AUTOMORPHY FOR SOME [-ADIC LIFTS OF
AUTOMORPHIC MOD | GALOIS REPRESENTATIONS. II

by Ricuarp TAYLOR *

ABSTRACT

We extend the results of [CHT] by removing the ‘minimal ramification’ condition on the lifts. That is we
establish the automorphy of suitable conjugate self-dual, regular (de Rham with distinct Hodge-Tate numbers),
l-adic lifts of certain automorphic mod [ Galois representations of any dimension. The main innovation is a new
approach to the automorphy of non-minimal lifts which is closer in spirit to the methods of [TW] than to those
of [W], which relied on Ihara’s lemma.

1. Introduction

This paper is a sequel to [CHT]. Both papers prove modularity lifting
theorems for representations of any dimension. In [CHT] we proved that cer-
tain minimally ramified [-adic lifts of automorphic mod [ representations are
themselves automorphic. We also showed how a conjecture (which we called
‘Thara’s lemma’) about the space of mod [ automorphic forms on definite uni-
tary groups would imply that one could extend this results to lifts which are
not minimally ramified. In this paper we prove such a result unconditionally
by means of a different approach. Instead of trying to generalise Wiles’ level
raising arguments [W], as we did in [CHT], we have found a development
of the arguments used in the minimal case (see [TW]), which also applies
in the non-minimal setting. Ideas of Kisin (see [K]) were very influential in
the development of our arguments. The results of this paper imply that all
the theorems of [HSBT] also become unconditional. For instance we prove
the Sato-Tate conjecture for an elliptic curve over a totally real field with
somewhere multiplicative reduction.

The following is an example of the main modularity lifting theorems
proved in this paper. We emphasise that the proof of this theorem depends
on the machinery developed in [CHT].

* Partially supported by NSF Grant DMS-0100090
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Theorem A Let n € Z>; be even and let | > max{3,n} be a prime. Let
r:Gal (Q/Q) — GSp,(Z)

be a continuous irreducible representation with the following properties.

1. r ramifies at only finitely many primes. B

2. 7lqa(q,/q i crystalline and dimg, gr'(r ®q, Bpr) (Q/Q) =0 un-
less i € {0,1,...,n — 1}, in which case it has dimension 1.

3. There is a prime q # | such that the semisimplification T%QQ 18
unramified and T\SGSQq (Frob,) has eigenvalues {aq' : i = 0,1,...,n — 1} for
some .

4. The image of r mod [ contains Sp,(F).

5. rmod |l arises from a cuspidal automorphic representation wy of
GL,(A) for which myn has trivial infinitesimal character and o, is an
unramified twist of the Steinberg representation.

Then r arises from a cuspidal automorphic representation ™ of GL,(A)
for which ms has trivial infinitesimal character and m, s an unramified twist
of the Steinberg representation.

Let us comment on the conditions in this theorem. The fourth condi-
tion is used to make the Cebotarev argument in the Taylor-Wiles method
work. Much weaker conditions are possible. (See theorem 5.4.) One expects
to need to assume that r is de Rham at [. The stronger assumption that
it be crystalline and that the Hodge-Tate numbers lie in a range which is
small compared to [ is imposed so that one can use the theory of Fontaine
and Laffaille to calculate the relevant local deformation ring at [. The as-
sumptions that r is valued in the symplectic (or similar) group and that
the Hodge-Tate numbers are different are needed so that the numerology be-
hind the Taylor-Wiles method works out. This is probably essential to the
method. The condition on 7”|qu for some prime ¢ says that the representa-
tion looks as if it could correspond under the local Langlands correspondence
to a Steinberg representation. We need the existence of such a prime ¢ so
that we can transfer the relevant automorphic forms to and from unitary
groups and so that we can attach Galois representations to them. As the
trace formula technology improves one may be able to relax this condition.

As applications the following results proved conditionally in [HSBT] now
become unconditional.
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Theorem B Let K be a totally real field and E/K be an elliptic curve with
multiplicative reduction at some prime.

1. For any odd integer m there is a finite Galois totally real exten-
sion L/K such that Symm™H'(E) becomes automorphic over L. (One can
choose an L that will work simultaneously for any finite set of odd positive
integers.)

2. For any positive integer m the L-function L(Symm™H'(E),s) has
meromorphic continuation to the whole complex plane and satisfies the ex-
pected functional equation. It is holomorphic and non-zero in the region
Res > 14+ m/2.

3. The Sato-Tate conjecture is true for E, i.e. the numbers

(1+p—#E(F,))/2(/p
are equidistributed in [—1,1] with respect to the measure (2/7)\/1 — t2dt.

The condition that E has multiplicative reduction at some prime results
from condition 3 of theorem A (and its generalisations). We hope that this
condition could be removed as trace formula technology improves.

Theorem C Suppose that n is an even, positive integer, and that t € Q —
Z[1/(n+1)]. Let Y; denote the projective variety

(X + X7 4+ L+ XY = (n 4 D)X X X
It carries an action of
H' = ker(urt AL g0
acting by multiplication on the coordinates. Then the L-function L(Vi,s) of
Hnil(yv(lzt) x Q, QZ)HI

s independent of I, has meromorphic continuation to the whole complex plane
and satisfies the expected functional equation

L(Vi,s) = e(Vi,s)L(Vi,n — s).

(See theorem 6.5 for details. A referee asked us to explain the importance of
this particular family. It is a family that has been studied quite widely and
has some beautiful properties, but for us the main interest of this family is
that Gal (Q/Q) typically has image GSp,(Z;) in Aut H" 1 (Y. x Q, Q).
Note that dimgq, H" ' (Y{1.4) X Q, Q)" = n. Thus this theorem is illustrative
that our techniques allow one to study the L-function of varieties for which
the image of Galois acting on the [-adic cohomology is large.)
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Next let us outline our argument for theorem A in the case of one
non-minimal prime p. We will assume that p = 1 mod ! and that the rep-
resentation has unipotent ramification at p. One can use base change argu-
ments to reduce to this case. We consider simultaneously two deformation
problems. Let o denote a generator of the tame inertia in Gal(Q,/Q,). In
the first deformation problem we consider lifts in which ¢ has characteristic
polynomial (X — 1)". In the second we consider those in which o has char-
acteristic polynomial (X —(;)...(X —,) where the (; are distinct I roots of

1. We need to use Kisin’s framed deformations. Let R,(,” and R]()Q) denote the

two local framed deformation spaces. Then RS’/A = R{” /A (where A is the
prime above [ in the coefficient ring) and these rings have dimension n?+ 1.

Moreover R,()z) is irreducible, whereas Rz(gl) is reducible, but the irreducible
components of R,(,l) and R,(jl) /A are in bijection under the reduction map.

We use a simple variant of the usual Taylor-Wiles patching argument
to create two limiting framed, global deformation rings RV = R\V[[v4, ... Y]]

and R® = RP[[Yy,...,Y,]] together with two limiting, framed spaces of au-
tomorphic forms H™ and H®. As usual, the method yields that H® has
R®-depth > n?+41+4r. (One uses the diamond operators to see this.) More-
over we can compatibly identify RM/\ =2 R /X and HV /X = H® /X Tt
suffices to prove that all primes of R are in the support of H®.

As R®@ is irreducible of dimension n? + 1+ and H® has R®-depth
>n?+1+7r, as usual we conclude that every prime of R® is in the sup-
port of H®). Hence every prime of R® /X = RMW /X is in the support of
H® /\x= HM /X Because the irreducible components of R and R™M /) are
in bijection under reduction (because in turn the same is true for the local

ring R},l) by explicit computation) we can conclude that all primes of R(M)
are in the support of HM, as desired.

The main point is that Kisin’s variant of the Taylor-Wiles method works
well for the second deformation problem. One would like to use this and the
fact that the first and second problems become equal modulo A, to deduce an
R =T theorem for the first problem also. This does not seem to be possible
at finite level. It is however possible at ‘infinite level’ because the ‘deforma-
tion ring’ R has such a simple form. (Specifically it has the property that
its irreducible components are in bijection with the irreducible components
of its reduction modulo A.)

The reader of this paper will need to make frequent reference to the
first three chapters of [CHT]. However we will make no appeal to the fourth
chapter of [CHT], nor to the appendices to that paper.
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Section 2 of this paper contains some algebraic background: some sim-
ple lemmas in commutative algebra and a discussion of the moduli space of
nilpotent matrices. These results may well be well known, but for the lack of
a suitable reference we include proofs here. The sole purpose of the second
section is to prove proposition 3.1, which describes the structure of certain
universal lifting rings for representations of local Galois groups. Because the
structure of the maximal tame quotient of the local Galois group is so sim-
ple, the arguments in this section are mostly about moduli spaces of pairs
of matrices. In earlier versions of this preprint these arguments were unfor-
tunately incomplete. Section 4 starts by reviewing notation and background
from [CHT] and then gives the key argument of this paper to prove the
equality of a Hecke algebra and of the quotient of a universal deformation
ring for a representation of a global Galois group by its nilradical (see the-
orem 4.1). In section 5 this theorem is combined with the theory of base
change to prove more user friendly modularity lifting theorems. The argu-
ments of section 5 are taken directly from [CHT]. Indeed parts of sections
4 and 5 are repeated almost verbatim from [CHT]. We hope that this will
make the present paper easier to read. Finally section 6 lists several conse-
quences of our main modularity lifting theorems.

It is a pleasure to acknowledge the debt this work owes to the ideas
of Skinner and Wiles [SW] and particularly of Kisin [K]. I am also grateful
to Brian Conrad and Dennis Gaitsgory for useful conversations concerning
section 2. It is a pleasure to thank my collaborators on earlier stages of this
project: Laurent Clozel, Michael Harris and Nick Shepherd-Barron. It will
be clear to the reader how much the main theorems of this paper owe to
our earlier joint work [CHT] and [HSBT]. Finally I would like to thank the
referees for their careful and very helpful work. I believe there suggestions
have significantly improved the readability of this paper (and of [CHT]).

2. Some commutative algebra.

In this section we will review some results from commutative algebra
that we will need. It is possible that these are all clear to experts, but, not
myself being an expert, I have chosen to present them in some detail. We
start with a definition and two lemmas that will play an important role in
our modularity argument.

We will let [ denote a prime number and K a finite extension of Q
with ring of integers O, maximal ideal A\ and residue field k = O/A\.
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Definition 2.1 Let A denote a noetherian local ring. If M is a finitely gen-
erated A module the following are equivalent.

— Ann 4(M) is nilpotent.
— All minimal primes of A are in the support of M.
— All primes of A are in the support of M.

If these conditions are satisfied we call M a nearly faithful A-module.
If A is reduced then faithful and nearly faithful are synonymous.

Lemma 2.2 Suppose A is a noetherian local ring and that M is a finitely
generated A-module.

1. If T is an ideal of A and M is a nearly faithful A-module then
M/IM is a nearly faithful A/I-module. In particular, if J D I is another
ideal and the action of A on M/IM factors through A/J then J C /I
and M/IM is a nearly faithful A/J-module.

2. Suppose that A is an excellent (or just catenary) local O-algebra,
that each irreducible component of Spec A has the same dimension and that
all the generic points of Spec A have characteristic zero. Suppose also that
every prime of A minimal over AA contains a unique minimal prime of A.
Suppose finally that M is an A-module which is O-torsion free. If M/AM
is a nearly faithful A/AA-module, then M is a nearly faithful A-module.

Proof: Consider the first part. If ¢ D [ is a prime ideal we need to show
that (M/IM), # (0). If not then

M@/IPM@ = (M/[M)p = (0>

and so by Nakayama’s lemma M, = (0), a contradiction to p being in the
support of M.

Now consider the second part. Let P be a minimal prime of A. Let
© be a minimal prime containing (A, P). As A is catenary (because it is
excellent) the Krull dimension of A/p is one less that the Krull dimension
of A/P. If q is any prime properly contained in o we see that A/q has Krull
dimension at least the Krull dimension of A/P. Thus q is minimal and so
does not contain AA. Thus ¢ is a minimal prime containing AA, and so by
our assumption the only prime of A properly contained in p is P, ie. A
has only two primes g, and FP,. As

Mgv//\Mp = (M/)‘M)p # (0)

we deduce that M, # (0) and that Ann 4 M, C p,. Thus /(Ann 4 M) = @,
or P,.
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Let w denote a generator of A\. For all r € Z-y the map w" : M —
M is injective and hence w" : M, — M,. Thus @w" ¢ Ann 4 M, and so
w & /(Ann 4 M,). We conclude that /(Ann s M,) = B, so that P, D
Ann 4, M,,. Thus

Mp = (Mg)p, # (0).
UJ

Lemma 2.3 Suppose that A is a noetherian local ring and that M is a
finitely generated A-module. Suppose that the ma-depth of M is greater than
or equal to the Krull dimension of A. Then the ma-depth of M equals the
Krull dimension of A, and the support of M is equal to a union of irre-
ducible components of Spec A. In particular if Spec A is irreducible then M
1s a nearly faithful A-module.

Proof: By proposition 18.2 of [E] every associated prime of M has di-
mension at least the m4-depth of M. Thus every minimal prime over Ann 4 M
(which will then be an associated prime of M by theorem 3.la of [E]) has
dimension at least the Krull dimension of A, and so must be a minimal
prime of A. [J

The rest of this section is only required for the proof of proposition
3.1. First we will consider some results about polynomials and matrices. Let
Pol,,/O denote the space of monic polynomials of degree n (i.e. simply affine
n-space over ). There is a finite flat map

Aff" — Pol,,
(ar, .y o) — [T (X — ).

If f(t) € O[t] there is a unique morphism

Pol,, — Pol,,
P— P fi

such that
Pol,, — Pol,
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Note that if R is a O-algebra and A is an n x n matrix over R then
char ;) (X) = char 4(X)y,

where char 4 denotes the characteristic polynomial of A. (To see this one
can reduce to the case of A= (X;;) over O[X;li =1, ., and then work over
the algebraic closure of the field of fractions of O[Xjj; =1, n, where A can
be diagonalised.) The following lemma follows easily from this, the Cayley-
Hamilton theorem and standard power series identities.

Lemma 2.4 Suppose that | > n and that R is a O-algebra. If A € M,(R)
has characteristic polynomial X™ then

exp(A) =1, + A+ A*/21+ ...+ A" /(n —1)!

has characteristic polynomial (X —1)". If B € M,(R) has characteristic poly-
nomial (X —1)" then

log(B) = (B —1,) — (B—1,)%/24 ...+ (=1)"(B—1,)"""/(n = 1)

has characteristic polynomial X™. Moreover we have the following well known
identities:

— exp(CAC™) = Cexp(A)C™! and log(CBC™') = C'log(B)C™!;

— logexp A=A and explog B = B;

— exp(mA) = exp(A)™ and log(B™) = mlog B for any positive integer
m.

(This lemma remains true if R is any ring in which (n —1)! is invertible.)

Let P, denote the set of partitions n = ny + ... +n, where the n; are
positive integers and their order does not matter. For any partition o =
{n1,...,n,.} we set do(c) =0 and define recursively d;(c0) to be d;_i(o) plus
the number of j for which n; > 7. This sets up a bijection between P, and
the set of non-decreasing sequences of integers

O:dogdlffdn_lgdn:n

We define a partial order > on P, by setting o > o' if d;(0) > d;(o’) for
all i = 1,...,n. We write 0 > o' if 0 > ¢’ and o # o'. If 0,0’ € P, we
will denote by o V ¢’ the partition corresponding to dy < dy < dy < .. < d,
where d; denotes the maximum of d;(c) and d;(¢’). Thus oV o' is the unique
>-smallest partition greater than or equal to both ¢ and o’.

For 0 ={ny,....,n.} € P, and for ¢ € O we will define a reduced closed
subscheme Pol,(0,q) C Pol,, as follows. Let A be the linear subspace of Aff"
defined by

Xiy1 = qX;
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for all i = 1,....,.n — 1 except ¢ = ny or ny +ny or ... or Ny + ... + N,_1.
Let Pol,(0,q) denote the reduced subscheme of the scheme theoretic image
of A in Pol,. For any field L the L-points of Pol,(c,q) are those monic
polynomials whose multiset of roots can be partitioned into r sub-multisets
each of the form {a,qa,...,¢" ta}. If ¢" #1 in K and if ¢ = {n} then over

Pol,, (0, q) Xspeco Spec K
the universal polynomial
PX)=X"—a, X" '+ .. +(-1)a,

satisfies
n

P(X)=][(X —aid" /(A +q+ .. +¢")).
i=1
If m is a positive integer and if ¢ € O* we will write N(m) for the
mxm matrix with N(m);; =1 if j =i+1 and = 0 otherwise; and ®(m, q) for
the m x m diagonal matrix with entries (¢™!,...,q,1). If 0 = (ny,...,n,) € P,
set N(o)=N(ny)®...® N(n,). If in addition a = (ay,...,a,) € (O*)" set

P(0,a,q) = a1P(n1,q) @ ... © a,P(ny, q).

Thus
®(0,a,q)N(0)P(0,a,q)"" = qN(0).
We will write ®(o,q) for &(o,(1,...,1),q).

Let Nil, denote the space of n x n matrices with characteristic polyno-
mial X™. It is an affine scheme over O. (Brian Conrad has shown us a proof,
due to N. Fakhruddin, that Nil, is reduced, but we will not need this here.)
For o ={ny,...,n,} € P, we define a reduced closed subscheme Nil, (o) C Nil,
to be the locus of matrices N for which all n+1—d;(o) minors of N’ vanish
for + = 1,...,n — 1 together with its reduced subscheme structure. Thus the
matrix N (o) defines an O-point of Nil,(¢). Note that Nil,(¢) D Nil,(o’) if
and only if o < o', and that

Nil,, (o) N Nil,(¢") = Nil, (o V ¢).
Thus the Nil,(¢) with o € P, form a stratification of Nil,. We will write
Nil, ()" = Nil, () — | Nil.(o").
o'>o

If L/O is a field then the L-points of Nil,(c)? correspond to nilpotent matri-
ces over L whose Jordan blocks have size nq,...,n,, i.e. to GL,(L) conjugates

of N(o).



10 RICHARD TAYLOR

Lemma 2.5 1. Nil,,(¢)/O s integral, its fibres are irreducible and the
open subscheme Nil,(c)° is fibrewise dense in Nil, (o). Moreover Nil,(co)°
is smooth over Spec O of relative dimension n* —> > (d;(0) — d;—1(0))?.
2. Zar,(N(0)) is a fibrewise dense open subset of the affine space as-
sociated to a free O-module of rank Y o (di(0) — di_1(0))?.
3. Locally in the Zariski topology the universal matriz over Nil,(o)° is
conjugate, by a section of GL,, to N(o).

Proof: This is well known over a field. As we are unaware of a reference
over a DVR, we give a proof here. We would like to thank Dennis Gaitsgory
for help with this.

Let Grass(c) denote the moduli space of increasing filtrations (denoted
{Fil;},;=0,..n) of the free rank n module O" by locally direct summands for
which Fil; is locally free of rank d;(c). Then Grass(o) is smooth over O of
relative dimension (n? — >, (d;(0) — d;—1(0))?)/2. It is integral with integral
fibres. Let {Fil7} denote the standard filtration of O", where Fil] consists of
vectors whose last n —d;(o) entries are zero. Locally in the Zariski topology
on Grass(o) there is a section g of GL, such that {gFil]} is the universal
filtration.

Let Q, C M, «, denote the subscheme of matrices taking Fil;T to Fﬂ?_1
for all j. Also let QY denote the open subscheme of Q, defined as the locus
of matrices which induce maps gr{ — gr?_, of rank d;(0) —d; (o) = rkgr{.
Thus Q2 C @, is the complement of the intersection of the closed subschemes
each defined by the vanishing of the determinant of a (d;(c) — d;_1(0)) X
(dj(U) — dj,1<0')) minor of the (d](O') — djfl(O')) X (djfl(U) — dj,Q(O')) matrix
representing the map gr? — gry_;. Let Nil" (5) denote the moduli space of
pairs ({Fil;}, N) where {Fil;} is a filtration as above and where N is an
endomorphism with NFil; C Fil;; for all j. Let Nil!"(0)? denote the open
subspace where, for all j, the map N induces an isomorphism of Fil ;;;/Fil;
with a locally direct summand of Fil;/Fil;_;. There are natural maps

Nilf? (5)° — Nill" (o) — Grass(o).

Locally in the Zariski topology on Grass(c) we have Nilt" (o) = Grass(o) x Q,
and Nil' (¢)° = Grass(o) x Q. (If on an open set U C Grass(o) there is a
section g of G'L, such that {gFil7} is the universal filtration, then Nil!™ (o) |
is just U x gQrg~".) Thus Nil'" () is integral and smooth over O of relative
dimension n%2—3"% (d;(¢)—d;_1(0))%. Also its fibres are integral and Nil}" (¢)°
is fibrewise dense in Nill' (o).

There is also a forgetful map Niliil (o) — Nil,, which factors through
Nil, (o). Using the valuative criterion one sees that this map is proper. Also
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it is surjective on points. Thus Nil, (o) is irreducible (and, as it is reduced by
definition, also integral) and all its fibres are irreducible. Moreover Nil'! ()0
maps isomorphically to Nil,(o)°. (To see that the map is an isomorphism,
note that over Nil"(c)? the sheaf ker N7 is a local direct summand of dimen-
sion dj(o) of the free sheaf of rank n. The map N +— ({ker N'}, N) gives a
two sided inverse to the forgetful map Nilb! (¢)° — Nil,(0)?.) Thus Nil,(0)° is
connected and smooth over O of relative dimension n*—>">° (d;(0)—d;—1(0))>.
Moreover Nil,(c)? is fibrewise dense in Nil,(c).

The centraliser Zgy, (N(0)) is the open subscheme of Zy; , (N(o)) on
which det is non-zero. The latter centraliser is the affine space associated to
a finite, free O-module. (The subscheme Zy;, ., (N (o)) C M,y is is the locus
where some entries of the n x n matrix are 0 and certain others equal each
other.) Moreover Zgy, (N(o)) is fibrewise dense in Zy,,, (N(o)) because if

one adds a generic multiple of the identity matrix to a point of Zy, . (N(0))

one obtains a point of Zgr, (N(0)). Over K the natural map
GL,/Zar, (N (o)) — Nil,(0)"

is a bijection on points and hence an isomorphism. Thus Zy, ., (N(o)) has

dimension Y :° (d;(0) — di—1(0))>.

Zariski locally on Nil,(c)? = Nil!" (6)° we may assume that each graded
piece of the universal filtration is free. Choose a basis of the free rank n
module as follows. Choose a basis of the top graded piece of the universal
filtration and lift these elements to elements fi,..., f, of the free rank n mod-
ule. Add to these all non-zero images of these elements under powers of N.
Now extend N fi,...,Nf, to a basis of the penultimate graded piece of the
universal filtration and lift the new basis elements to f,i1,..., fars. Add these
and all their non-zero images under powers of N to our putative basis and
continue in this way. We will end up with (a permutation of) a basis with
respect to which N has matrix N(o). Thus we can find a section g of GL,
over this open set such that N = gN(o)g~t. O

Next we turn to a couple of results about complete local rings.

Lemma 2.6 Suppose that A is a complete noetherian local O-algebra (so that
AA is contained in the mazimal ideal m of A).

1. Suppose that | is not nilpotent in A and that @ is a maximal ideal
of A[1/l]. Then A[l/l]/o is a finite field extension of K and A/p° is a
finite free O-module (and hence an order in A[l/l]/p).

2. Any prime ideal of A[l/l] equals the intersection of the maximal
ideals containing it.
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Proof: The first part follows by the proof of lemma 5.1.1 of [BM]. (That
is, we may suppose that p°= (0) C A. Then A is an integral domain which is
flat over O, and A[1/[] is a field. Theorem 15.3 of [M] tells us that the Krull
dimension of A/\ is also zero, so that A/ is a finite O-module. It follows
that A is also a finite O-module, from which the desired result follows.) The
second part is a special case of corollary 10.5.8 of [EGA]. O

Lemma 2.7 Let X/SpecO be a scheme of finite type. Write Xq,..., X, for
the irreducible components of X with their reduced subscheme structure. As-
sume that the distinct irreducible components of X Xgpeco Speck are the
Xi Xgpeco Speck and that each is (non-empty and) generically reduced. Also
assume that all the X; Xgpeco Spec K are non-empty and have the same di-
mension d.

Let x be a closed point of X Xgpeco Speck. Then

— no minimal prime of the completion O% , contains \O% ;

— all mazimal chains of prime ideals in O% , have length d+ 2;

— every minimal prime of O% . is contained in a prime minimal over
AO% ,; and

— every prime of O% , which is minimal over N\O% , contains a unique
minimal prime of O%

s T

Proof: We may assume that X is reduced. Then X is flat over Spec O
(because it is reduced and all its generic points have characteristic 0) and
hence 0%, is flat over O, i.e. has no A-torsion. Any minimal prime of O% ,
is also an associated prime of O% . and so can not contain AO% .. (Else O% ,
would have A-torsion.)

Let X denote the normalisation of X and let X denote the pull back
of X; to X. Then X, is simply the normalisation of X; and X is the disjoint
union of the X;. As X is excellent each X; is finite over X;. If d denotes the
common dimension of the X; Xgpeco0 Spec K, then we see that each X X Spec O
Spec K also has dimension d. By [EGA] IV.13.1.3 and [EGA] IV.14.3.10 we
conclude that each X; Xgpeco Speck and each irreducible component of each
552‘ Xgpeco Speck also has dimension d. (We thank Brian Conrad for this
reference.) Thus each irreducible component of X; Xgpeco Speck dominates
XiXgpecodpeck. Let () denote the coherent sheaf on X which is the quotient
of the push forward of O by Ox.

Let 7); denote the generic point of X; Xgpeco Speck. Then Oy, 5. /A s
a field and so Ox,5 = Oxz is a DVR with maximal ideal generated by A.
But O)?mi is just the integral closure Oy, 5., so that

O)?z'ﬁi = OX@'@ = OX@'
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In particular there is a unique point of X; above 7, and we conclude that
Xi Xgpeco Speck is irreducible. Moreover we see that Qy = (0).
As X /X is finite we have

A A
O)z,:c - @ OXZ-,y
2

where y runs over the points of )Z'Z above z. Thus there is an exact sequence

(0) — Ok, — @ OL  — Q) — ().

4y
As X; is excellent, reduced and normal, we deduce that each O%, is reduced

Y
and integrally closed and hence (as it is also local) an integral domain. Let
piy denote the prime ideal which is the kernel of the map O% , — (9%_ CIf
© is a prime of O;}»x above a generic point of some X; or of some X; Xgpeco
Speck then (Q%), = (0) and so

(O%a)o — ED(O% )
(5

(The module @, is killed by some element f € Ox,— g, and f will also kill
Qy.) As (O%,)e is local we see that o contains p;, for a unique pair (7,y).

Suppose first that @ is a minimal prime of O% ,. Then g lies above
the generic point of one of the X; (by the going down theorem, because
O%. is flat over Ox,). Thus p D p;, for a unique pair (i,y). As each
piy contains some minimal prime ideal of O% , we deduce that the p;, are
minimal, distinct and in fact exhaust the minimal primes of O% .

As O%ﬁy D O%,/piy is a finite extension of domains, they both have

the same dimension (see section 4.4 of [E]). On the other hand O%  has

the same dimension as Og,  (corollary 12.5 of [E]), which equals one plus

dim O%, . specky (theorem 10.10 of [E]), which in turn equals 1—i—dim(5(:,;><speco
Speck) (theorem A of section 13.1 of [E]). We have already seem that this

number is just 1+ d. As O%y is catenary, the second part of the lemma

follows.

Suppose that @ is a prime of O% , which is minimal over (X, p;,). We
claim that @ is a minimal prime over AO% ., from which the third part of
the lemma would follow. If not we can find a prime q with o D q D AO%,,
but q # . Then g must contain a minimal prime p;, # p;,. It would follow
that

dim O% ,/piy =1 +dim O% ,/p > 1+ dim O% , /p
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(see theorem 10.1 of [E]), which would contradict the second part of this
lemma.

Suppose now that ¢ is any prime of O%, minimal over AO% . As
the quotient O% ,/AO%, = O% yspeckn 15 flat over Oxyspeck We deduce (by
the going down theorem) that g lies over the generic point of one of the
Xi Xgpeco Speck. Thus p contains a unique p;,, i.e. a unique minimal prime
of O%,. This proves the fourth part of the lemma. OJ

3. Some more local deformation problems

This section may be considered a continuation of section 2.4 of [CHT].
We will study some further local deformation problems which are of key
importance to the main strategy of this paper.

Fix a positive integer n and a prime number [ > n. Let K denote a
finite extension of Q; with ring of integers 0, maximal ideal A and residue
field k. Let p # [ be a second prime and F3 be a finite extension of Q, with
residue field k(v). We will suppose that

#k(v) =1 mod [.
Further we will let
7:Gp, — {1,} C GL,(k)

denote the trivial representation.

We will let Gp, denote the absolute Galois group of Fj. Also Ip, will
denote its inertia subgroup and Froby the geometric Frobenius in Gp, /If..
Choose a lifting ¢35 € Gg, of Frobs !, In addition C(’; will denote the category
of Artinian local (O-algebras with residue field & and Cp the category of
topological local O-algebras which are isomorphic to inverse limits of objects
in C(];.

Suppose that

Xv,15 -5 Xon - GF; - (1 + )‘> - OX

are continuous characters. Thus
#k(@)—-1 _
Xvai|IF~ - 1
v

We will let DX *) denote the set of liftings r of 7 to objects of Cop
such that for all o € Ip,

n

char (o) (X) = [ [(X = x0(0)).

=1



Title Suppressed Due to Excessive Length 15

The collection Dq(jx“”l""’x”‘”) is a local deformation problem in the sense of
definition 2.2.2 of [CHT]. Let 9t Xen) denote the corresponding ideal of

the universal local lifting ring R° for 7. We will also let DSt < Pt
denote the subset consisting of liftings r such that

char ,(4,)(X) € Pol,,({n}, #k(v)).

It is again local deformation problem and we will write Z5%*n! for the cor-
responding ideal of RI°°. Then we let Z5%m" O Z5%ml denote the preimage
in R of the ideal of RI°¢/Z5%*nl consisting of all elements killed by a
power of A. We also let D" denote the corresponding deformation prob-
lem. Note that RI°¢/Z5% is by definition flat over O. (It seems likely that
DStein. — pStein,l - apd Zhtein = 7Steinl  However we won’t need this, so we
haven’t tried to prove it.) The sole purpose of this (and most of the previ-
ous) section is to prove the following proposition.

Proposition 3.1 1. If all the xuil1. are distinct characters then the

spectrum Spec Rl°¢ /L(,X“’l’”"x”’") 15 irreducible and its generic point has char-
acteristic zero. Moreover RLOC/LSX“"”’X”’") has Krull dimension n®+ 1.

3. All irreducible components of Spec RLOC/L(,I’L'"’I) have dimension n*+
1 and their generic points all have characteristic zero. Moreover every
prime of RLOC/L(,l’l"”’l) which is minimal over )\(RLOC/ZSl’l""’l)) contains a
unique minimal prime.

4. Spec RI°¢/T5%n s jrreducible and the generic point has characteris-
tic zero. Moreover RY¢/T5*™ has Krull dimension n?+ 1.

Note that any lifting of 7 to an Artinian local O-algebra will factor
through
Ty, = Gr,/ Pr;,

where Pp. denotes the kernel of any (and hence all) non-trivial maps from
Ir. to Z,. Fix a topological generator oy of I, /Pp.. Then Tp is topologically
generated by oz and ¢ subject only to o generating a pro-l-group and to

dromiy ! = o2,

If P € O[X] is a monic polynomial of degree n and if ¢ is a positive
integer not divisible by | we will let M(P,q)/O denote the moduli space of
pairs of n x n-matrices (®,Y) such that

— @ is invertible;
— X has characteristic polynomial P;
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— PXPt = 3,
Thus M(P,q) is an affine scheme over O. Also write M5%*1(q) for the closed
subscheme of M((X —1)",¢q) defined by

char 4(X) € Pol,({n}, q).

Then Rloc/Z0 0 Xvm) (yesp. Rloc /TSt ig the formal completion of the

structure sheaf of .

M (X = xuilow)), #k(0))
i=1
(resp. MB*in(4tk(v))) at the closed point (1,,1,) (in the special fibre). We
will first prove the following global result.

Lemma 3.2 Let q be a positive integer with ¢ =1 mod [.

1. Let M; denote the irreducible components of M((X — 1), q) with
their reduced subscheme structure. Then each M; Xgpeco Spec K is non-
empty of dimension n?. Moreover the distinct irreducible components of
M((X —1)",q) Xspeco Speck are the M; Xgpeco Speck and each is (non-
empty and) generically reduced.

2. Suppose ay,...,q, are distinct (¢ — 1) roots of unity in 1+ X C O.
(If ¢ =1 we allow any aq,...,a, € 1+ A, not necessarily distinct.) Then
MIT (X — i), )™ is flat over O.

Proof: We first give another model for M((X —1)",q). To this end let
N(q)/O denote the moduli space of pairs of n x n-matrices (@, N) such that
— @ is invertible;
— N has characteristic polynomial X";
~ GN&' = gN.
Then N (g) is an affine scheme over O. It follows from lemma 2.4 that
M((X =1)",q) = N(q).

The map sends (2, X) to (@,logX). (In the original version of the paper we
only showed that the reduced subschemes were isomorphic, and this is all
we actually need in the sequel. We thank Brian Conrad for suggesting we
include this slightly stronger result and for showing us a proof due to N.
Fakhruddin. This is not, however, the proof we have presented here.)

There are natural maps

N(q) — Nil,

(taking (@, N) to N) and
N(q) — Pol,
(taking (@, N) to the characteristic polynomial of ®). For o € P, let
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— N(q,0)° denote the locally closed preimage of Nil,(c)" under the first
of these maps ;

— N(q,0) denote the reduced subscheme of the closure of AN (q,0)° in
N(a);
— and N (gq,0)" denote the reduced subscheme of the intersection of the
preimage under the first map of Nil, (o) with the preimage under the sec-
ond map of Pol,(o,q).

Suppose that L is a field and that (®, N) € M, «,(L)* defines an L-point of
N(q,0)°. Then @ acts on ker N'/ker N*™! for i =1,...,n and
Char¢|<kerm+l/kerm)(X)|char¢|(kerNi/kerNFl)(qX).
Thus char ¢(X) € Pol(o,q)(L). It follows that
N(g, o) D N(q,0) D (N(g, o)),
Locally in the Zariski topology the map
N(q,0)" — Nil,(c)°
is isomorphic to the projection
Nil,(0)° x Zgr, (N (o)) — Nil,(0)°.

(If over an open subset U C Nil,(¢)? the universal matrix is gN(c)g~! with
g a section of GL, over U, then the preimage of U in N(q,0)° is just
U x g9(0,q9)Zgr, (N(0))g™'.) In particular N(q,0)° is smooth over O and
fibrewise integral of pure relative dimension n?. Suppose that ay,...,a, € 2
are such that a;¢/ # ay¢’" for i #i and 0 < j <mn; and 0 < j/ < ny. Then
(&(0,a,q), N(o)) is a point of

(N(q,a) - U N(q,a’)/) (k) C (N(q,a) - U N(CLU/)) (k).

a’;éa o'F#o

We conclude that the N(q,0) (resp. (N(q, o) x Speck)™) are the reduced
irreducible components of N(q) (resp. N(q) x Speck). Each irreducible com-
ponent of N(q) x Speck is contained in a unique irreducible component of
N(q). The first part of the lemma follows.

Notice that if aq,...,a, € 1+ A\ then

MATL, (X — @), 1) Xgpeco Speck = M((X — 1)",1) Xgpeco Speck
=~ N(q) Xspeco Spec k.

Over the generic point of N (g, 0) Xspeco Spec k the pair (@, N) is of the form
(Ad(c,a,q)A™, AN(0)A™!) for some a and A. Thus over the generic point
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of the corresponding component of M([]'_;(X — ), 1) Xgpeco Speck the pair
(@, X)) is of the form (A®(o,a,1)A™!, A(exp N(0))A™!). Choosing liftings a of
a and A of A to characteristic 0 we can lift this to the characteristic zero
pair

(Ad(o,a,1)A", Adiag(ay, ..., o) (exp N())A™H).
Thus all generic points of M([[_,(X — a;),1) have characteristic zero and
ML (X — i), 1) is flat over O.
If ay,...,a, are distinct (¢ — 1) roots of unity in O and if X is an
n X n matrix with

n

char (X)) = H(X — ) |(X9 1),
i=1
then X9 ! =1,,. Thus

n n

M(H(X - ai)aQ) = M(H(X - ai)7 1)

i=1 i=1

and the second part of the lemma follows. [J

Lemma 3.3 Suppose that all the Xy, are distinct characters. Then the
formal completion of (Rhoc/féxv’l """ X“’"))[l/l] at any maximal ideal is formally

smooth over K. Similarly the formal completion of
(R /T3 L/1] = (B 285 )11
at any mazximal ideal is formally smooth over K.

Proof: Consider first the case of

_ ploc (Xv, 150y vn) A
R = R L0 70 = O[Ty (X—xwns(05) k(). (s 1)

Let © be a maximal ideal of R[1/l]. The residue field k(p) is a finite ex-
tension of K. Let O;C(p) denote the subring of Oy, consisting of elements
which reduce modulo the maximal ideal to an element of k. Then R/p is a
subring of Oy . (See lemma 2.6.)
Suppose that A is a K-algebra with an ideal I satisfying I? = (0).
Suppose also that
f:R[1/1])¢" — AJI

is a map of K-algebras. We must show that f can be lifted to a map
fi R/ — A,
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First of all we may replace A by the preimage in A of the image of f in
A/I. Thus we may suppose that A is local with nilpotent maximal ideal.
Secondly we may replace A by a finitely generated K-subalgebra, so we may
suppose that A is in fact an Artinian local ring. In particular the homomor-
phism A — k(p) has a section (because A contains the field K) and we can
consider A as a k(p)-algebra. (For instance, by theorem 7.7 of [E].)

Let (@, X)) € GL,(A/I)* denote the image of the universal matrices over
M1 (X = Xu,i(05)), #k(v)). As the roots of the characteristic polynomial
of X are distinct elements of K we may find a basis ey, ...,e, of (A/I)" so
that

Ye; = Xv,i(Ua)Q'-

As Y#H) = ¥ we must have XY = dX¥ and so
@6,’ = ;€

for some «; € A/I. Choose a lifting of {ey,...,e,} to a basis {e,...,€,} of
A™ and a lifting a; to A of each «;. Define a lifting (&, X) of (&,X) to A
by N

Yei = Xv,i(07)é;
and B
Then X has characteristic polynomial

[TX = xoilow)

i=1
and

F5F1 = )

Note that the reductions @ and E~ of & and X modulo the maximal
ideal of A lie in O;(p). The entries of ® — @ and X — X are in the maxi-
mal ideal of A and hence nilpotent. Let A° denote the O;(p)—subalgebra of
A generated by the entries of ®—® and ¥ — Y. Then A° is a complete
noetherian local O-algebra with residue field k. Thus we can find a map of

O-algebras
R— A°

so that the universal matrices over M(J/_;(X — xv.i(0%)), #k(v)) map to

(5, 5) This map extends to the desired map

f:R[1/] — A.
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The proof in the case
loc Stein
R=R, /Iv = %Stein(#k(v))(ln’ln)

is very similar. The key point is to show that (9,X) € GL,(A/I)? lifts to
(@,%) € GL,(A)? such that ¥ has characteristic polynomial (X — 1)", while

® has characteristic polynomial in Pol,({n}, #k(v)) and X~ = X#k®),
The characteristic polynomial

char ¢(X) = H(X —ag™h),

where
a={trd)/(1+q+..+¢"").

As the roots of charg(X) are distinct modulo the maximal ideal of A/I, we
can choose a basis ey, ...,e, of (A/I)" such that

Pe; = aq' e,

Then we must have
Ye, = ﬁieifl

where (; € A/I and where we set ey = 0. Choose a lifting of {ej,...,e,} to
a basis {é1,...,6,} of A" a lifting a of a to A and a lifting 3; of each [
to A. Define liftings (9, %) of (?,X) to A by

e, = ag' e
and B B
Ye; = fBiei
(with ¢y = 0). This lifting has the desired properties, and allows one to
complete the proof of the lemma in the second case. [
Lemma 3.4 Spec (R°¢/Z0 X)) 1/1] and Spec (R /TS*)[1/l] are con-

nected.

Proof: Consider first the case of

_ ploc (Xw, 15005 vn) A
Ro=RS/1700 = O, (X x,i(00) #60) (1 1)
Let po be the maximal ideal of R[1/I] corresponding to

(Do, Xo) = (1, diag(Xv.n(0%), -y X01(0%))) € M, (K)>.
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We will show that any other maximal ideal o of R[1/l] is in the same con-
nected component. The result will then follow from lemma 2.6.

The residue field k(p) is a finite extension of K. Let Oy, denote its
ring of integers and and my,) the maximal ideal of Oy,). Then R/p¢ —
Ok(e), and this corresponds to some (®,X) € M, (Ok))*. (See lemma 2.6.)
Let A denote the complete topological domain

Ok(p)(Xijs Y )ijj=1,..n/ (Y det(Xy5) — 1),

where ( ) denotes power series whose coefficients tend to zero. (The topology
being the my,) topology.) Consider the pair
(X)) 7' 0(X5), (Xig) T 2 (X)),

This defines a map

n

Spec A — M(H(X — Xv,i(0%)), #k(v))
i=1
such that Spec A/my,)A maps to the point

n

(1ns 1) € M(] (X = xwi(09)), #k(0)) (F).

i=1

Thus we get a (continuous) homomorphism

~ A
B = OM(mis, (X xwilom) #h),(1,10) — A
We conclude that g is in the same connected component of Spec R[1/I] as the
maximal ideal corresponding to (E~'®E, E~'YE) for any E € GL,(Ok,))-
We can choose a decreasing filtration Fil® of k(p)™ such that

— each Fil® is a preserved by ¢ and ¥ and
— for i = 1,...,n the graded piece gr’ is one dimensional and X acts

on it by x..i(0%).
(As Xpi(03)"*® = x,;(05) we see that @ preserves ker(X — y,i(07))® for all
positive integers a.) Let ey, ...,e, be a basis of Og(@) such that e;,...,e, is a
k(p)-basis of Fil* for all i = 1,...,n, and let

E = (enen_1...€1) € GL,(O).

Then E7'®E € GL,(Ok)) is upper triangular and E7'YE € GL,(Oyy)) is
upper triangular with diagonal entries X, ,(0%), ..., Xv1(07) (reading from top
left to bottom right).
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Thus we are reduced to the case that @ is upper triangular and ' is
upper triangular with diagonal entries X,,(0%), ..., Xv1(07) (reading from top
left to bottom right). Let

B= Ok(p) <X >.
Let A = diag(1,X,..., X" 1) and consider the pair
(AP, ATIEA).

This defines a map

n

Spec B — M(H(X — Xv,i(0%)), #k(v))

i=1
such that Spec B/my ) maps to the point

n

(1ns 1) € M(] (X = xwi(09)), #k(0)) (F).

=1

(Although A~! is not defined over B, the products A7'®A and A~'XA are
defined over B.) Thus we get a (continuous) homomorphism

~ A
R 2 O0(T, (X —xoi(09) #b(w)) (1n 1) — B-

The point of R[1/l] corresponding to the map B — Oy, sending X to 1 is
©. The point of R[1/l] corresponding to the map B — Oy, sending X to 0
corresponds to a pair

(diag<&17 ey an)u diag(Xv,ﬂ(‘EF% ) Xv,l(o-iF)))'

These two points are in the same connected component of Spec R[1/l].
Thus we are reduced to the case that X = diag(xyn(0%), .-, Xv1(0%))
and @ = diag(ay, ..., a,). Let

Consider the pair
(diag(1 + Xp,...,1+ X)) ', X).
This defines a map

n

SpecC' — M(H(X — Xu,i(0%)), #k(v))

i=1
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such that SpecC/(Xj,..., X, \) maps to the point

n

(Ln, 1n) € M(]J(X = xvi(0%)), #k(v)) (k).

=1

Thus we get a (continuous) homomorphism

~ N
R = O, (X o (09) k() (1n,1) —— C-

The point @ corresponds to the map C' — Oy, sending X; — 0 for all i;
while the point @y corresponds to the map C — Oy, sending X; — a; — 1
for all . Thus p and gy are in the same connected component of Spec R[1/],
and the lemma follows.

Consider now the case

R — Ri}OC/IStein - " Stein(#k(v)%(ln’ln)'
Let po be the maximal ideal of R[1/I] corresponding to

(P, 2) = (diag((#k(v))" ", ..., (F#k(v)), 1), 1) € Mu(K).

We will show that any other maximal ideal p of R[1/l] is in the same con-
nected component. The argument is much the same as the previous case,
so we will simply sketch it. We first reduce to the case that Y is upper
triangular with 1’s on the diagonal and @ is upper triangular with entries
a(#k()" L ... a(#k()),a (reading from top left to bottom right). Then
one reduces to the case that Y and & are diagonal of the same form and
finally to the case a =1. [J

Finally we complete the proof of proposition 3.1.

Proof of proposition 3.1: Consider the first part of the proposition.
Lemma 3.3 tells us that for any maximal ideal p of (RLOC/LEX“ ””” X”’"))[l/l]
the localisation (RIUOC/LSX“‘1 """ X”’"))[l/l]KJ is a domain. Combining this with
lemma 3.4 and the fact that the maximal ideals are dense in the spectrum
Spec (Rloe /T X0 [1 /1] we see that (R9°/Z9 X )[1/]] is an integral
domain. Lemma 3.2 implies that (R°¢/Z0 X m))red js flat over O and we
deduce that this ring is also an integral domain.

The second part of the proposition follows from the definitions. The
third part follows from lemmas 2.7 and 3.2. The fourth part follows from

lemmas 3.3 and 3.4 in the same way that the first part did. (Except in this
case Rloc/T5%n s flat over O by definition.) O



24 RICHARD TAYLOR
4. An R™ =T theorem.

Fix a positive integer n > 2 and a prime [ > n.
Fix an imaginary quadratic field F in which [ splits and a totally real
field F'* such that

— F = FTE/F* is unramified at all finite primes, and
— F*/Q is unramified at [.

Fix a finite non-empty set of places S(B) of places of F™ with the
following properties:

— Every element of S(B) splits in F.
— S(B) contains no place above [.
— If n is even then

n[F*:QJ/2+ #S(B) =0 mod 2.

Choose a division algebra B with centre F' with the following properties:

— dimpg B = n?.

— B?*=Bg.FE.

— B splits outside S(B).

— If w is a prime of F' above an element of S(B), then B, is a division
algebra.

also choose an involution { on B and define an algebraic group G/F7* by
G(A)={ge Bap+ A: ¢g"¥g =1},
such that

- i|F =G
— for a place vjoo of F* we have G(F.) =2 U(n), and
— for every finite place v ¢ S(B) of F* the group G(F,) is quasi-split.

Because of the first and third itemized assumptions on S(B), it is always
possible to choose such a B and then such a f. (The argument is exactly
analogous to the proof of lemma 1.7.1 of [HT].) The purpose of the assump-
tion that S(B) # 0 is to simplify the use of the trace formula in relating
automorphic forms on G to automorphic forms on GL,/F and in attaching
Galois representations to automorphic forms on G.

Choose an order Op in B such that OiB = Op and Op, is maximal for
all primes w of F' which are split over F'*. (See section 3.3 of [CHT].) This
gives a model of G over Op+. If v ¢ S(B) is a prime of F* which splits
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in I choose an isomorphism i, : Op, — M,(OF,) such that i,(z}) = %,(z)°.
The choice of a prime w of F' above v then gives us an identification

it GOFF) 5 GLn(F)

ivH(x,tr¢) —

with i, G(Op+,) = GL,(OFw) and dye = ‘(coiy,)™ ! If v € S(B) and w is
a prime of F above v choose isomorphisms i, : G(F,) = B such that
bwe = iy and 4, G(Op+,) = OF .

If w is a finite place of F' which is split over a place v € S(B) of F'f,
then write Iw(w) for the inverse image under i, of the group of matrices in
GL,(OF,) which reduce modulo w to an upper triangular matrix. There is
a natural homomorphism

Tw(w) — (k(w)™)",

which takes g to the diagonal entries of of the reduction modulo w of i,/(g).
Denote the kernel of this map by Iw;(w). Similarly write Uy(w) (resp. Up(w))
for the inverse image under i, of the group of matrices in GL,(OF,) whose
reduction modulo w has last row (0,...,0,%) (resp. (0,...,0,1)). Then U;(w)
is a normal subgroup of Uy(w) and we have a natural isomorphism

Uo(w) /Uy (w) — k(w)*.

(It sends g to the lower right entry of the reduction modulo w of i,(g).)
Let S; denote the set of primes of F* above [. Let S, denote a non-
empty set, disjoint from S;U S(B), of primes of F* such that

— if v €S, then v splits in F, and
— if v € S, lies above a rational prime p then [F((,) : F] > n.

(The only role played by the primes in S, will be to ensure that certain
open compact subgroups of G(A%,) are sufficiently small.) Let R denote a
set, disjoint from S;US(B)US,, of primes of F* such that

— if v € R then v splits in F', and
—if v € R then Nv =1 mod [.

(The set R is to allow us to prove modularity of l-adic representations ram-
ified at more primes than their mod/ reduction. These extra primes of ram-
ification will be the elements of R.) Fix a decomposition

S(B) = 5(B) []S(B):.

(This will correspond to two different sort of discrete series deformations we
will allow.) Let 7= RUS(B)US;US,. Let T denote a set of primes of F
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above T' such that T]_[TC is the set of all primes of F' above T. If v € T
we will let v denote the prime of T above v. If S C T we will let S denote
the set of v for v € S.

Let U =[], U, denote an open compact subgroup of G(A%,) such that

— if v is not split in F then U, is a hyperspecial maximal compact
subgroup of G(F,),

— if v ¢ S, UR splits in F' then U, = G(Op+,),

— if v € R then U, = Iw(v), and

— if v € S, then U, = i; " ker(GL,(Opz) — GL,(k(0))).

Then U is sufficiently small in the sense that for some place v its projection
to G(F)) contains only one element of finite order, namely 1. (In fact for
v € Sq.)

If @ is a finite set of primes of F'* which split in F' and if @ is disjoint
from T, then we will write T'(Q) for TUQ and T(Q) D T for a set consisting
of one place of F' above each place in T(Q). We will also write Uy(Q) for

[Too Us % [Tuco Uo(®), and U1(Q) for TT,u0 Us X [Tueo Ui (D).
Let K/Q; be a finite extension which contains a primitive [* root of

unity and contains the image of every embedding F* «— K. Let O denote
its ring of integers, A the maximal ideal of O and k the residue field O/\.
For v € R let

Xo = Xo.1 X oo X Xon : Iw(0)/Twy(0) — O

denote a character of order dividing [. We will be particularly interested in
the case x, =1 and the case x,; # xu,; for all i # j. (Recall that [ > n.)
For each 7: F — K choose integers a,y,...,a,, such that

= Qrei = —OQrn41—iH and
— if 7 gives rise to a place in S; then

l—1-n>a;>..>a;,>0.
We get a K-vector space W, and an irreducible representation

fa : G<Fl+) - GL(WG)
g ®T€Tz€a7 (7_27-9)
coming from the algebraic representation with highest weight a. (See section

3.3 of [CHT].) The representation &, contains a G(Op+ )-invariant O-lattice
M,.
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For each v € S(B) let p,: G(F,)) — GL(M,,) denote a representation
of G(F;) on a finite free O-module such that p, has open kernel and M,, ®¢
K is irreducible. For v € S(B), define m,, m; and 75 by

JL (py 0 iz') = Sp,, (73)

and
75 = (73 |(n/mu—1)(1—mv)/2)_

(Here we let JL denote the Jacquet-Langlands map and Sp,, (o) a gener-
alised Steinberg representation as in section 1.3 of [HT]. We also let r; denote
the reciprocity map with its ‘arithmetic normalisation’ as in section VII.1 of

[HT].) We will suppose that
?’g . Gal (F’g/F’g) — GLn/mv (O)

(as opposed to GLy/m,(K)). If v € S(B); we will further suppose that Nv =
1 mod [, that m, =n and that 7y is unramified. If v € S(B)s we will further
suppose that the reduction of rz mod A is absolutely irreducible and

5 Qo k ¥ 5 Qo k(ej)

for j = 1,...,m,. (It should be possible to treat the common generalisation
of these two extreme cases, but we will not do so here.)

Set
Moot = Mo ®@ @) My, ® ) Oa).
veS(B) vER

Suppose that either A is a K-algebra or that the projection of U to G(F;")
is contained in G(Op+,;). Then we define a space of automorphic forms

Sa (o} e} (Us A)
to be the space of functions
frGIFTNG(AR) — A®0 Magp,).x.)

such that

flgu) = UE(IB)URUslf(g)
for all w € U and g € G(AY,). Here ugpurus, denotes the projection of u
to G(F") x [1espy GFS) X [1,eg Iw(®). If A is a O-module we have

Sa){Pv}v{Xv}(U7 A) = Sa’{Pv}v{Xv}(U’ O) ®O A

(because U is sufficiently small). We make an exactly analogous definition
with Up(Q) or U;(Q) replacing U. These spaces satisfy the same base change
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property as Up(Q) and U;(Q) are also sufficiently small. (See section 3.3 of
[CHT] for details.)
We will denote by
T
T o063 (U)
the O-subalgebra of End (Sq {,.},¢x.}(U, O)) generated by the Hecke operators

Té}]) _ Z;l (GLn(OEw) (wglj 0 > GLn(OF,w)> x U"

Lo_j
for 7 = 1,..,n and (Té,"))_l, where w runs over places of I which are
split over a place v &€ T of F*. (Note that T = (T{")1T8, so we

need only consider one place w above a given place v of F*.) The algebra
Ta{pv}7{Xv}(U) is reduced (see corollary 3.3.3 of [CHT]) and finite, free as a
O-module. Again we make an exactly analogous definition with U replaced

by Up(Q) or Uy(Q) and T replaced by T(Q). The algebras Tz,{pu},{xv}(UO(Q))
and TaT,({gz},{xv}(Ul(Q)) are also reduced and finite free as O-modules.

We now turn to some Galois theory. Recall that in [CHT| we defined
a group scheme G, over Z to be the semi-direct product of GL, x GL; by
the group {1,7} acting on GL, x GL; by

Ngo )yt = (u'g™" ).
There is a homomorphism v : G, — GL; which sends (g, 1) to p and j to —1.

We also defined a subgroup H C G, (k) to be big if the following conditions
are satisfied.

— HNG%k) has no l-power order quotient.

— For all irreducible k[H]-submodules W of g,(k) we can find h €
HNG%k) and o € k with the following properties. The « generalised
eigenspace Vj, of h in k" is one dimensional. Let w4 : " — Vo (resp.
ina) denote the h-equivariant projection of k™ to Vi, (resp. h-equivariant
injection of V. into k™). Then 7,4 0 W 0y # (0).

(See section 2.5 of [CHT] for this and for some examples of big subgroups.)
Let m be a maximal ideal of TZ’ (po).(13(U) with residue field k and let
Tm: Gal (F/F) — GL,(k)

be a continuous homomorphism associated to m as in proposition 3.4.2 of
[CHT]. Thus if w is a prime of F split over a prime v € T of FT then 7
is unramified at w and 7, (Frob,) has characteristic polynomial

X" —TWOX™ 4 4 (=1 (Nw)? U DRTD X 4 (—1)"(Nw)" = D/27 M),
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We will assume that the representation 7, is absolutely irreducible, i.e. that
m is non-Eisenstein. Then by proposition 3.4.4 of [CHT] 7, extends to a
continuous homomorphism
Tm: Gal (F/F') — G, (k)
with
1-n m
5;/F+

where 0p/p+ is the non-trivial character of Gal (F//F") and where py, € Z/2Z.
We will assume that 7, has the following properties.

— Tu(Gal (F/F*(())) is big.
— If v € R then 7(Gp,) = {1,}.
— If ve S, then 7, is unramified at v and

H°(Gal (F5/Fy), (adTw)(1)) = (0).
— If v e S(B), then Tm(Gal (F5/F5)) = {1}.

Set T = Tg,{pv},{u(U)m and H = S, (p,1,{13(U, O)m. By proposition 3.4.4
of [CHT] there is a continuous representation

rm: Gp+r — G,(T)

VOT, =€

lifting 7, and such that if w is a prime of F split over a prime v € T' of
F* then ry is unramified at w and ry(Frob,) has characteristic polynomial

Xm—TWOX™ 4 4 (=1 (Nw) U D2TO X 4 4 (=1)"(Nw)" (= D/27 M),
For v € T we write

TuniV . GFg _ GLn(Ri,OC)

v .

for the universal lifting (not deformation, i.e. it parametrises lifts not con-
jugacy classes of lifts) of Tw|q, . (See section 2.2 of [CHT].) Consider the
deformation problem S given by

(F/F+7 T7 ,—fv 07Fm7 617”5!}??}7%7 {Dv}v€T>

and the ideals Z, of RI° corresponding to D,, where:

— For v € S,, D, will consist of all lifts of T“m|Gal(p§/Fa) and Z, = (0).

— For v € S}, D, and Z, will be as described in section 2.4.1 of [CHT]
(i.e. consists of crystalline deformations).

— If v € S(B); then D, will correspond to Z, = Z5tin,

— If v € S(B)y then D, will consist of lifts which are 75-discrete series
as described in section 2.4.5 of [CHT].
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— For v € R then D, corresponds to the ideal Z, :1151 """ U of Rloe,

Also let . B .
r&v . Gal (F/FY) — G, (RE™)
denote the universal deformation of 7, of type S. (Again see section 2.2 of
[CHT].) By proposition 3.4.4 of [CHT] the representation r, gives rise to a
surjection .
Rgnlv — T
which makes H an R¥"-module.
We can now state our main result.

Theorem 4.1 Keep the notation and assumptions of the start of this section.
Then .
(Rgmv)red -~ T.

Moreover pig, = mn mod 2.

Proof: The proof will involve the consideration of various other deforma-
tion problems and the corresponding Hecke algebras and spaces of modular
forms. More specifically we will consider sets of characters

{xv : Iw(0)/Tw1(0) — O }oer

of order dividing I, and finite sets @ of primes of F* disjoint from 7 and
such that if v € () then

— v splits ww® in F,

— Nv =1mod !, and

— Twler, = 1, ® By, with dime, = 1 and ¢, not isomorphic to any
subquotient of 5.

We must first assemble some notations.
Consider the deformation problem Sy}, given by

(F/F+7 T(Q), T(Q)J 07 Fmv €l_n5;?p+; {Dv}veT(Q))

and the ideals Z, of RI° corresponding to D,, where:

— For v € S,, D, will consist of all lifts of Fm|Ga1(F1~,/F5) and Z, = (0).

— For v € S}, D, and Z, will be as described in section 2.4.1 of [CHT]
(i.e. consists of crystalline deformations).

— If v € S(B); then D, will correspond to Z, = Z5tein,

— If v e S(B)y then D, will consist of lifts which are 73-discrete series
as described in section 2.4.5 of [CHT].

— For v € R then D, corresponds to the ideal T, = ™" X" of Rloc
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— For v € Q then D, corresponds to the maximal quotient R°°/Z, of

R°¢ over which 7™V becomes equivalent to 1, ® s, where ¢ lifts 1, and

where s is unramified and lifts 5,. (See section 2.4.6 of [CHT].)

(For v € R the sets D, and the ideals Z, depend on x,, but we suppress

this in the notation.) Let

s Gal (F/F) — GRS )

denote the universal deformation of 7 of type Siy,1.0, and let

rs o1 Gal(F/F") — Gu(Rg!

1Q Sixw }Q)

denote the universal deformation of 7 of type Sy, framed at all v € T.

Thus RV = RV, (See section 2.2 of [CHT].) Note that

S(13,0
univ /\ ~ univ )\
Sixe }Q/ 5{1}@/
and
O
R:T AR A
Six v}cz/ 5{1}Q/

compatibly with the natural maps

univ univ

—»
Sixo 1@ Sixv}.0

O O
R T T
Sixo},@ Sixuv} 0
and ‘
ul’llV univ
S(13.9 RS{l},o
Or Or
H} .
Sane S{1y.0
Let

loc _ loc
R = Q) R/L,,

veT
so that again
RIS /A2 B /0
There are natural maps
Riiyr — s,
which modulo A\ are compatible with the identifications RR&},T/ A=
and RE{ /)\ RS{l}Q/)" (See section 2.2 of [CHT].)

loc
{1} T

/A
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(The sets @ will be the auxiliary primes needed for the Taylor-Wiles
method (see [TW]). To handle non-minimal deformations we will work si-
multaneously with REY and Rs, o for suitably chosen characters {Xy}ves-
The Taylor-Wiles method as modlﬁed by Kisin [K] will work for Rs(,.,0- By
making the argument simultaneously for R and Rs ., o we will be able
to finesse the result for R“mv from the RS{

Write

y case.)

T:O[[ 0,8, - 'UET ijl,,’n,]]

A choice of lifting r“mv of 7 over R“m"

o representing the universal de-

xv},Q

formation of type S{XU}Q gives rise to an 1somorphlsm of R“m"} -algebras
Or univ pa
RS{XU} Q R ®OT
so that
( unlv} Q7 {]' + (XU’Z7J)}”GT)

is the universal framed deformation. (See section 2.2 of [CHT].) We can, and

will, choose the lifting rum"}Q so that

univ univ
Ts{ ®(9/€—7"5{1}Q ®Ok
under the natural identification R“mV}Q JA = g‘{li‘; /A. Then the isomor-
phisms
Op univ QoT
RS{X'U},Q RS{ v}Q O
and

Or ~ univ.= S
—
RS{I},Q Rs{l} Q®OT

are compatible with the identification RE{ oA = Rs{} /A and the identi-

fication RV &~ RV /A,
Rs }Q/ RS{l}Q/

Also erte Aq for the maximal I-power quotient of ] ., k(v)* and let
agp denote the ideal of 7[Ag] generated by the augmentation ideal of O[Ag]
and by the X,;; for ve€ T and 4,57 =1,...,n. Then

[[WooArtr):Ag — ( )
vEQR

makes R“n‘V}Q an 7 [Ag|-algebra. This 7[Agl-algebra structure is compatible

with the identification Rum"}Q /A = gﬁ‘}’ /A, because the liftings r?{

v}, Q
and Ts{l}’Q were chosen compatibly. We also obtain isomorphisms of Rl{(;(cv},T

algebras

RUT

~ Runiv
Sixw }Q/ Q

Sixv}0’
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compatibly with the identifications R o /A = RE{T}Q
R o/
We have

Sa oot (13U, k) = Sa 10,3, 003 (U k) — Sa,{pv},{xv}(Ul(Q), k).

Thus there is a maximal ideal my, 1o of Ta {p 1o} (U1(Q)) with residue field
k such that for a prime w of F' split over a prime v € T(Q) of F* the Hecke
operators T\ have the same image in Tf’({gz}’{m}(Ul(Q))/m{XU}Q =k as in

Tigi}’{l}(U)/m = k. By proposition 3.4.4 of [CHT] there is a continuous

representation

/A and R“m"}@/)\ =

T
Tm{xU},Q : G!FJr — gn( a({% X }(UI(Q))m{XU}yQ)

lifting 7, and such that if w is a prime of F' split over a prime v € T'(Q)
of ' then T is unramified at w and rm (Frob,,) has characteristic
polynomial

Xv},Q

Xt —TWOX™ 4 4 (=) (Nw)? U DRTD X 4 (—1)"(Nw)" = D/27 M),

Set Tt = Ta o). t00) (Dimgyo 80d Hxoy = Sa o), (U, O) By

corollary 3.4.5 of [CHT| we see that we have

m{Xv}aQ) :

TT(@ 7(Q) 7(Q) _
T oottt U1 @m0 = Ta oy ixo 1 U0 @my oy 0 = Tt it Umiy.0 = Ty

For v € Q choose ¢y € Gal (F3/F;) lifting Froby and wy € FX with ¢y =
Art p.wy on the maximal abelian extension of Fj. Let

Py € Ta({p b{xw }(Ul(Q))m{xU},Q[X]

denote the characteristic polynomial of rm . ,(¢7). By Hensel’s lemma we
have a unique factorisation

Pi(X) = (X — A3)Q5(X)

over Ta({ci)} e} (Ul(Q)>m{xU},Q= where Ay lifts v, (¢5) and

Q"J(A:J) < ag{p Ho{xw }(Ul(Q))m{XU} Q

If ve@ and o € F; write

V, =i <U1(5) (1”0—1 2) U1(5)> x U".
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(See section 3.4 of [CHT] for details.) Using lemmas 3.1.3 and 3.1.5 of [CHT]

we see that P5(Vag,w) =0 on Su 5,105, (U1(Q), O)my,,y o+ Set
Hy oy.0 = (J ] @5(Ve) Sartont 0} (U1(Q), Oy
vEQR
and
Ho (v, 3,0 = (H Q5(Voy))Sa oo} (Uo(Q), O)m{m},@
vEQR
We see that Hi (1,0 is a TaT({Cjz} (0} (U1(Q))-direct summand of the module

Sa i1} (U1(Q), O). Also lemmas 3.1.5 and 3.2.2 of [CHT] tell us that

(JT @s(Ver))  Hpvy = Ho a0
vEQR

Write T gy,1.0 (resp. T gy,1.0) for the image of Ta {pv} () (Ul(Q)) in

the endomorphism ring of Hygy,1.q (resp. Hiy,},0)- For all v e Q, Vo, = Ay
on Hygy,1.q- By part 8 of proposition 3.4.4 of [CHT] we see that for each
v € () there is a character

Vi by — Ty Ax}hQ

such that

—if a« € FZ' N Opgz then Vi(a) =V, on Hy .30, and
= ("m0 @ Tipwy@)lwe, = s @ (Vio Art ;;) where s is unramified.

The representation Tmyut.0 gives rise to a surjection

univ

S{X 1,Q Tl,{)@},Q)
and the composite
H Opg = Aoy — (Rumv Q) TlX{XU} Q
VEQR

coincides with [], Vi. Thus Hig,},0 becomes an R“n"’ ‘0 -module and we set

HDT Hl {XU} Q ®Runiv DT

Lieh@ = 7w Sixuh@ RS{XU},Q =M@ ®0T.

As Hi 1,0 is a direct summand of S, (3,141 (U1(Q), O) as modules for
TaT’({Cjz}y{XU}(Ul(Q)) and as ker([[,co k(v)* — Aq) acts trivially on Hi 3.0,
lemma 3.3.1 of [CHT] tells us that H; g1, is a free O[Ag]-module and that

(Hi @) a0 — Ho e = Hiwy-
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As U is sufficiently small we get isomorphisms

Safput 00U, O) ®0 k = So 1,001 Uy k) = Sa 1,013 (U k)
& Satpo) 13U, 0) @0 k

and

Satoo} 003 U1(Q), 0) @0 k = Sy (51,13} (U1(Q), k) = Sa 5,311y (U1 (Q), k)
= Sa (o1, (11(U1(Q), 0) @o k.

Thus we get identifications
Hyy /A= Hyy /A

and
Hi /X = Higy o/

compatible with the actions of Rg?iv}w /A = Rg?‘;@ /A and of R“mV}Q /A=

/A, and also compatible with the maps Hi y,},0/A — Hy,3/A and

univ

8 1},Q
Hl,{l},Q/)\ —» Hgy /A, Similarly we get an identification

O ~
Hyfre/A = Hijy o/

compatible both with the isomorphism RST /A= RET
o (xv}.Q (11.Q
maps H1 e }Q/)\ — Hyy,y /A and Hl,{Tl},Q/)‘ — Hpy /A
Proposition 1.5.9 of [CHT] tells us that there is a non-negative integer
q, such that for any positive integer N there is a set Qn (and 1, for w|v €
Qn) as above such that

— #Qn=q>[FT:Qn(n—1)/2+[FT : Q|n(1 — (=1)"~"")/2;
— if v € Qn then Nv =1 mod [V; and

- RE*{T;},QN can be topologically generated over R{{Of},T by

¢—[F":Qn(n—1)/2 = [F": QJn(1 - (=1)'"")/2

//\ and with the

elements.

Set

— ¢ =q- [F7:QJn(n = 1)/2 = [P Qln(l — (=1)"7)/2 2 0
—and RYT, = R}{O;ULT[[Yl,...,Yq/]].

{xv}o0
Suppose that either x, = 1 for all v € R or that x,, # va for all
v € R and all ¢+ # 5. Then all irreducible components of Spec R{x} have
dimension

L+q+n*#T — [F*: QJn(l - (~1)'=7")/2
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and their generic points have characteristic 0. If for all v € R the characters

Xvi are all distinct for ¢ = 1,...,n then SpecR{DXTU}Oo is irreducible. Every

prime of R{DlT}OO, which is minimal over )\R{DlT}OO, contains a unique minimal
prime of R{Df}ioo. (See proposition 3.1 and section 2.4 of [CHT].)
Note that we have a natural identification
Or ~ plr
Rt ool A = Bt oo/ M
Choose a surjection 4 -
T T
R{l}ﬂoo - Rs{l},QN

loc

extending the natural map R{l}T — RE{T;} o Reducing modulo A and apply-
) QN
ing the natural comparisons, this gives rise to a surjection

RT, JA—R3™ /A

{xv},00

: loc Ur iq 3
extending the natural map RS, /A — RS{XU},QN/)" This in turn can be

lifted to a surjection
Op Or
R{Xv}voo - RS{X’U}:QN

extending the natural map Rl{‘;cv}’T — RYr

S{Xv}vQN ’
Also set
— Seo = THAOOH§

— and a = ker(So — O), where the map sends each element of A, to
1 and each X,;; to 0.

Thus S, is isomorphic to a power series ring in g + n?#7T variables over
O in such a way that a is the ideal generated by these variables. Choose
continuous surjections

Aoo —» AQN
for all N and let ¢y denote the kernel of the corresponding map
Ol[Ax]] = O[Aqy]-

Note that any open ideal of O[[AL]] contains ¢y for all sufficiently large N.
The choice of Ay, — Ag, gives rise to a map

O
Soo = T[AQn] — Rs -

We see that
Or ~ univ
— —
RS{XU},QN/a RS{XU},W
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O ) .
- Hl,{Txv},QN is finite free over Sy /cn,

O ~
- Hlv?Xv}vQN/a - H{X”}'

Our aim is to ‘patch’ the RE{T

X’U}VQN
R{ij;}m and simultaneously patch the HE {Txv},QN to produce a R{DXTU} ~-module,

which is also finite and free over S,. To do this patching it is better to
work with finite cardinality quotients of the RE{TX Lo We will next construct
v} QN

to form in the limit a copy of

)

suitable quotients of this sort.
Choose open ideals by in S, such that

— by D ay,
— by D byt
— and [y by = (0).

Also choose open ideals d¢,,},5 in Rg?i"}@ such that

— kel"(Rg?i\;}’@ — T{X'u}) + bNRuniV D) D{Xv},N D) bNRg?iV} ;

Sixet 0 xv}h0’
— 0wl N D 0y, } N+1;

~ My Opyn = (0); . . ,
— (0gyo3,v mod A) = (0413,5 mod A) in Rg?;vv}’@/)\ = Ri‘gl{li;@/)\.

(Set

univ univ N univ
Df{Xu},N = (ker(RS{Xv}yw — T{XU}) + bNRS{Xc}y@) N (le{l;ivv}’@ + bNR{Xu},®>

As Ty, is finite over O, the ideal byTyyy is open in Ty and so Df{Xv},N will

be open in Rg‘{l;"} . Thus Df{XU} y satisfies the first three of the required prop-
erties. Then define 94y, v to be the intersection of 0, , y and the preimages

in RGM | of 9, y mod A in Rgl{“iz}}m/)\ = g /A for all (the finite num-

ber of) {x,}.)
Thus we obtain maps

Bt oe = BS( 0, /08 = RS, /ow
which agree modulo A\. If M > N then
HE{TXU},QM/[]N
becomes an R{D;}7W®OSOO/ by-module which is finite free over S, /by and
such that the image of S, in End (HE{TXU},QM /by) is contained in the image
of R{D;J},Oo. Moreover

HE{TXULQM/(E]N +A) = (Hlm,{Tl},QM)/<bN +A)
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as R{DXTEMo /A= (R{DIT}M) /A-modules. Finally we have isomorphisms of R{qu;}m—
modules

O ~
Hi{ov0u/ (08 +0) — Hpyy /by

which are compatible modulo A. (RDT

(eo}.00 ACTS on the right hand module via
the map RT,  —» Rg‘{l;‘;}ym/ij.)

{XU},OO
Because R7”

{xv},00
module HlD (r1.0y /b and the ring Rgr{l;v}@

pendent of M > N we can find an infinite sequence of pairs of integers
(M;, N;) with M; > N; such that

— i+1 > Nz and M/L'Jrl > Mz;

— the reduction modulo 0y, of the maps R
Or
{xv},00

R0S~ is topologically finitely generated and because the

/oy have finite cardinality inde-

Or
. {XU}>OO
— R, /oy, for all (the finite number of choices for)

univ
— RS, /On,,, equals

the map R

{xo}:

— there are isomorphisms of RYr

{Xv}7m®03w—modules

Ur ~ Or
Hl’{X“LQMz’H/bNi — Hlv{XU}vQI\/Ii/bNi

compatible both with the isomorphisms

HyY, J(A+b,) = (H Y, )/ (A +by;)

lv{Xv}zQMi+l 17{1}7QM,L+1

and
O ~ O .
Hl,ng},QMi/(A + bNi) = (H17{1}7QMZ,>/(>‘ + bNi)7

and with the maps

0O
Hl,{xv},QMi+1/bNi - H{Xv}/b]\fz

and

O
HiE v, /0N = Hpy /o

Taking the limit as ¢ — oo we get maps

Or univ
—»
R{Xv}voo S{XU}HV}

which agree modulo .
Set

O . O
Hi oo = I HL L 04, /BN
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Thus HE{TXU},OO is an R{DXTU }m@x\)oSoo—module. The action of S., can be factored
through R{DXTU}OO. (As S is formally smooth.) The lifts
Or
SOO - R{Xv}voo

can be chosen to agree modulo A. There is a natural isomorphism

H L A HTT /A

17{X'u},00 1,{1},00

of RYT

{Xv}joo/)@osoo = R{Dl}m//\@(gsoo—modules. There are also isomorphisms

D ~
Hl,?xv},oo/a — Hyy

which agree modulo A and are compatible with the maps

RUr

{xo}oo Rs'" o = Ty

Sixuv}.0

Now choose characters x, for v € R such that x,; # x.,; for ¢ # j. (This
is possible as | > n.) As H-T is finite, free over S, and HOT, /a

{xv},00 {xv},00
Hy,y we see that H{D;;}OO has R{qu;} -depth at least 1+ g + n?#T. Thus
R{D;} /Ann HID{TXU}OO has dimension at least 1+ g+ n?#7. However R{DXTU }.00

has dimension
14+ q+n*#T — [FT: Qn(l — (—=1)""")/2

and a unique minimal ideal. Thus (see lemma 2.3) p,,, =n mod 2 and H{DXZ}’OO

is a nearly faithful R{DXTU} -module.
We also deduce that H]_D{Tx,,} AN Hlm{Tl} /A is a nearly faithful as a

module over R{D)z;},oo JA = R{Dﬂm /A. (See section 2 for the definition of ‘nearly

faithful’.) Recall that all generic points of Spec R{DlT}OO have characteristic zero

and every prime of R{DlT} s Which is minimal over )\R{DlT}OO, contains a unique

Or
1,{1},00

faithful R{DlT} -mmodule. Finally this implies that H is a nearly faithful R&™-
module. As T is reduced, the theorem follows. [J

minimal prime of R{DIT}’OO. Thus lemma 2.2 implies that H is a nearly
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5. Modularity lifting theorems.

In this section we combine theorem 4.1 with the theory of base change
to deduce more explicit and useful modularity lifting theorems.

Let F' be a CM field. By a RACSDC (regular, algebraic, conjugate self
dual, cuspidal) automorphic representation m of GL,(Ar) we mean a cuspidal
automorphic representation such that

— V¥ = 7¢ and
— T has the same infinitesimal character as some irreducible algebraic
representation of the restriction of scalars from F' to Q of GL,.

Let a € (Z™)Hom(C) gatisfy

— Qr1 > ... > Grp, and
= Qres = —Qrp41—i-

Let =, denote the irreducible algebraic representation of GLImFC) which
is the tensor product over 7 of the irreducible representations of GL, with
highest weights a,. We will say that a RACSDC automorphic representation
7w of GL,(AFr) has weight a if 7, has the same infinitessimal character as

=V
—q

Let S be a finite set of finite places of F. For v € S let p, be an
irreducible square integrable representation of GL,(F,). We will say that a
RACSDC automorphic representation m of GL,(Ar) has type {p,}ves if for
each v € S, 7, is an unramified twist of p).

The following is a restatement of theorem VII.1.9 of [HT].

Proposition 5.1 Let v+: Q, = C. Let F be an imaginary CM field, S a finite
non-empty set of finite places of F and, for v € S, p, a square integrable
representation of GL,(F,). Let a € (Z")H™(FC) be as above. Suppose that
is a RACSDC automorphic representation of GL,(Ar) of weight a and type
{pv}ves. Then there is a continuous semisimple representation

() : Gal (F/F) — GL,(Q)
with the following properties.
1. For every prime v jl of F we have
7’1,2<7T> gal (Fu/F) = 7’1(27171'”)\«1 — n)SS_

2. 11,(m)¢ =y (m)Vel .
5. If |l is a prime of F then ri,(7)|qa 7, /r,) S potentially semistable,
and if m, is unramified then it is crystalline.
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4. If v|l is a prime of F and if 7: F — Q, lies above v then
dlm@ gri(rl,l(ﬂ) ®T,Fv BDR)Gal (Fo/Fo) =0
unless 1 = a,;; +n —j for some j =1,...,n in which case
dimg, gr’(r1,(7) ©r.r, Bor) ™ (Fo/Fo) — 1

Proof: We can take 7,(m) = Ry(7")(1—n) in the notation of [HT]. Note
that the definition of highest weight we use here differs from that in [HT].
U

The representation r;,(7) can be taken to be valued in GL,(O) where
O is the ring of integers of some finite extension of Q;. Thus we can reduce
it modulo the maximal ideal of O and semisimplify to obtain a continuous
semisimple representation

71.(m) : Gal (F/F) — GL,(F))

which is independent of the choices made. B
Let 2: Q; = C. Suppose that a € (Z")1™(FQ) gatisfies

— Qr1 > ... > Grp, and
= Qrei = —OQrpd1—i-
Then we define 2,a by
(Z*a)rr,i = Qr-
Suppose also that S is a finite set of finite places of F' not containing any

prime above [ and that p, is a discrete series representation of GL,(F,) over
Q,; for all v & S. We will call a continuous semisimple representation

r:Gal(F/F) — GL,(Q)

(resp. . _
7: Gal (F/F) — GL,(F)))

automorphic of weight a and type {py}ves if there is an isomorphism 2 : Q=
C and a RACSDC automorphic representation m of GL,(Ar) of weight .a
and type {1p,}ves (resp. and with m unramified) such that r = r;,(7) (resp.
7 =7,(m)). We will say that r is automorphic of weight a and type {p,}ves
and level prime to [ if there is an isomorphism ¢ : Q, = C and a RACSDC
automorphic representation m of GL,(Ar) of weight w.a and type {19, }ves
and with m unramified such that r = 7, (7).

Recall that (see definition 2.5.1 of [CHT]) we call a subgroup H C
GL,(k) big if the following conditions are satisfied.
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— H has no [-power order quotient.

— H'(H,gl%(k)) = (0) for i =0,1.

— For all irreducible k[H]-submodules W of gl%(k) we can find h € H
and o € k with the following properties. The a generalised eigenspace V}, 4
of h in k™ is one dimensional. Let 7,4 : k™ — V} o (resp. i) denote the
h-equivariant projection of k™ to Vj, (resp. h-equivariant injection of V}, ,

into k™). Then 7o 0 W oip, # (0).
(Recall that gI? denotes the trace zero subspace of gl, = Lie GL,,.)

Theorem 5.2 Let F' be an imaginary CM field and let F* denote its maz-
imal totally real subfield. Let n € Zsy and let | > n be a prime which s
unramified i F. Let

r: Gal (F/F) — GL,(Q,)

be a continuous irreducible representation with the following properties. Let T
denote the semisimplification of the reduction of r.

1. re Vel
2. r is unramified at all but finitely many primes.
8. For all places v|l of F, 7|guF,/r,) 18 crystalline.

4. There is an element a € (Z™)Hom (FQ) sych that
— for all T € Hom (F,Q;) we have

l—l—nZamZ---ZaT,nZO

or
l_l_nZaTc,l Z Zaan 20,

— for all T € Hom (F,Q,) and all i=1,...,n
Qrei = —Qrn+1—i;
— for all T € Hom (F,Q,) above a prime v|l of F,
dimg, gr’(r @, 5, Bpr)%™ (Fo/Fu) =
unless i = a,; +n —j for some j=1,...,n in which case

dimg, gt (r @5, Bpr) /) = 1.

5. There is a non-empty finite set S = S1][[Se of places of F not
dwiding | and_for each v € S a square integrable representation p, of
GL,(F,) over Q, such that

7”|Sc§a1(E/Fv) =71(ps)" (1 —n)*.
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If po=5p,,(p,) then set

o= ri((p))] [0,

Note that r|q.F,/r,) has a unique filtration Fil/ such that

J _ ~
8Tl Gal (Fo/Fy) — Tv€

for j=0,...m, —1 and equals (0) otherwise.
For v e Sy we assume that m, = n.
For v € Sy we assume that 7, has irreducible reduction 7,. Then the re-

striction T|ga 7, /r,) inherits a filtration ﬁi with

ST | Gal (Fo/Fy) = Ty€
for 7=0,....m, —1. We also suppose that for v € Sy and for j =1,...,m,
we have
Ty & Toe.
6. F*7 does not contain F(¢).

7. The image 7(Gal (F/F({;))) is big in the sense recalled above.
8. The representation T is irreducible and automorphic of weight a and

type {po}tves with S # 0.

Then r is automorphic of weight a and type {p,}tves and level prime to

Proof: Choose a CM field L/F with the following properties

— L =L"TE with E an imaginary quadratic field and L™ totally real.
— L/F is Galois and soluble.

— L is linearly disjoint from er”(g,) over F.

— [ splits in F and is unramified in L.

— All primes in S split completely in L/F and in L/LT.

By lemma 4.1.5 of [CHT] we can find an embedding 7z : £ — Q;, an alge-

braic character ¢ : Gal(L/L) — Q, and an element o’ € (Z")Hom(LQ) guch

that

— Y=Y
— 1 is crystalline at all places above [;
— for all 7 € Hom (L, Q;) extending 7z we have

/ !
1—1—n2a7712...zam20;
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— for all 7€ Hom(F,Q,) and all i =1,...,n

/ _ / .
Arei = —Qrpi1-4s

— for all 7 € Hom (F,Q,) above a prime v|l of F,
dimg, gt ((r ® ¥) @y, Bpr) /) =0

unless ¢ = a’Tj +n —j for some j=1,...,n in which case

dlm@ gri((r &® ’l/}) ®7‘,Fv BDR)Gal (Fo/Fv) =1.

Using lemmas 4.1.3 and 4.2.2 of [CHT] and theorem 4.2 of [AC] we see that
we may reduce to the case where F' contains an imaginary quadratic field £
with an embedding 75 : £ — Q;, such that

[-1-n>a12>...20;, >0

for all 7: F — Q, extending 7g. (Replace F by L.) We may also assume
that S7UceS; and S, U ¢Sy are disjoint.

Now suppose that 7 = 7,(7), where 2 : Q;, = C and where 7 is a
RACSDC automorphic representation of GL,(Ar) of weight 2,a and type
{1py}ves and with m; unramified. Let S; denote the primes of F' above [. Let
R denote the primes of F' outside S°U S US; at which r or 7 is ramified.

S=kerad T . . .
Because F ' does not contain F (¢;), we can choose a prime v; of F' with
the following properties

— v g RUSUSUSS,

— vy is unramified over a rational prime p for which [F((,) : F| > n,
— v; does not split completely in F((),

— ad7(Frob,,) = 1.

(We will use primes above v; as auxiliary primes to augment the level so
that the open compact subgroups of the finite adelic points of certain unitary
groups we consider will be sufficiently small. The properties of v; will ensure
that the Galois deformation problems we consider will not change when we
allow ramification at primes above v;.)

Choose a totally real field L*/F* with the following properties

— 4|[LT: FT].

— LT /F" is Galois and soluble.

— L =L"FE is everywhere unramified over L.

— L is linearly disjoint from er”(g) over F.

— [ is unramified in L.
— All primes of L above RUS U {v;} are split over LT.
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— All primes of Sy U ¢Sy U {vy,cvi} split completely in L/F.
— Let 77 denote the base change of 7 to L. If v is a place of L above
RUS;UceS; then No=1mod (! and 7Gal (L/L) ={1,} and r| 1

and WILV;J(U) # (0).
— If S(L") denotes the set of primes of L™ whose restriction to F'* lies
below an element of S, then 2|#S(L).

Gl (T/L) —

Let ay € (Z")Hom(Q) be defined by ar, = a.,. Choose a division algebra
B/L and an involution { of B as at the start of section 4, with S(B) =
S(LT). Let S;(L") denote the primes of Lt above [, let R(L") denote the
primes of Lt lying above the restriction to F* of an element of R and let
S.(LT) denote the primes of LT above vy|p+. Let T(L1) = S(LT)US(LT)U
R(LT)US,(LT). Tt follows from proposition 3.3.2 of [CHT] and theorem 4.1 of
this paper that 7|, ) is automorphic of weight ar and type {py|; }ves(r)
and level prime to [. The theorem now follows from lemma 4.2.2 of [CHT].
0

As in section 4.4 of [CHT] we will say a few words about the conditions
in this theorem. The first condition ensures that r is conjugate self-dual. Only
for such representations will the numerology behind the Taylor-Wiles argu-
ment work. Also it is only for such representations that one can work on a
unitary group. Indeed whenever one has a cuspidal automorphic representa-
tion of GL,(Ar) for which one knows how to construct a Galois representa-
tion, that Galois representation will have this property. The second condition
should be necessary, i.e. it should hold for any Galois representation associ-
ated to an automorphic form. A weakened form of the third condition which
required only that these restrictions are de Rham is also expected to be nec-
essary. The stronger form here (requiring the restrictions to be crystalline),
the assumption that [ is unramified in F' and the bounds on the Hodge-Tate
numbers in condition four are all needed so that we can apply the theory
of Fontaine and Laffaille to calculate the local deformation rings at primes
above [. Condition four also requires the Hodge-Tate numbers to be distinct.
Otherwise the numerology behind the Taylor-Wiles method would again fail.
The fifth condition is there to ensure that the corresponding automorphic
form will be discrete series at some places (ie those in S). With the current
state of the trace formula this is necessary to move automorphic forms be-
tween unitary groups and GL, and also to construct Galois representations
for automorphic forms on GL,. There is some choice for the exact form of
condition five. At the primes in S; we impose conditions to make the local
deformation problem as simple as possible. At primes in S; we allow more
complicated local deformation rings, but only in a special case. Some common
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generalisation of these two cases is probably possible, but we have not spent
the time to work this out. The sixth condition is to allow us to choose aux-
iliary primes which can be used to augment the level and ensure that certain
level structures we work with are sufficiently small. The seventh condition is
to make the Cebotarev argument used in the Taylor-Wiles argument work.
It seems to be often satisfied in practice.

Now we turn to the case of a totally real field. Let F* be a totally
real field. By a RAESDC (regular, algebraic, essentially self dual, cuspidal)
automorphic representation m of GL,(Ar+) we mean a cuspidal automorphic
representation such that

— w2 xm for some character y : (F")*\Aj7, — C* with x,(—1) inde-
pendent of v|oo, and

— T has the same infinitesimal character as some irreducible algebraic
representation of the restriction of scalars from F* to Q of GL,.

(If n =2 or if n is odd then one does not require the condition that y,(—1)
is independent of w|oo, in the sense that, if the definition is satisfied with
some y it will also be satisfied for another ' with x/(—1) independent of
v|oo. We do not know if it is required for even n > 2. See the start of section
4.3 of [CHT].)

Let a € (Z™)Hom (F7.C) gatisfy

Qr 1 Z 2 Qr.pn

Let =, denote the irreducible algebraic representation of GL,™ F"0) Which
is the tensor product over 7 of the irreducible representations of GL, with
highest weights a,. We will say that a RAESDC automorphic representation
m of GL,(Ar) has weight a if m. has the same infinitesimal character as
=V

Let S be a finite set of finite places of F. For v € S let p, be an
irreducible square integrable representation of GL,(F,). We will say that a
RAESDC automorphic representation m of GL,(Ap+) has type {p,}ves if for
each v € §, m, is an unramified twist of p,.

We recall proposition 4.3.1 of [CHT].

Proposition 5.3 Let 1: Q, = C. Let F* be a totally real field, S a finite
non-empty set of finite places of F* and, for v € S, p, a square integrable
representation of GLy(F). Let a € (Z")1"(F"0) be as above. Suppose that
7w is a RAESDC automorphic representation of GL,(Ap+) of weight a and
type {pv}ves. Specifically suppose that ™ = wx where x : A%, /(FT)* — C*.
Then there is a continuous semisimple representation

r(m) s Gal (F'JF1) — GL,(Q)
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with the following properties.

1. For every prime vfl of F™ we have
ra(m)[E FHEr) = r(v )Y (1 —n)®.
2. Tl,z(ﬂ—)v - Tl,z(ﬂ—)enilrl,z(X)'

3. If v|l is a prime of F't then the restriction ry,(m) is po-

|Gt (71 /)
tentially semistable, and if 7, is unramified then il is crystalline.
4. If v|l is a prime of F* and if 7: F* — Q, lies above v then

. i T/t
dlm@ gr (Tl,z(ﬂ') ®T,FJ BDR)Gal(FU /F) 0

unless 1 = a,;; +n —j for some j =1,....,n in which case

. i . .
dlmal gr (rl,l(ﬂ-) ®T,F;r BDR)Gal (Fv /Fv ) — 1

The representation r;,(7) can be taken to be valued in GL,(O) where
O is the ring of integers of some finite extension of Q;. Thus we can reduce
it modulo the maximal ideal of O and semisimplify to obtain a continuous
semisimple representation

Flo(m) 1 Gal (F'JF") — GL,(F))

which is independent of the choices made. B
Let ¢: Q, = C. Suppose that a € (Z")Hom(F Q) satisfies

Gr 1 Z Z Q7 p.

Then we define 12,a by
(Z*a)m',i = Qrj-

Suppose that a € (Z")Hom(F".Q) gatisfies the conditions of the previous
paragraph, that S is a finite set of finite places of F'T™ not containing any
prime above [ and that p, is a discrete series representation of GL, (F,") over
Q, for all v € S. We will call a continuous semisimple representation

r: Gal (FJF/F’L) — GL,(Q)

(resp.
7:Gal (F'JF") — GL,(F)))

automorphic of weight a and type {p,}ves if there is an isomorphism 1 : Q, =
C and a RAESDC automorphic representation m of GL,(Ap+) of weight u.a
and type {1p,}ves (resp. and with m; unramified) such that r = r;,(7) (resp.
7 =7,(m)). We will say that r is automorphic of weight a and type {p,}ves
and level prime to | if there is an isomorphism 2 : Q; = C and a RAESDC
automorphic representation m of GL,(Ap+) of weight 2.a and type {1p,}ves
and with m unramified such that r = 7, (7).
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Theorem 5.4 Let F'* be a totally real field. Let n € Zsy and let | >n be a
prime which is unramified in F*. Let

r:Gal(F'/FT) — GL,(Q)
be a continuous irreducible representation with the following properties. Let T
denote the semisimplification of the reduction of r.
1. vV 2 re" 1y for some character x : Gal (FJF/F*) — Q," with x(cy)
independent of v|oco. (Here ¢, denotes a complex conjugation at v.)

2. r ramifies at only finitely many primes.
3. For all places v|l of FT, T’Gal(F+/F+) is crystalline.

4. There is an element a € (Z™)Hom (F*.Q0) sych that
— for all T € Hom (F*,Q,) we have

[—1- n+&7,n 2 Gr1 2 2 Q7 n;
— for all 7 € Hom (F*,Q,) above a prime v|l of FT,

: i al (F JF}
dimg, gr'(r ®, p+ Bpg) G Fe /B —

unless i = a,; +n —j for some j=1,...,n in which case

dim@ gri(r ®T,Fv+ BDR)Gal (Fy /F) = 1.

5. There is a non-empty finite set S = S1[[S2 of places of Ft not
dwiding | and for each v € S a square integrable representation p, of
GL,(Ff) over Q, such that

L a  CONC RN

If py = Sp,,, (p,) then set
Fo = rl(pl)] [0z,

Note that T|Gal( has a unique filtration Fil? such that

Fy/F)
87| Ga (7, ) =2 To€?

for 7=0,...m, — 1 and equals (0) otherwise.

For v e Sy we assume that m, = n.

For v € Sy we assume that 7, has irreducible reduction T,. Then the re-

) inherits o filtration Fil, with

striction |, T
v v

svi= - ~ = /]
BT |G (7 i) = Toe

for 7=0,....m, —1. We also suppose that for v € Sy and for j =1,...,m,
we have 4
Ty ZTye.
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6. (FUkerad? does not contain FT(().

7. The image 7(Gal (FJF/F*(Q))) is big (as defined just before theorem
5.2).
8. T is irreducible and automorphic of weight a and type {p,}ves with

)

Then r is automorphic of weight a and type {p,}tves and level prime to

Proof: Choose an imaginary CM field F' with maximal totally real sub-
field F'* such that

— all primes above [ split in F/F*,
— all primes in S split in F/F*, and
— F is linearly disjoint from (F+)keﬁ(<}) over F'T.

Choose an algebraic character
Y : Gal (FJF/F) —Q,
such that

= Xlaa F ey = YU
— 1 is crystalline above [, and o
— for each 7: F™ — Q,; there exists an extension 7 : F < Q, such that

ot —af,n(Qlw) ®% Fyn, BDR)Gal Fo@/Fo) +(0),
where v(7) is the place of F' above [ determined by 7.

(This is possible by lemma 4.1.5 of [CHT].) Now apply theorem 5.2 to to the
twist 7| Gal( )¢ and the current theorem follows by lemma 4.3.3 of [CHT].
OJ

7R

As the conditions of this theorem are a bit complicated we give a spe-
cial case as a corollary.

Corollary 5.5 Let n € Z>y be even and let | > max{3,n} be a prime. Let
S be a finite non-empty set of primes such that if ¢ € S then q # | and
¢ #Z1modl fori=1,..,n. Let

r: Gal (Q/Q) — GSpa(Z)
be a continuous irreducible representation with the following properties.

1. r ramifies at only finitely many primes. B
2. rlga gy 8 crystalline, and dimgq, gri(r®q, Bpr)® (Q/Q) =0 un-
less 1 € {0,1,...,n — 1}, in which case it has dimension 1.
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5. If g € S then r[g, s unramified and r|g, (Froby) has eigenvalues
{ag': i=0,1,....,n — 1} for some a.
4. The image of r mod l contains Sp,(F)).

5. rmod ! is automorphic of weight 0 and type {Sp,,(1)}es-

Then r is automorphic of weight 0 and type {Sp,(1)}qy and level prime
to 1.

Proof: Let 7 = rmod (. As PSp,(F;) is simple, the maximal abelian
quotient of ad7(Gq) is

7(Gq)/(T(Gq) NF)Spu(F1) C PGSpu(F1)/PSpa(Fr) — (F))/(F)*.
Thus lerad? does not contain Q(().
The corollary now follows from lemma 2.5.5 of [CHT] and theorem 5.4
of this paper. [

As in section 5.6 of [CHT], we would like to apply theorems 5.2 and
5.4 in situations where one knows that 7 is automorphic. One such case is
where 7 : Gal (F/F) — GL,(k) is induced from a (suitable) character over
some cyclic extension. However it will be useful to have such a theorem
when p, is Steinberg for v € S. Because the lift of 7 which we know to
be automorphic is an automorphic induction it can not be Steinberg at any
finite place (although it can be cuspidal at a finite place). Thus we have a
problem in applying theorems 5.2 or 5.4 directly. We shall get round this by
applying proposition 2.7.4 of [CHT] to construct a second lift r; of 7 which
is Steinberg at v € S, but which is also cuspidal at some other finite places
S’. We first show that r; is automorphic using the places in S’. The result
is that we succeed in ‘raising the level’ for the automorphicity of 7. We can
then apply theorem 5.2 or 5.4 a second time. A further complication arises
because we want to treat ¥ which do not look as if they could have a lift
which is cuspidal at any finite place. We will do so under an assumption
that 7 extends to a representation of Gal(Q/Q) which looks as if it could
have a lift which is cuspidal at some finite place.

More precisely we will consider the following situation.

— M/Q is a Galois imaginary CM field of degree n with Gal (M/Q)
cyclic generated by an element 7.

—I>1+(n—-1D)((n+2)"2 = (n—2)"2)/2"7! (e.g. I > 8((n+2)/4)'*/?)
is a prime which splits completely in M and is = 1 mod n.

— p is a rational prime which is inert and unramified in M.

— q # [ is a rational prime, which splits completely in M and which
satisfies ¢ # 1 mod [ for i =1,....,n — 1.
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—-0: Gal(Q/M ) — F, is a continuous character such that

— 00" = e

— there exists a prime w|l of M such that for i =0,....,n/2 —1 we
have 6|, , =€

— if vy,...,v, are the primes of M above ¢ then {f(Frob,,)} equals
{agg?: j=0,...,n—1} for some € F,:

— —ri .
*_Q‘Gal(ﬁp/Mp) # 0 ‘Gal(ﬂp/Mp) for j=1,..,n—1 B
Let S(#) denote the set of rational primes above which M or 6 is ramified.
— F/Q is an imaginary quadratic field linearly disjoint from the Galois

closure of M kerg(Q) /Q in which every element of S(A)U{l,q,p} splits; and
such that the class number of E is not divisible by [.

A referee asked the good question: are there any examples where all
these conditions are met? The answer is ‘yes’. One example is given in the
proof of theorem 3.1 of [HSBT].

Theorem 5.6 Keep the notation and assumptions listed above. Let F/Fy be

a Galois extension of imaginary CM fields with F linearly disjoint from the

normal closure of Mke”’(g) over Q. Assume that | is unramified in F and

that there is a prime vpo of Fy split above p. Let
r:Gal(F/F) — GL,(Q))

be a continuous irreducible representation with the following properties. Let 7
denote the semisimplification of the reduction of r.
72 Ind Gal EF/F

Gal (F/FM) 0|Gal (F/FM)-

re 2 pVelm,

r ramifies at only finitely many primes.
For all places v|l of F, 7|quF,/r,) is crystalline.
For all 7 € Hom (F,Q,) above a prime v|l of F,

SAERO RIS

dlm@z gr ( ®T Fy BD )Gal FU/FU) =1

for i=0,...n—1 and =0 otherwise.

6. There is a place v, of F' above q such that T|S§a1(F JE )
Uq Uq

fied and 7|3, \(F JE (Frobvq) has eigenvalues {a(#k(v,)) : j7=0,...,n—1}

1S unramsi-

for some a € Ql )

Then r is automorphic over F of weight 0 and type {Sp, (1)}, and
level prime to .
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Proof: We repeat, almost verbatim, the proof of theorem 5.6.1 of [CHT].

Replacing F' by EF if necessary we may suppose that F D E (see
lemma 4.2.2 of [CHT]).

Choose a continuous character

0 : Gal (M/M) — O}

such that
— 0 lifts 0;
o 9—1 — En—lec;

— for i =0,...,n/2 — 1 we have 9|[Mi =€’ and

— Lf#0(1,) for all places v|p of M.

(See lemma 4.1.6 of [CHT].) We can extend 0|q, & py to a continuous ho-
momorphism

0 : Gal(E/(EM)") — G1(Og,)
with v06 = ¢'™". We will let # also denote the reduction
0:Gal(E/(EM)T) — G\ (F))
of . Consider the pairs Gal(E/(EM)") D Gal (E/(EM)) and Gal (E/Q) D
Gal (E/E). Set

Gal (B/Q),e!™" , . =
ro = IndGal(E/(EM)+)9 : Gal (E/Q) — G.(Ogq,)-

Note also that

I dG"”JLl (E/Q) 0

70l Gal (E/E) — ((In Gal (E/M) )’Gal(E/E)véin)

By proposition 2.7.4 of [CHT] there is a continuous homomorphism
r: Gal (B/Q) — Gn(Oq,)
with the following properties.

. Gal(E/Q),el=" 5
— ry lifts IndGal(E/(EM)ﬂH.
—vor; =€

— For all places w|l of E, r|gu s, 5, is crystalline.

For all 7 € Hom (E,Q,) corresponding to prime w|l,

dimg, gr'(r1 ®;.p, Bor) ™ Fw/Fe) =1

for :=0,...,n—1 and = 0 otherwise.
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is unramified and r[§, \(Buy (Frob,,|,) has eigenvalues

)
{ag: j=0,...,n—1} for some o € Q,.

Gal(Q,/Qp)
= 71l gal( (B /Byy) 1S A1 unramified twist of Ind I(Q” /Mp 0] cal @,/ My)"

Let v, be a prime of F' above v,, and let Fy C F denote the fixed
field of the decomposition group of v, in Gal (F/Fp). Thus v,|r, is split over
p and F/Fy is soluble.

The restriction ro|g, @/ r) is automorphic of weight 0, level prime to [
and type {pp}{v,|r,}, for a suitable cuspidal representation p, (by theorem 4.2
of [AC]). Applying lemma 2.7.5 of [CHT] and theorem 5.2 above we deduce
that 71|q. F/ ) 18 automorphic of weight 0 and type {p,}{,|s} and level
prime to [. It follows from corollary VIL.1.11 of [HT] that ri|q. F/r) is also
automorphic of weight 0 and type {Sp,(1)}{v,} and level prime to I. (The
only tempered representations 7 of GLj,(F1y,), ) for which ry(m)"(1 — n)*
unramified and ry(7)"(1 — n)*®(Frob,,|, ) has eigenvalues of the form {ag™ :
j=0,..,n—1} are unramified twists of Sp,(1).) From theorem 4.2 of [AC]
we deduce that r1|q, F/r) is automorphic of weight 0 and type {Sp, (1)},
and level prime to [. (The base change must be cuspidal as it is square
integrable at one place.)

Finally we again apply theorem 5.2 to deduce that r is automorphic
of weight 0 and type {pp}{,} and level prime to I. The verification that
7(Gpr()) is big is exactly as above. [

We also have a version for totally real fields.

Theorem 5.7 Keep the notation and assumptions listed before theorem 5.6.

Let FY/E} be a Galois extension of totally real fields with FT linearly dis-

joint from the Galois closure of E(()M kere over Q. Suppose that that [ s

unramified in F* and that there is a prime v,o of Fy~ split over p. Let
r:Gal (FY/F%) — GL,(Q,)

be a continuous representation such that

Gal(@/Q) 7
- (IndG 1(Q/M) )|Ga1 Q/FJr)
_ 7,,\/ (Y ’I“Enil,'
— 1 s unramified at all but finitely many primes;

— For all places v|l of FT, r|Ga1(F+/F+) is crystalline.
— For all 7 € Hom (F*,Q,) above a prime v|l of F*,

) —+
dim@ ng(T ®T,FJ BDR)Gal(FU /FF) _ 1

for i=0,...n—1 and =0 otherwise.
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— There is a place vy|lq of F*t such that r]sé s unramified

al(Fy /FS)
and T|SGSal(Fj /Fm(Frobvq) has eigenvalues {a(#k(vy))? : j=0,...,n—1} for

some « € le

Then r is automorphic over F* of weight 0 and type {Sp,(1)},} and
level prime to L.

Proof: Apply theorem 5.6 to F = FTE and use lemma 4.3.3 of [CHT].
0

6. Applications

The proofs of the following results are given in [HSBT]|. When [HSBT]
was first submitted that paper relied on the conditional theorems proved in
chapter 5 of [CHT], and so the main theorems of [HSBT] were themselves
conditional. The proofs of these theorems became unconditional when the
present paper was written. For the convenience of the reader we have rewrit-
ten [HSBT] so that its results are now stated unconditionally and reference
is made to this paper. However, as the proofs of those results were finally
completed in this paper, we restate them here.

Let n € Z-; be an even integer. If K is a field of characteristic not
dividing n+ 1 and if ¢t € K is not an (n+ 1)" root of unity then Y;/K will
denote the (n — 1)-dimensional smooth projective variety:

It carries an action of
H' = ker(urt AL p,0)
by
(Gos -+ Gn) + (Ko 2ot X)) = (G Xo 2ot GiXi).

(Note that the diagonal copy of p,.; acts trivially.) If I f(n 4+ 1) is a prime
set

Vi =H"NY; x K, QZ)H/

and

Vo[l = H LY, x K, F)H

These are Gg-modules of dimension n. (See for instance [HSBT].)
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Theorem 6.1 Suppose that F is a totally real field and that n is an even
positive integer. Suppose also that | is a sufficiently large (depending only on
n) rational prime which is unramified in F. Let v, be a prime of F above a
rational prime qfl(n+ 1).

Suppose also that

r:Gal(F/F) — GSpn(Z;)

1s a continuous representation with the following properties.

1-n

1. v has multiplier ¢

2. r ramifies at only finitely many primes.

3. Let 7 denote the semusimplification of the reduction of r. Then the
image 7Gal (F/F(()) is big.

—kerad T

4. F does not contain F(().
5. If wll is a prime of F' then r|gyF, /r,) is crystalline and for T :
F, — Q; we have
dimg, gr’(r; @-p, Bor) =1
for 7=0,...,n;—1 and = 0 otherwise. Moreover there is a point t,, € Opn
with w(t™™ —1) =0 such that

7|1, = Valll:

6. 7“|Gal Fu/Fo) 1 unramified and r|*
of the form o, a#k(v,), ..., a(#k(vy))" .

Then there is a totally real Galois extension F"/F and a place w, of
" above v, such that each 7|y F /ey is automorphic of weight 0 and type

5P (1)} fuwgy -
(See theorem 3.3 of [HSBT].)

Gal (F, /qu)(Frobvq) has eigenvalues

Theorem 6.2 Let F' and L be totally real fields. Let A/F be an abelian
variety of dimension [L: Q] and suppose that i : L — End°(A/F). Let N be
a finite set of even positive integers. Fix an embedding L — R. Suppose that
A has multiplicative reduction at some prime v, of F.

There is a Galois totally real field F'/F such that for any n € N and
any intermediate field F' > F" D F with F'/F" soluble, Symm™ A is auto-
morphic over F".

(See theorem 4.1 of [HSBT].)
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Theorem 6.3 Let F' and L be totally real fields. Let AJ/F be an abelian
variety of dimension [L : Q] and suppose that i : L — End°(A/F). Fiz an
embedding L — R. Suppose that A has multiplicative reduction at some prime
vy of F.

Then for all m € Zsy the function L(Symm™(A,1),s) has meromor-
phic continuation to the whole complex plane, satisfies the expected functional
equation and is holomorphic and non-zero in Res > 14 m/2.

(See theorem 4.2 of [HSBT].)

Theorem 6.4 Let F' be a totally real field. Let E/F be an elliptic curve with
multiplicative reduction at some prime v, of F. The numbers

(14 Nv — #E(k(v)))/2VNov

as v ranged over the primes of F are equidistributed in [—1,1] with respect

to the measure (2/m)\/1 — t2dt.

(See theorem 4.3 of [HSBT].)

Finally let us consider the L-functions of the motives V; for ¢t € Q. More
precisely for each pair of rational primes [ and p there is a Weil-Deligne rep-
resentation WD(V¢|q. @, /q,)) of Wq, associated to the Gal (Q,/Qp)-module

Vit (see for instance [TY]). Moreover for all but finitely many p there is a
Weil-Deligne representation WD, (V;) of Wq, over Q such that for each prime
[ #p and each embedding Q — Q, the Weil-Deligne representation WD, (V;)
is equivalent to the Frobenius semi-simplification WD(‘/M’GaI(Qp /QP))F‘SS. We

will let S(V;) denote the finite set of primes p for which no such representa-
tion WD, (V}) exists. It is expected that S(V;) = 0. If indeed S(V;) =0, then
we set L(Vj,s) equal to

/2 (2 ) =D/8 (2 )2 P () (s — 1)..1 (s + 1 — n/2) HL(WDP(V;), s)

and
e(Viys) =i "? H e(WD,(V2), ¥y, v, ),

p

where v, is the additive Haar measure on Q, defined by v,(Z,) = 1, and
Yy Q, — C is the continuous homomorphism defined by

yla +y) = e

for + € Z[1/p] and y € Z,. The function €(V;,s) is entire. The product
defining L(V, s) converges absolutely uniformly in compact subsets of Res >
1 +m/2 and hence gives a holomorphic function in Res > 1+ m/2.
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Theorem 6.5 Suppose that t € Q — Z[1/(n + 1)]. Then S(V;) = 0 and the
function L(Vi,s) has meromorphic continuation to the whole complex plane
and satisfies the functional equation

L(Vi,s) = €(Vi, s)L(Vi,n — s).
(See theorem 4.4 of [HSBT].)
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