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Basic notions and notation

Hofer length : « : [0, 1] - Ham(M,w), «(0) = id.
@ Write a(t) = ¢l,, where H € C>=([0, 1] x M).
@ Define

)
length(«) := /O <mﬁx H; — min Ht> dt.
Hofer metric:

duy(p, 1) := inf{length(c) : @(0) = ¢, (1) = 9 }.
Defines a bi-invariant metric on Ham(M, w):
@ bi-invariant: dy(p, ) = dy(0p, 0v) = dx(eb, ).
® dy(p,¥) = du(v, @)

©® dy(p,¥) < dulp,0) + du(0, ¢).
@ non-degeneracy: dy(p,?) =0 <= ¢ = 1. (Hofer, Polterovich,

Lalonde-McDuff)
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The large scale geometry of Hofer’s metric
&
two old questions.
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Basic notions from large-scale geometry

o (Xq,d1) = (Xo, d2) @ map between metric spaces.
Quasi-isometric embedding: if 3A > 1,B > 0 s.t.

70h(x.Y) — B < 6x(0(x), ®(y)) < Adh(x.) + B.

Eg:1l.Z—>R,2.R—Z, x — | X].
Quasi-isometry: ¢ Ql embedding and 3C s.t. Vy € X5

a(y, (X)) < C.

Ql
Eg:1.Z¥R, 2. R £ R2, 3. Xbdd — X < pt.
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Q1: The Kapovich-Polterovich Question

Theorem (Polterovich 1998)
Ham(S?) admits a QI embedding of R.
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ol :
Remark: If R? < Ham(S?) = answer is no!
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Ouir first theorem

Theorem (Cristofaro-Gardiner, Humiliére, S. ; Polterovich-Shelukhin)

Ham(S?) admits QI embedding of R" for every n.

We use periodic Floer homology (Hutchings).
Polterovich-Shelukhin: Orbifold Lag Floer (Mak-Smith, FOOO, Cho-Poddar).

al
Corollary: Ham(S?) + R. But can say more.

Quasi-flat rank: rank(X, d) = max{n : R” <% X1.
o X3y — rank(X) = rank(Y).
@ rank(Ham(S?)) = oc.
@ rank(R") = n, rank(G) < oo for G connected finite-dim Lie group.
(Bell-Dranishnikov)

Ql
Even more: Ham(S?) « G finitely generated group.
Conclusion: (Ham(S?), dy) is big.
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Historical Remarks: results on Ql type of Ham

¥ surface of positive genus:
o Lalonde-McDuff: R” <% Ham(¥), for every n. (1995)

o Polterovich: (C([0,1]), ]| - [lec) <= Ham(E). (1998).

@ Other results: Polterovich-Shelukhin (2014), Alvarez-Gavela-Kaminker-Kislev-
Kliakhandler-Polterovich-Rigolli-Rosen-Shabtai-Stevenson-Zhang
(2016).
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¥ surface of positive genus:
o Lalonde-McDuff: R” <% Ham(¥), for every n. (1995)

@ Polterovich: (C([0,1]), || - |o) 2 Ham(X). (1998).
@ Other results: Polterovich-Shelukhin (2014), Alvarez-Gavela-Kaminker-Kislev-
Kliakhandler-Polterovich-Rigolli-Rosen-Shabtai-Stevenson-Zhang

(2016).
Higher dimensional manifolds: Entov-Polterovich, Kawamoto, Khanevsky,
Lalonde-Polterovich, Lalonde-McDuff, McDuff, Ostrover, Polterovich-Shelukhin, Py,
Schwarz, Usher, Stojisavljevic-Zhang, ...

Sphere:
@ Polterovich: QI embedding of R. (1998)
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Q2: Fathi’s Question

Homeop(S",w) : component of id in the group of vol-pres homeos of S".

Theorem (Fathi, late 70s)
Homeog(S", w) is simple when n > 3.

Simple: no non-trivial proper normal subgroups.
Component of id : Homeop(S", w) < Homeo(S", w).

Homeog (M, w) : simplicity question known for every closed M # S2. (Fathi)

Question (Fathi, late 70s)

Is Homeog(S?, w) simple?
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Our second theorem

Theorem ( Cristofaro-Gardiner, Humiliére, S.)

Homeog(S?, w) is not simple.
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Our second theorem

Theorem ( Cristofaro-Gardiner, Humiliére, S.)

Homeog(S?, w) is not simple.

Remarks:
@ Construct proper normal subgroup: FHomeo(S?), finite energy homeos.
e Requires ideas from Hofer geometry.
@ [Homeog(S?,w), Homeog(S?,w)] C FHomeo(S?). (Epstein, Higman, Thurston)
e Cor: Homeoy(S?, w) is not perfect.
@ The quotient Homeog(S?, w)/FHomeo(S?) contains a copy of R.
e "Lots of normal subgroups (if any)!" (Le Roux)

@ Polterovich-Shelukhin: new results on FHomeo.
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Historical Remarks: results on the simplicity question

Ulam (“Scottish book”, 1930s): Is Homeog(S") simple?
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Ulam (“Scottish book”, 1930s): Is Homeog(S") simple?

@ Simple:
@ 30s-60s: Homeog(M) simple (Ulam, von Neumann, Anderson, Fisher,
Chernavski, Edwards-Kirby)
e 60s-70s: Diffy° (M) simple (Epstein, Herman, Mather, Thurston, ...)
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Historical Remarks: results on the simplicity question

Ulam (“Scottish book”, 1930s): Is Homeog(S") simple?

@ Simple:
@ 30s-60s: Homeog(M) simple (Ulam, von Neumann, Anderson, Fisher,
Chernavski, Edwards-Kirby)
e 60s-70s: Diffy° (M) simple (Epstein, Herman, Mather, Thurston, ...)

@ Not (necessarily) simple:

e 70s: Diffy°(M, Vol) (Thurston), Symp, (M, w) (Banyaga), Homeoo (M, Vo) with
n > 3 (Fathi)
@ Obstruction to simplicity: existence of natural homomorphisms (flux, mass-flow)
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Historical Remarks: results on the simplicity question

Ulam (“Scottish book”, 1930s): Is Homeog(S") simple?

@ Simple:
@ 30s-60s: Homeog(M) simple (Ulam, von Neumann, Anderson, Fisher,
Chernavski, Edwards-Kirby)
e 60s-70s: Diffy° (M) simple (Epstein, Herman, Mather, Thurston, ...)

@ Not (necessarily) simple:
e 70s: Diffy°(M, Vol) (Thurston), Symp, (M, w) (Banyaga), Homeoo (M, Vo) with
n > 3 (Fathi)
@ Obstruction to simplicity: existence of natural homomorphisms (flux, mass-flow)
@ 2020-2021: Homeo.(D, w), Homeog(S?,w) (our work)

@ No known natural homomorphism.
@ Obstruction to simplicity: Hofer’s metric.
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The Ql embeddings
R 2 Ham(S?)
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Monotone twists

SP={(x,y,2): B+ y2+ 22 =1}, w = LdO A dz.
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Monotone twists

SP={(x,y,2) : B+ y2+ 22 =1}, w = LdO A dz.
Monotone twist Hamiltonians: H : S? — R of the form H(0, z) = }h(z), where
h>0,H >0, >0.
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Monotone twists

SP={(x,y,2) : B+ y2+ 22 =1}, w = LdO A dz.
Monotone twist Hamiltonians: H : S? — R of the form H(0, z) = }h(z), where
h>0,H >0, >0.

6 o0, 2) = (0 + 2wt (2), 2)
B ;h(Z)/ gl “
N
g — N—
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Ql embedding of RY,

Suffices to produce QI embedding of RZy = {(t,...,t) : ti > O}

Discs: D; = {(z,0) : 1 <z <1}. Note: D; D D1, Area(D;) =

1+1 2(i+1)"

H;: monotone twists st supp(Hi) = D;.

supp(H;) = D;
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Ql embedding of RY,

Suffices to produce QI embedding of RZy = {(t,...,t) : ti > O}

Discs: Dj = {(2,0) : 1 — 7y < z < 1}. Note: D; > D1, Area(D;) = 57y

H;: monotone twists st supp(Hi) = D;.

supp(H;) = D; F_q_ 1

Define

®: RLy — Ham(S?), (t,...,1n) — @}, o...00f .
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Ql embedding of RY,

Suffices to produce QI embedding of RZy = {(t,...,t) : ti > O}

Discs: D; = {(z,0) : 1 <z <1}. Note: D; D D1, Area(D;) =

1+1 2(i+1)"

H;: monotone twists st supp(Hi) = D;.

supp(H;) = D;

Define
®: RLy — Ham(S?), (t,...,1n) — @}, o...00f .

Theorem: ¢ is a Ql embedding.
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Outline of argument in the n = 2 case
Show

b : ]Rzzo — Ham(SZ), (t,) — 9051,1 o gozz,

is a Ql embedding.
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Outline of argument in the n = 2 case
Show

b : ]Rzzo — Ham(SZ), (t,) — 9051,1 o gozz,

is a Ql embedding.

al
Corollary: Ham(S?) « R.
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Hutchings: Periodic Floer Homology (PFH).
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Hutchings: Periodic Floer Homology (PFH).

We use PFH to construct
fig : Ham(S?) — R,

every d € N.
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Hutchings: Periodic Floer Homology (PFH).

We use PFH to construct
fig : Ham(S?) — R,

every d € N.
Hofer Lipschitz: |14(¢) — 11a(1))] < Cq du(, v), Cq = 20.
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Hutchings: Periodic Floer Homology (PFH).
We use PFH to construct
fig : Ham(S?) — R,

every d € N.
Hofer Lipschitz: |14(¢) — 11a(1))] < Cq du(, v), Cq = 20.

Monotone twist formula: H monotone twist Hamiltonian. Then,

ool ~ M (<14 524 ) - dH(O)

i=1

Sobhan Seyfaddini The large-scale geometry of Hofer's metric



Monotone twist formula

nalpl) = S H (=14 #5) - dH().
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Monotone twist formula

nalpl) = S H (=14 #5) - dH().
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Monotone twist formula

nalpl) = S H (=14 #5) - dH().

d=4 B
2= 1+ 74

Linearity for monotone twists: 1q(¢}, o ¥7, ) = tipa(pl,) + tua(el,)-
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Sketch of Proof

® : R2; — Ham(S?), (1, ) — @f) o ¢F,.

Recall H;: monotone twist, supp(H;) = {(0,2) : 1 — 2 <z <1}, di = 2(i +1).
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Sketch of Proof

® : R2; — Ham(S?), (1, ) — @f) o ¢F,.

Recall H;: monotone twist, supp(H;) = {(0,2) : 1 — 2 <z <1}, di = 2(i +1).
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Sketch of Proof

® : R2; — Ham(S?), (1, ) — @f) o ¢F,.

Recall H;: monotone twist, supp(H;) = {(0,2) : 1 — 2 <z <1}, di = 2(i +1).
Lett = (1, 1), O(t) = of} o ©f .
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Sketch of Proof

® : R2; — Ham(S?), (1, ) — @f) o ¢F,.

Recall H;: monotone twist, supp(H;) = {(0,2) : 1 — 2 <z <1}, di = 2(i +1).
Lett = (1, 1), ®(t) = o}, o ¢f, . Goal: show 3Cy, C, st

Crlt = sfloo < dn (P(1), B(s)) < Coflt — S|
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Sketch of Proof

® : R2; — Ham(S?), (1, ) — @f) o ¢F,.

Recall H;: monotone twist, supp(H;) = {(0,2) : 1 — 2 <z <1}, di = 2(i +1).
Lett = (1, 1), ®(t) = o}, o ¢f, . Goal: show 3Cy, C, st

Crlt = sfloo < dn (P(1), B(s)) < Coflt — S|

|
=
s
<
IN
2
5
£

We’'ll just do the lower bound: By Hofer Lipschitz (| “‘é(f o
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Sketch of Proof

® : R2; — Ham(S?), (1, ) — @f) o ¢F,.

Recall H;: monotone twist, supp(H;) = {(0,2) : 1 — 2 <z <1}, di = 2(i +1).
Lett = (1, 1), ®(t) = o}, o ¢f, . Goal: show 3Cy, C, st

Crlt = sfloo < dn (P(1), B(s)) < Coflt — S|

We'll just do the lower bound: By Hofer Lipschitz (|44) — #)| < g, )

| Ha(®(1) g ((s))
i 20',' 2d,'
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From previous slide:

| Ha(®t) g ((s))
i 2d,' 2d,'
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From previous slide:

pa(P(1) — pa(®(s))

< .

m,ax 20; 2d; < dp (@(1), P(s))
ta, (#’}41) Iid, (%’}42)
Claim: LHS = ||A(t — 8)||oo Where A = udj(fi:}{ ) ud22(csj01}1, )
o 20
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From previous slide:

pa(P(1) — pa(®(s))

< .
mljax 2d,' 2d,' > dH (d)(t)jd)(s))
pay (Ph,) 1y (21)
Claim: LHS = ||A(t — S) || Where A = udf& | udf(fgl, | - Pf: Linearity of .
1 2
2d> 2d>
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From previous slide:

pa(P(1) — pa(®(s))

< dy (D(1), D(S)).
mljax 2d,' zdi > dH( (t), (s))
pay (Ph,) 1y (21)
Claim: LHS = ||A(t — S) || Where A = udf& | udf(?;l,z) . Pf: Linearity of pg.
1
2d> 2d>

Claim: Ais invertible. Proof: next slide.

Sobhan Seyfaddini The large-scale geometry of Hofer’'s metric



From previous slide:

max “dfé";f‘)) . “"f(;f)) < di ((1), &(s)).

pay (Ph,) 1y (21)
. _ _ _ 2d 2d " ;
Claim: LHS = ||A(t — 8)||oc Where A = udz(%;}ﬁ) ﬂdz(s;Lz) . Pf: Linearity of pq.
20, 24,

Claim: Ais invertible. Proof: next slide.
Since A is invertible can write

It - sl
T S A - 8) e
A < A=)

where ||A~"||op = denotes the operator norm of A= : (R2, ]| - [|ec) = (R2, ] - [|oo)-
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From previous slide:

max “dfé";f‘)) . “"f(;f)) < di ((1), &(s)).

pay (Ph,) 1y (21)
. _ _ _ 2d 2d " ;
Claim: LHS = ||A(t — 8)||oc Where A = udz(%;}ﬁ) ﬂdz(s;Lz) . Pf: Linearity of pq.
20, 24,

Claim: Ais invertible. Proof: next slide.
Since A is invertible can write

It - sl
T S A - 8) e
A < A=)

where ||A~"||op = denotes the operator norm of A= : (R2, ]| - [|ec) = (R2, ] - [|oo)-

So, take Cy = , hence the lower bound.

1
1A~ lop
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Why is A invertible?

(1) 1o, (sol,z)] |

Recall from previous slide: A ~
[:u’dg((p}-h) 1y (2l
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Why is A invertible?

ey (#}y) Hoy (son)] Claim: A — [+ o]

Recall from previous slide: A ~ .
pay (Ph, ) pay (1) * +

Proof: follows from the next two observations.
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Why is A invertible?

ey (#}y) Hoy (son)] Claim: A — [+ o]

Recall from previous slide: A ~ .
pay (Ph, ) pay (1) * +

Proof: follows from the next two observations.
Observation 1: ug (¢l ) > 0.
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Why is A invertible?

Nch(‘P ) Ha, (¢H2)] . Claim: A= [+ O]-

Recall from previous slide: A ~
pay (Ph, ) 1y (2l

Proof: follows from the next two observations.
Observation 1: g (¢}, ) > 0. Proof:

K (@L,) = H; (1 - %ﬂ) >0
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Why is A invertible?

Nch(‘P ) Ha, (¢H2)] . Claim: A= [+ O]-

Recall from previous slide: A ~
pay (Ph, ) 1y (2l

Proof: follows from the next two observations.
Observation 1: g (¢}, ) > 0. Proof:

K (@L,) = H; (1 - %ﬂ) >0

Observation 2: g, (¢fy,) = 0.
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Why is A invertible?

Nch(‘P ) Ha, (¢H2)] . Claim: A= [+ O]-

Recall from previous slide: A ~
pay (Ph, ) 1y (2l

Proof: follows from the next two observations.
Observation 1: g (¢}, ) > 0. Proof:

K (@L,) = H; (1 - %ﬂ) >0

Observation 2: g, (¢}, ) = 0. Proof:

supp(Hz)
2
- d1 +1
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Summary: to-do list

. al
To summarize, to construct R” < Ham(S?), we have to:

Sobhan Seyfaddini The large-scale geometry of Hofer's metric



Summary: to-do list

. al
To summarize, to construct R” < Ham(S?), we have to:

@ Define the invariant ;14 : Ham(S?) — R.
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Summary: to-do list

. al
To summarize, to construct R” < Ham(S?), we have to:

@ Define the invariant ;14 : Ham(S?) — R.
@ Establish Hofer Lipschitz, monotone twist formula.
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Summary: to-do list

. al
To summarize, to construct R” < Ham(S?), we have to:

@ Define the invariant ;14 : Ham(S?) — R.
@ Establish Hofer Lipschitz, monotone twist formula.
@ Put it all together, as explained above.
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1. Use Periodic Floer Homology (PFH), to define

Cq : Ham(S?) — R,
where d € N. Call these PFH spectral invariants. (Hutchings)
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1. Use Periodic Floer Homology (PFH), to define

Cq : Ham(S?) — R,
where d € N. Call these PFH spectral invariants. (Hutchings)
2. Homogenize:

i Ca@”)

n—o0 n

pa(p) ==
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1. Use Periodic Floer Homology (PFH), to define

Cq : Ham(S?) — R,
where d € N. Call these PFH spectral invariants. (Hutchings)
2. Homogenize:

i Ca@”)

n—o0 n

pa(p) ==
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1. Use Periodic Floer Homology (PFH), to define

Cq : Ham(S?) — R,
where d € N. Call these PFH spectral invariants. (Hutchings)

2. Homogenize:

pa(p) = lim Cale"),

n—o0 n
3. We do not know much about pg except for monotone twists.
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1. Use Periodic Floer Homology (PFH), to define

Cq : Ham(S?) — R,
where d € N. Call these PFH spectral invariants. (Hutchings)

2. Homogenize:

pa(p) = lim Cale"),

n—o0 n
3. We do not know much about pg except for monotone twists.

@ Reason: Combinatorial model for PFH of monotone twists.
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1. Use Periodic Floer Homology (PFH), to define

Cq : Ham(S?) — R,
where d € N. Call these PFH spectral invariants. (Hutchings)

2. Homogenize:

pa(p) = lim Cale"),

n—o0 n
3. We do not know much about pg except for monotone twists.

@ Reason: Combinatorial model for PFH of monotone twists.

4. Correction to monotone twist formula: pg(¢};) ~ Zf’:1 H (—1 + d2—+’1> — d H(0).
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1. Use Periodic Floer Homology (PFH), to define

Cq : Ham(S?) — R,
where d € N. Call these PFH spectral invariants. (Hutchings)

2. Homogenize:

pa(p) = lim Cale"),

n—o0 n
3. We do not know much about pg except for monotone twists.

@ Reason: Combinatorial model for PFH of monotone twists.

4. Correction to monotone twist formula: pg(¢};) ~ Zf’:1 ( + d+1> — d H(0).

alely) — dpn (o) = ZH( gq) —dHO),
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Non-simplicity of
Homeog(S?, w)
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The normal subgroup: finite energy homeomorphisms
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The normal subgroup: finite energy homeomorphisms

Say ¢ € FHomeo(S?, w) — “finite energy homeomorphisms” — if there exists
@; € Ham(S?, w) such that

CO
@ pi—p,
@ dy(ypj,id) < C, for a constant C depending only on ¢.
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The normal subgroup: finite energy homeomorphisms

Say ¢ € FHomeo(S?, w) — “finite energy homeomorphisms” — if there exists
@; € Ham(S?, w) such that

CO
@ pi—p,
@ dy(ypj,id) < C, for a constant C depending only on ¢.

We show: FHomeo(S?, w) < Homeog(S?, w). Hard part: showing FHomeo, is proper.
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The normal subgroup: finite energy homeomorphisms

Say ¢ € FHomeo(S?, w) — “finite energy homeomorphisms” — if there exists
@; € Ham(S?, w) such that

CO
@ pi—p,
@ dy(ypj,id) < C, for a constant C depending only on ¢.
We show: FHomeo(S?, w) < Homeog(S?, w). Hard part: showing FHomeo, is proper.

Philosophy: view FHomeo as homeomorphisms which are at a finite Hofer distance
from Ham.
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The normal subgroup: finite energy homeomorphisms

Say ¢ € FHomeo(S?, w) — “finite energy homeomorphisms” — if there exists
@; € Ham(S?, w) such that

CO
@ pi—p,
@ dy(ypj,id) < C, for a constant C depending only on ¢.
We show: FHomeo(S?, w) < Homeog(S?, w). Hard part: showing FHomeo, is proper.

Philosophy: view FHomeo as homeomorphisms which are at a finite Hofer distance
from Ham.

FHomeo being proper means : 3 homoes which are infinitely far from diffeos.
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Road map to (non) simplicity

1. We define ng : Ham(S?, w) — R, for even d € N, by

‘= Cq — —=Co.
Nd d 22
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Road map to (non) simplicity

1. We define ng : Ham(S?, w) — R, for even d € N, by

‘= Cq — —=Co.
Nd d 22

2. Prove ng is C° continuous and extends to

g : Homeoo(SZ,w) — R.
Remark: ¢y is not C° continuous!
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Road map to (non) simplicity

1. We define ng : Ham(S?, w) — R, for even d € N, by

‘= Cq — —=Co.
Nd d 22

2. Prove ng is C° continuous and extends to

g : Homeoo(SZ,w) — R.
Remark: ¢4 is not C° continuous!
3. Prove for ¢ € FHomeog(S?,w), there exists a constant C such that

nd(p)
J <C.
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Road map to (non) simplicity
1. We define ng : Ham(S?, w) — R, for even d € N, by

‘= Cq — —=Co.
Nd d 22

2. Prove ng is C° continuous and extends to

g : Homeoo(SZ,w) — R.
Remark: ¢4 is not C° continuous!
3. Prove for ¢ € FHomeog(S?,w), there exists a constant C such that

nd(p)
J <C.

4. There exists 1) € Homeog(S?, w) ,“infinite twist”, such that

i o)

d—oo d
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The infinite twist

H: S? — R of the form H(0, z) = L h(z), where W > 0, h" > 0.

= oh(6,2) = (6 + 2rth(2), 2)
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The infinite twist

H: S? — R of the form H(0, z) = L h(z), where W > 0, h" > 0.

= oh(6,2) = (6 + 2rth(2), 2)

We show ¢ := <p1H ¢ FHomeo if h grows fast enough:
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The infinite twist

H: S? — R of the form H(0, z) = L h(z), where W > 0, h" > 0.

= oh(6,2) = (6 + 2rth(2), 2)

h(1 — 2=
We show ¢ := <p1H ¢ FHomeo if h grows fast enough: dlim (d) = 0.
—r0

Sobhan Seyfaddini The large-scale geometry of Hofer's metric



The infinite twist

H: S? — R of the form H(0, z) = L h(z), where W > 0, h" > 0.

= oh(6,2) = (6 + 2rth(2), 2)

h(1 — 2=
We show ¢ := <p1H ¢ FHomeo if h grows fast enough: dlim (d) = 0.
—r0

@ b, ¢ FHomeo, for t # 0. Get: R — Homeog(S?, w)/FHomeo.

Sobhan Seyfaddini The large-scale geometry of Hofer's metric



The infinite twist

H: S? — R of the form H(0, z) = L h(z), where W > 0, h" > 0.

= oh(6,2) = (6 + 2rth(2), 2)

h(1 — 2=
We show ¢ := <p1H ¢ FHomeo if h grows fast enough: dlim (d) = 0.
—r0

@ b, ¢ FHomeo, for t # 0. Get: R — Homeog(S?, w)/FHomeo.

@ Repeat the above argument replacing PFH with Orbifold Lag Floer. Does it
work?
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The infinite twist

H: S? — R of the form H(0, z) = L h(z), where W > 0, h" > 0.

t(0,2) = (0 + 2rth (2),
TS

h(1 — 2=
We show ¢ := <p1H ¢ FHomeo if h grows fast enough: dlim (d) = 0.
—r0

@ b, ¢ FHomeo, for t # 0. Get: R — Homeog(S?, w)/FHomeo.

@ Repeat the above argument replacing PFH with Orbifold Lag Floer. Does it
work? Polterovich-Shelukhin: Yes.
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The infinite twist

H: S? — R of the form H(0, z) = L h(z), where W > 0, h" > 0.

t(0,2) = (0 + 2rth(2), 2)
H = 1h(z) flow 90” ‘

h(1 — 2=
We show ¢ := <p1H ¢ FHomeo if h grows fast enough: dlim (d) = 0.
—r0

@ b, ¢ FHomeo, for t # 0. Get: R — Homeog(S?, w)/FHomeo.

@ Repeat the above argument replacing PFH with Orbifold Lag Floer. Does it
work? Polterovich-Shelukhin: Yes. Moreover, the class of infinite twists can be
enlarged, eg can remove the assumptions /' > 0,h” > 0.
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Comparison with our previous paper

We used PFH spectral invariants to show Homeog(D?,w) is not simple in previous

work. A key new ingredient here is the construction of invariants ny, tg, €4 ON
Ham(S?, w).

Challenge: need invariants that depend only on the time-1 map, not the choices
involved in the construction.
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Bonus:

Periodic Floer Homology:
impressionistic sketch of the construction.
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The PFH of ¢: the setup

Let ¢ € Ham(S?,w).
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The PFH of ¢: the setup

Let ¢ € Ham(S?,w). Recall the mapping torus

Yo =85 x[0,1]t/ ~,  (x,1) ~ (#(x). 0).
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The PFH of ¢: the setup

Let ¢ € Ham(S?,w). Recall the mapping torus
Yo =Sk x[0,1]1/ ~, (x,1) ~ (¢(x),0).

Canonical two-form w,, induced by w.
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The PFH of ¢: the setup

Let ¢ € Ham(S?,w). Recall the mapping torus
Yo =Sk x[0,1]1/ ~, (x,1) ~ (¢(x),0).

Canonical two-form w,, induced by w.
Canonical vector field R := 0;.
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The PFH of ¢: the setup

Let ¢ € Ham(S?,w). Recall the mapping torus
Yo =Sk x[0,1]1/ ~, (x,1) ~ (¢(x),0).

Canonical two-form w,, induced by w.
Canonical vector field R := 0;. Captures the dynamics of .

{Periodic Points of ¢} < {Closed Orbits of R}
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The PFH of ¢: the setup

Let ¢ € Ham(S?,w). Recall the mapping torus
Yo =Sk x[0,1]1/ ~, (x,1) ~ (¢(x),0).

Canonical two-form w,, induced by w.
Canonical vector field R := 0;. Captures the dynamics of .

{Periodic Points of ¢} < {Closed Orbits of R}

R is the "Reeb" vector field of the Stable Hamiltonian Structure (dt,w,).
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{Periodic Points of ¢} < {Closed Orbits of R}

R is the "Reeb" vector field of the Stable Hamiltonian Structure (dt,w,).
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Let ¢ € Ham(S?,w). Recall the mapping torus
Yo =Sk x[0,1]1/ ~, (x,1) ~ (¢(x),0).

Canonical two-form w,, induced by w.
Canonical vector field R := 0;. Captures the dynamics of .

{Periodic Points of ¢} < {Closed Orbits of R}

R is the "Reeb" vector field of the Stable Hamiltonian Structure (dt,w,).

PFH = ECH in this setting. (Hutchings)
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The PFH of ¢: the setup

Let ¢ € Ham(S?,w). Recall the mapping torus
Yo =Sk x[0,1]1/ ~, (x,1) ~ (¢(x),0).

Canonical two-form w,, induced by w.
Canonical vector field R := 0;. Captures the dynamics of .

{Periodic Points of ¢} < {Closed Orbits of R}

R is the "Reeb" vector field of the Stable Hamiltonian Structure (dt,w,).

PFH = ECH in this setting. (Hutchings)
PFH spectral invariants ¢y "=" ECH spectral invariants in this setting. (Hutchings)
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The PFH of ¢

PFH(y) is homology of a chain complex PFC(y). (¢ non-degenerate)
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The PFH of ¢

PFH(y) is homology of a chain complex PFC(y). (¢ non-degenerate)

PFC(y): generated by (certain) "Reeb orbit sets" {(«j, m;)}
@ q; distinct, embedded closed orbits of R
@ m; positive integer. (m; = 1 if a; is hyperbolic)
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The PFH of ¢

PFH(y) is homology of a chain complex PFC(y). (¢ non-degenerate)

PFC(y): generated by (certain) "Reeb orbit sets" {(«j, m;)}
@ q«; distinct, embedded closed orbits of R
@ m; positive integer. (m; = 1 if «; is hyperbolic)

0: counts certain J-holomorphic curves in R x Y.
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The PFH of ¢

PFH(y) is homology of a chain complex PFC(y). (¢ non-degenerate)

PFC(y): generated by (certain) "Reeb orbit sets" {(«j, m;)}
@ q«; distinct, embedded closed orbits of R
@ m; positive integer. (m; = 1 if «; is hyperbolic)

0: counts certain J-holomorphic curves in R x Y.

PFH(y) is the homology of this chain complex.
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The PFH of ¢

PFH(y) is homology of a chain complex PFC(y). (¢ non-degenerate)

PFC(y): generated by (certain) "Reeb orbit sets" {(«j, m;)}
@ q«; distinct, embedded closed orbits of R
@ m; positive integer. (m; = 1 if «; is hyperbolic)

0: counts certain J-holomorphic curves in R x Y.

PFH(y) is the homology of this chain complex.

Lee-Taubes: PFH(y) independent of choices of J, ¢.
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A J-hol curve contributing to (0«, )
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A J-hol curve contributing to (0«, )

(O
Y.

(Oa, B) :=#maps u: (X,j) = (R x Y,,J) such that
@ J holomorphic: du o j = J(u)du.
@ Asymptotic to o and .
@ “ECH index” I = 1.
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The spectral invariants ¢y

To construct spectral invariants need two ingredients:
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The spectral invariants ¢y

To construct spectral invariants need two ingredients:

1. PFH(y) has an action filtration. (twisted version)
e PFH?(y): what you see upto action level a € R.
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The spectral invariants ¢y

To construct spectral invariants need two ingredients:

1. PFH(y) has an action filtration. (twisted version)
e PFH?(y): what you see upto action level a € R.

2. There exist distinguished classes o4 € PFH(p) for d € N.
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The spectral invariants ¢y

To construct spectral invariants need two ingredients:

1. PFH(y) has an action filtration. (twisted version)
e PFH?(y): what you see upto action level a € R.

2. There exist distinguished classes o4 € PFH(p) for d € N.

Define:
cd(p) :=inf{ae R: o4y € PFH3(p)}.

In words: cq4() is the action level at which you first see o.
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The spectral invariants ¢y

To construct spectral invariants need two ingredients:
1. PFH(y) has an action filtration. (twisted version)
e PFH?(y): what you see upto action level a € R.
2. There exist distinguished classes o4 € PFH(p) for d € N.
Define:
cd(p) :=inf{ae R: o4y € PFH3(p)}.

In words: cq4() is the action level at which you first see o.
Remark: d corresponds to the homology class of the orbit set.
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Thank you!
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Appendix: More details on PFH.
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The PFH of ¢

The Z, vector space PFH(y) is homology of a chain complex PFC(y), for
nondegenerate .
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The PFH of ¢

The Z, vector space PFH(y) is homology of a chain complex PFC(y), for
nondegenerate .

Details of PFC(y) :
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The PFH of ¢

The Z, vector space PFH(y) is homology of a chain complex PFC(y), for
nondegenerate .

Details of PFC(y) :

@ Generated by “Reeb orbit sets" {(«;, m;)}, where

e «; distinct, embedded closed orbits of R
e m; positive integer (m; = 1 if «; is hyperbolic)
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The PFH of ¢

The Z, vector space PFH(y) is homology of a chain complex PFC(y), for
nondegenerate .

Details of PFC(y) :

@ Generated by “Reeb orbit sets" {(«;, m;)}, where
e «; distinct, embedded closed orbits of R
e m; positive integer (m; = 1 if «; is hyperbolic)
@ Differential © counts “certain” J-holomorphic curves in R x Y, for generic J,
with “ECH index” | = 1.
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The PFH of ¢

The Z, vector space PFH(y) is homology of a chain complex PFC(y), for
nondegenerate .

Details of PFC(y) :

@ Generated by “Reeb orbit sets" {(«;, m;)}, where

e «; distinct, embedded closed orbits of R
e m; positive integer (m; = 1 if «; is hyperbolic)

@ Differential © counts “certain” J-holomorphic curves in R x Y, for generic J,
with “ECH index” | = 1.

@ PFH(y) is the homology of this chain complex.
@ Lee-Taubes: Does not depend on the choices of J, .
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The PFH differential

A J-hol curve u : (X, )) — (R x Y, J) contributing to (0« 5):
@ J holomorphic: du o j = J(u)du.
@ Asymptotic to « and .
@ “ECH index” I =1

Figure: A J-hol curve contributing to (0, 5).
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Degree: the d in cg.

Degree of a = {(«;, m;)}: the homology class

> milai] € Hi(Yy) = Z.
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Degree: the d in cg.

Degree of a = {(«;, m;)}: the homology class

> milai] € Hi(Yy) = Z.

Differential preserves the degree: if < da, 5 ># 0 then deg(«) = deg(5).
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Degree: the d in cg.

Degree of a = {(«;, m;)}: the homology class

> milai] € Hi(Yy) = Z.
Differential preserves the degree: if < da, 5 ># 0 then deg(«) = deg(5).

There are splittings:
PFC(p) = ©4PFC(¢, d,0),

where PFC(p, d, 0) is the subcomplex generated by degree d orbit sets.
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Degree: the d in cg.

Degree of a = {(«;, m;)}: the homology class
> milai] € Hi(Yy) = Z.
Differential preserves the degree: if < da, 5 ># 0 then deg(«) = deg(5).

There are splittings:
PFC(p) = ©4PFC(¢, d,0),

where PFC(p, d, 0) is the subcomplex generated by degree d orbit sets.

PFH(¢) = ®4PFH(¢p, d),
where PFC(, d) is the homology of PFC(, d, d).
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Action filtration

EEF/(«p, d): “Twisted" version of PFH. Has an action filtration.
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Action filtration

EEF/(«p, d): “Twisted" version of PFH. Has an action filtration.

ISI:'E(@, d): generators are («, Z) where

a € PFC(p,d), Z capping for a.
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Action filtration

EEF/(«p, d): “Twisted" version of PFH. Has an action filtration.

ISI:'E(@, d): generators are («, Z) where
a € PFC(p,d), Z capping for a.

Action: A, Z) = [, w,.
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Action filtration

EEF/(«p, d): “Twisted" version of PFH. Has an action filtration.

ISI:'E(@, d): generators are («, Z) where

a € PFC(p,d), Z capping for a.
Action: A, Z) = [, w,.
PFC (¢, d) := span{(a, Z) : A(a, Z) < a} ~ PFH (¢, d).
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Action filtration

EEF/(«p, d): “Twisted" version of PFH. Has an action filtration.

ISI:'E(@, d): generators are («, Z) where

a € PFC(p,d), Z capping for a.
Action: A, Z) = [, w,.
PFC (¢, d) := span{(a, Z) : A(a, Z) < a} ~ PFH (¢, d).
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PFH spectral invariants

Fact: “distinguished" o € PFH(¢, d).
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PFH spectral invariants

Fact: “distinguished" o € PFH(¢, d).
Consider . .
i@ : PFH (i, d) — PFH(y, d)

induced by inclusion.
Define
c4(p) :=inf{a: o € Im(i%)}.
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More details on PFH

Cappings: the Z in («, 2).
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More details on PFH

Cappings: the Z in («, 2).

@ Reference cycle v € H;(Y,): Reeb orbit corresponding to south pole.
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More details on PFH

Cappings: the Z in («, 2).
@ Reference cycle v € H;(Y,): Reeb orbit corresponding to south pole.
@ deg(a) = d. Then, Z is any element of Ho(Y,; v, dv).
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More details on PFH

Cappings: the Z in («, 2).
@ Reference cycle v € H;(Y,): Reeb orbit corresponding to south pole.
@ deg(a) = d. Then, Z is any element of Ho(Y,; v, dv).
@ 0 counts / =1 curves C from («, Z) to (8, Z'):

Sobhan Seyfaddini The large-scale geometry of Hofer's metric



More details on PFH

Cappings: the Z in («, 2).
@ Reference cycle v € H;(Y,): Reeb orbit corresponding to south pole.
@ deg(a) = d. Then, Z is any element of Ho(Y,; v, dv).
@ 0 counts / =1 curves C from («, Z) to (8, Z'):
e this means: C a curve from a to 8, with Z = [C] + Z.
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More details on PFH

Cappings: the Z in («, 2).
@ Reference cycle v € H;(Y,): Reeb orbit corresponding to south pole.
@ deg(a) = d. Then, Z is any element of Ho(Y,; v, dv).
@ 0 counts / =1 curves C from («, Z) to (8, Z'):
e this means: C a curve from a to 8, with Z = [C] + Z.

Grading: gr(a, Z) = I(2).
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More details on PFH

Cappings: the Z in («, 2).
@ Reference cycle v € H;(Y,): Reeb orbit corresponding to south pole.
@ deg(a) = d. Then, Z is any element of Ho(Y,; v, dv).
@ 0 counts / =1 curves C from («, Z) to (8, Z'):
e this means: C a curve from a to 8, with Z = [C] + Z.

Grading: gr(a, Z) = I(2).

Zo, fx=dmod?2,

PFH..(p,d) =
(.0) {0 otherwise.
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More details on PFH

Cappings: the Z in («, 2).
@ Reference cycle v € H;(Y,): Reeb orbit corresponding to south pole.
@ deg(a) = d. Then, Z is any element of Ho(Y,; v, dv).
@ 0 counts / =1 curves C from («, Z) to (8, Z'):
e this means: C a curve from a to 8, with Z = [C] + Z.

Grading: gr(a, Z) = I(2).

Zo, fx=dmod?2,

PFH,(p,d) =
(.0) {0 otherwise.

The distinguished class o: the non-zero class in El:‘l/-l*(cp, d).
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