On Symplectic Capacities and their Blind Spots

with Yuanpu Liang











Theorem (Gutt-Hutchings)  
I) If 
$$X_{\Omega}$$
 is conver, then  
 $C_{\varepsilon} (X_{\Omega}) = \min \{ \|V\|_{\Omega} \mid \forall e(N \lor \{03\})^n, \forall y = k \}$   
where  $\|V\|_{\Omega} = \max \{ \langle v, \psi \rangle \mid \psi \in \Omega \}$   
 $\cdot \text{ computing } C_{\varepsilon} \text{ involves comparison of } ( \sum_{n=1}^{k+n-1} )$   
 $( \text{similar }) \text{ optimization problems}$ 



Capacities and the Minkowski sum

Theorem (Artstein-Avidan, Ostrover)

If U and V are convex bodies in R<sup>21</sup>, they

$$(c_1(u+v))^{1/2} \ge (c_1(u))^{1/2} + (c_1(v))^{1/2}$$

with equality iff 211 and 2V have homothetic

representatives of C1.

Q1 Does this inequality hold for ck with k>1?



**Observation : Ostrover** Prop (A-A, O) It a (normalized) capacity C satisfies the symplectic Brunn-Minkowski inequality then for every centrally symmetric convex body U  $C(u) \leq \pi \left( \frac{mean-width(u)}{2} \right)^2$ Applying to  $C_k$  and U = P(I,I) implies  $C_{k>1}$  do not satisfy symplectic Brunn-Minkowski for  $k \neq 3, 5, 7$ .



a<sub>k</sub>(u) = "k<sup>th</sup> symplectic mean width"? Artstein-Avidan, Ostrover  $\Rightarrow$   $a_{,}(u) \geq 2\sqrt{\pi} \sqrt{c_{,}(u)}$ with equality iff  $c_{,}(u)$  is represented by a great circle. on ZU. 

Relation of capacities to volume • The  $C_{k}(E(1,a)) = Sort \{ \mathbb{Z} \lor a\mathbb{Z} \} [k]$ \* See Vol(E(1,a)) = a• For P(1,a) the  $C_{k}(P(1,a)) = k$  are

completely blind to Vol (P(1,a)) = a.

Q2 How do these blind spots develop?



$$\begin{aligned} \underline{Lamma 2} (K,L.) & \text{For each } p \neq k(p) \quad \text{s.f.} \\ \frac{d}{da} \left( C_{k} (E_{p}(1,a)) \right) > 0 \quad \forall \quad k > k(p) \\ \left( C_{k} (E_{p}(1,a)) = \left( (a (k-m))^{\frac{p}{p+1}} + m^{\frac{p}{p+1}} \right)^{\frac{p-1}{p}} \\ for \quad \text{some} \quad m \in E_{1}, k-1 \end{bmatrix} \end{aligned}$$
so each  $C_{k} (E_{p}(1,a))$  with  $k > k(p)$  "sees" a and kink  $Vol (E_{p}(1,a))$ 











Perturbations of 
$$f$$
 away from  $x_{k} \nearrow x^{(f)}$  can  
change the volume while keeping the capacities fixed.  
 $f_{S} = f + S(\underbrace{x_{2k}}_{X_{2k}}) + \text{mirror hum p}_{X_{2k+1}}$   
 $181 \text{ suff small} \Rightarrow f_{S} \text{ solutions (fl)-(f3)}$   
 $C_{k}(X_{2f_{S}}) = C_{k}(X_{2f_{S}}) + k \in \mathbb{N}$   
 $Vol(X_{2f_{S}}) \neq Vol(X_{2f})$ 

The 
$$\{C_k\}_{k\in\mathbb{N}}$$
 do not see Vol.  
9. Given  $U \subset \mathbb{R}^{2n}$  convex with  $\partial U$  smooth,  
is  $\sup \frac{V \circ l(V)}{V \circ l(W)} < \infty$  where  
 $C_k(V) = C_k(W) = C_k(U)$   $\forall$  ke N.

Without converity, the answer is No!



![](_page_24_Figure_0.jpeg)

![](_page_25_Figure_0.jpeg)

![](_page_26_Figure_0.jpeg)

![](_page_27_Figure_0.jpeg)

![](_page_28_Figure_0.jpeg)

![](_page_29_Figure_0.jpeg)

![](_page_30_Figure_0.jpeg)

![](_page_31_Figure_0.jpeg)

![](_page_32_Figure_0.jpeg)

![](_page_33_Figure_0.jpeg)

![](_page_34_Figure_0.jpeg)

![](_page_35_Figure_0.jpeg)

![](_page_36_Figure_0.jpeg)

![](_page_37_Figure_0.jpeg)