − 1)[2n − 2]→Ma →M(Xa)

µ′−→M(Xa)(2
n−1 − 1)[2n − 1].

As µ′ is KM
∗ (k)/2-linear, it coincides with multiplication by the element

(25) µ ∈ H2n−1,2n−1−1(Xa;Z/2)

corresponding to the composition of µ′ with the projection M(Xa)→M(k)/2.
For convenience, let us define KM

∗ (k)-modules

(26) Hi :=
⊕
n∈Z

Hn+i,n(Xa;Z/2).

Note that H0 = KM
∗ (k)/2.

Lemma 6. The multiplication by µ induces a surjection

(27) µ· : KM
∗ (k)/2 � H2n−1

.

In particular,

(28) H2n−1,2n−1−1(Xa;Z/2) ∼= Z/2

is generated by the nontrivial element µ.
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Proof. As Ma is a summand of the motive of a smooth projective variety of dimension
2n−1−1, the vanishing lemma result of motivic cohomology implies thatHm+i,m(Ma;Z/2) ∼=
0 when i > 2n−1 − 1. Hence, the cofibre sequence of motives of Eq. 24 induces the exact
sequence

(29) KM
m (k)/2 = Hm,m(Xa;Z/2)

µ′−→ Hm+2n−1,m+2n−1−1(Xa;Z/2)→ 0,

from which the claim follows.

Next, we deduce the surjectivity of α from that of µ·. Composition of Milnor operators
Qi : H∗,∗(−;Z/2)→ H∗+2i+1−1,∗+2i−1(−;Z/2) (see [Voe03b, Voe03a]) defines a map

(30) d := Qn−2 · · ·Q0 : H1 → H2n−1

of graded Abelian groups. In fact, d is a map of KM
∗ (k)/2-modules.

Lemma 7. The map d : H1 → H2n−1 is KM
∗ (k)/2-linear.

Proof. By [Voe03b, Proposition 13.4], we have that

(31) Qi(xy) = Qi(x)y + xQi(y) + ρ
∑
E,F

cE,FQ
E(x)QF (y),

where E,F range over subsets of {0, . . . , n−1}, QE is the cohomology operation
∏

e∈E Qe,
ρ = [−1] ∈ H1,1(k;Z/2), and cE,F ∈ H∗,∗(k;Z/2). By the vanishing lemma, the Milnor
operators Qi kill elements of KM

∗ . Hence, Eq. 31 implies that d is KM
∗ (k)/2-linear.

We will show that d is an isomorphism below.

Lemma 8. The map d : H1 → H2n−1 is an injection.

Proof. Denote by X̃a the cone of Xa → Spec(k), and H̃i :=
⊕

m∈ZH
m+i,m(X̃a;Z/2). The

vanishing lemma implies that we obtain natural isomorphisms

Hi → H̃i+1

for i ≥ 1, which are compatible with cohomology operations. Hence, it suffices to show
the injectivity of

d̃ : H̃2 → H̃2n−1+1.

By [Voe03a, Corollary 3.8], the the sequence

H̃m−2i Qi−→ H̃m Qi−→ H̃m+2i

is exact for all m. The numerics aligns itself in such a fashion that the injectivity of d̃ fol-
lows from the triviality of H̃1, which in turn follows from the isomorphismHp,q(Xa;Z/2)→
Hp,q(k;Z/2) for p ≤ q and the vanishing lemma.
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Let ã ∈ Hn,n−1(Xa;Z/2) be the lift of a along τ (Eq. 23).

Lemma 9. The composition

(32) KM
∗ (k)/2

ã·−→ H1 d−→ H2n−1

coincides with multiplication by µ. In particular, d is a surjection.

Proof in the case a 6= 0 ∈ KM
n (k). As both maps are KM

∗ (k)/2-linear, it suffices that both
maps obtain the same value on 1. Thus, we want to show that d(ã) = µ. As a 6= 0, then
neither is d(ã), so it must coincide with µ by Lem. 8.

In particular α = ã· is surjective, as desired. Hence, we have proven the following
result.

Theorem 10. The sequence

(33) KM
∗−n(k)

a·−→ KM
∗ (k)→ KM

∗ (K(Qa)),

is exact (well, at least if a 6= 0).

4 Proof of the Milnor conjecture on quadratic forms
Here, we prove the Milnor conjecture on quadratic forms. In other words, we have to
show that the map s : KM

∗ (k)/2 → GrI∗(k) (Eq. 11) is injective. We already know that
s is an injection when restricted to pure symbols. Using the following Lemma, we can
restrict to that case.

Lemma 11. Let 0 6= α ∈ KM
n (k)/2. Then there exists a field extension L/k (not neces-

sarily algebraic) such that

(34) α = a ∈ KM
n (L)/2

for some non-zero pure symbol a ∈ KM
n (L)/2.

Proof. Write

α = n1a1 + · · ·+ nrar(35)

for some non-zero pure symbols ai ∈ KM
n (k)/2 and non-zero integers ni. Define

(36) Ki := K(Qa1 ×k · · · ×k Qai)
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(this makes sense because quadrics of positive dimension are geometrically connected).
By the fundamental exact sequence (Eq. 3)

(37) α = 0 ∈ KM
n (Kr)/2.

Let j be the smallest integer such that α = 0 ∈ KM
n (Kj+1). By the exactness of

(38) Z/2 ∼= KM
0 (Kj)/2

aj+1

−−→ KM
n (Kj)/2→ KM

n (Kj+1)/2,

we observe that

(39) α = aj+1 ∈ KM
n (Kj)/2.

Hence, we may set L = Kj.

Proof of the Milnor conjecture on quadratic forms. Let L, a be as in the statement of Lem. 11.
Then the claim follows from the commutativity of

(40)
KM
∗ (k)/2 KM

∗ (L)/2

GrI∗W (k) GrI∗W (L)

s

s

and the fact that s(a) 6= 0.
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