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ABSTRACT

We extend the results of [CHT] by removing the ‘minimal ramification’ condition on the lifts. That is we
establish the automorphy of suitable conjugate self-dual, regular (de Rham with distinct Hodge-Tate numbers),
l-adic lifts of certain automorphic mod l Galois representations of any dimension. The main innovation is a new
approach to the automorphy of non-minimal lifts which is closer in spirit to the methods of [TW] than to those
of [W], which relied on Ihara’s lemma.

1. Introduction

This paper is a sequel to [CHT]. Both papers prove modularity lifting
theorems for representations of any dimension. In [CHT] we proved that cer-
tain minimally ramified l-adic lifts of automorphic mod l representations are
themselves automorphic. We also showed how a conjecture (which we called
‘Ihara’s lemma’) about the space of mod l automorphic forms on definite uni-
tary groups would imply that one could extend this results to lifts which are
not minimally ramified. In this paper we prove such a result unconditionally
by means of a different approach. Instead of trying to generalise Wiles’ level
raising arguments [W], as we did in [CHT], we have found a development
of the arguments used in the minimal case (see [TW]), which also applies
in the non-minimal setting. Ideas of Kisin (see [K]) were very influential in
the development of our arguments. The results of this paper imply that all
the theorems of [HSBT] also become unconditional. For instance we prove
the Sato-Tate conjecture for an elliptic curve over a totally real field with
somewhere multiplicative reduction.

The following is an example of the main modularity lifting theorems
proved in this paper. We emphasise that the proof of this theorem depends
on the machinery developed in [CHT].

? Partially supported by NSF Grant DMS-0100090
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Theorem A Let n ∈ Z≥1 be even and let l > max{3, n} be a prime. Let

r : Gal (Q/Q) −→ GSpn(Zl)

be a continuous irreducible representation with the following properties.

1. r ramifies at only finitely many primes.
2. r|Gal (Ql/Ql)

is crystalline and dimQl
gr i(r⊗Ql

BDR)Gal (Ql/Ql) = 0 un-

less i ∈ {0, 1, ..., n− 1}, in which case it has dimension 1.
3. There is a prime q 6= l such that the semisimplification r|ssGQq

is

unramified and r|ssGQq
(Frobq) has eigenvalues {αqi : i = 0, 1, ..., n − 1} for

some α.
4. The image of r mod l contains Spn(Fl).
5. r mod l arises from a cuspidal automorphic representation π0 of

GLn(A) for which π0,∞ has trivial infinitesimal character and π0,q is an
unramified twist of the Steinberg representation.

Then r arises from a cuspidal automorphic representation π of GLn(A)
for which π∞ has trivial infinitesimal character and πq is an unramified twist
of the Steinberg representation.

Let us comment on the conditions in this theorem. The fourth condi-
tion is used to make the Cebotarev argument in the Taylor-Wiles method
work. Much weaker conditions are possible. (See theorem 5.4.) One expects
to need to assume that r is de Rham at l. The stronger assumption that
it be crystalline and that the Hodge-Tate numbers lie in a range which is
small compared to l is imposed so that one can use the theory of Fontaine
and Laffaille to calculate the relevant local deformation ring at l. The as-
sumptions that r is valued in the symplectic (or similar) group and that
the Hodge-Tate numbers are different are needed so that the numerology be-
hind the Taylor-Wiles method works out. This is probably essential to the
method. The condition on r|GQq

for some prime q says that the representa-
tion looks as if it could correspond under the local Langlands correspondence
to a Steinberg representation. We need the existence of such a prime q so
that we can transfer the relevant automorphic forms to and from unitary
groups and so that we can attach Galois representations to them. As the
trace formula technology improves one may be able to relax this condition.

As applications the following results proved conditionally in [HSBT] now
become unconditional.
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Theorem B Let K be a totally real field and E/K be an elliptic curve with
multiplicative reduction at some prime.

1. For any odd integer m there is a finite Galois totally real exten-
sion L/K such that SymmmH1(E) becomes automorphic over L. (One can
choose an L that will work simultaneously for any finite set of odd positive
integers.)

2. For any positive integer m the L-function L(SymmmH1(E), s) has
meromorphic continuation to the whole complex plane and satisfies the ex-
pected functional equation. It is holomorphic and non-zero in the region
Re s ≥ 1 +m/2.

3. The Sato-Tate conjecture is true for E, i.e. the numbers

(1 + p−#E(Fp))/2
√
p

are equidistributed in [−1, 1] with respect to the measure (2/π)
√

1− t2 dt.

The condition that E has multiplicative reduction at some prime results
from condition 3 of theorem A (and its generalisations). We hope that this
condition could be removed as trace formula technology improves.

Theorem C Suppose that n is an even, positive integer, and that t ∈ Q −
Z[1/(n+ 1)]. Let Yt denote the projective variety

(Xn+1
0 +Xn+1

1 + ...+Xn+1
n ) = (n+ 1)tX0X1...Xn.

It carries an action of

H ′ = ker(µn+1
n+1

Q
−→ µn+1)

acting by multiplication on the coordinates. Then the L-function L(Vt, s) of

Hn−1(Y(1:t) ×Q,Ql)
H′

is independent of l, has meromorphic continuation to the whole complex plane
and satisfies the expected functional equation

L(Vt, s) = ε(Vt, s)L(Vt, n− s).

(See theorem 6.5 for details. A referee asked us to explain the importance of
this particular family. It is a family that has been studied quite widely and
has some beautiful properties, but for us the main interest of this family is
that Gal (Q/Q) typically has image GSpn(Zl) in AutHn−1(Y(1:t) × Q,Ql)

H′ .

Note that dimQl
Hn−1(Y(1:t) ×Q,Ql)

H′ = n. Thus this theorem is illustrative
that our techniques allow one to study the L-function of varieties for which
the image of Galois acting on the l-adic cohomology is large.)
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Next let us outline our argument for theorem A in the case of one
non-minimal prime p. We will assume that p ≡ 1 mod l and that the rep-
resentation has unipotent ramification at p. One can use base change argu-
ments to reduce to this case. We consider simultaneously two deformation
problems. Let σ denote a generator of the tame inertia in Gal (Qp/Qp). In
the first deformation problem we consider lifts in which σ has characteristic
polynomial (X − 1)n. In the second we consider those in which σ has char-
acteristic polynomial (X − ζ1)...(X − ζn) where the ζi are distinct lth roots of

1. We need to use Kisin’s framed deformations. Let R
(1)
p and R

(2)
p denote the

two local framed deformation spaces. Then R
(1)
p /λ = R

(2)
p /λ (where λ is the

prime above l in the coefficient ring) and these rings have dimension n2 + 1.

Moreover R
(2)
p is irreducible, whereas R

(1)
p is reducible, but the irreducible

components of R
(1)
p and R

(1)
p /λ are in bijection under the reduction map.

We use a simple variant of the usual Taylor-Wiles patching argument

to create two limiting framed, global deformation rings R(1) = R
(1)
p [[Y1, ..., Yr]]

and R(2) = R
(2)
p [[Y1, ..., Yr]] together with two limiting, framed spaces of au-

tomorphic forms H(1) and H(2). As usual, the method yields that H(i) has
R(i)-depth ≥ n2 + 1 + r. (One uses the diamond operators to see this.) More-
over we can compatibly identify R(1)/λ ∼= R(2)/λ and H(1)/λ ∼= H(2)/λ. It
suffices to prove that all primes of R(1) are in the support of H(1).

As R(2) is irreducible of dimension n2 + 1 + r and H(2) has R(2)-depth
≥ n2 + 1 + r, as usual we conclude that every prime of R(2) is in the sup-
port of H(2). Hence every prime of R(2)/λ ∼= R(1)/λ is in the support of
H(2)/λ ∼= H(1)/λ. Because the irreducible components of R(1) and R(1)/λ are
in bijection under reduction (because in turn the same is true for the local

ring R
(1)
p by explicit computation) we can conclude that all primes of R(1)

are in the support of H(1), as desired.

The main point is that Kisin’s variant of the Taylor-Wiles method works
well for the second deformation problem. One would like to use this and the
fact that the first and second problems become equal modulo λ, to deduce an
R = T theorem for the first problem also. This does not seem to be possible
at finite level. It is however possible at ‘infinite level’ because the ‘deforma-
tion ring’ R(1) has such a simple form. (Specifically it has the property that
its irreducible components are in bijection with the irreducible components
of its reduction modulo λ.)

The reader of this paper will need to make frequent reference to the
first three chapters of [CHT]. However we will make no appeal to the fourth
chapter of [CHT], nor to the appendices to that paper.
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Section 2 of this paper contains some algebraic background: some sim-
ple lemmas in commutative algebra and a discussion of the moduli space of
nilpotent matrices. These results may well be well known, but for the lack of
a suitable reference we include proofs here. The sole purpose of the second
section is to prove proposition 3.1, which describes the structure of certain
universal lifting rings for representations of local Galois groups. Because the
structure of the maximal tame quotient of the local Galois group is so sim-
ple, the arguments in this section are mostly about moduli spaces of pairs
of matrices. In earlier versions of this preprint these arguments were unfor-
tunately incomplete. Section 4 starts by reviewing notation and background
from [CHT] and then gives the key argument of this paper to prove the
equality of a Hecke algebra and of the quotient of a universal deformation
ring for a representation of a global Galois group by its nilradical (see the-
orem 4.1). In section 5 this theorem is combined with the theory of base
change to prove more user friendly modularity lifting theorems. The argu-
ments of section 5 are taken directly from [CHT]. Indeed parts of sections
4 and 5 are repeated almost verbatim from [CHT]. We hope that this will
make the present paper easier to read. Finally section 6 lists several conse-
quences of our main modularity lifting theorems.

It is a pleasure to acknowledge the debt this work owes to the ideas
of Skinner and Wiles [SW] and particularly of Kisin [K]. I am also grateful
to Brian Conrad and Dennis Gaitsgory for useful conversations concerning
section 2. It is a pleasure to thank my collaborators on earlier stages of this
project: Laurent Clozel, Michael Harris and Nick Shepherd-Barron. It will
be clear to the reader how much the main theorems of this paper owe to
our earlier joint work [CHT] and [HSBT]. Finally I would like to thank the
referees for their careful and very helpful work. I believe there suggestions
have significantly improved the readability of this paper (and of [CHT]).

2. Some commutative algebra.

In this section we will review some results from commutative algebra
that we will need. It is possible that these are all clear to experts, but, not
myself being an expert, I have chosen to present them in some detail. We
start with a definition and two lemmas that will play an important role in
our modularity argument.

We will let l denote a prime number and K a finite extension of Ql

with ring of integers O, maximal ideal λ and residue field k = O/λ.
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Definition 2.1 Let A denote a noetherian local ring. If M is a finitely gen-
erated A module the following are equivalent.

– Ann A(M) is nilpotent.
– All minimal primes of A are in the support of M .
– All primes of A are in the support of M .

If these conditions are satisfied we call M a nearly faithful A-module.

If A is reduced then faithful and nearly faithful are synonymous.

Lemma 2.2 Suppose A is a noetherian local ring and that M is a finitely
generated A-module.

1. If I is an ideal of A and M is a nearly faithful A-module then
M/IM is a nearly faithful A/I-module. In particular, if J ⊃ I is another
ideal and the action of A on M/IM factors through A/J then J ⊂

√
I

and M/IM is a nearly faithful A/J-module.
2. Suppose that A is an excellent (or just catenary) local O-algebra,

that each irreducible component of SpecA has the same dimension and that
all the generic points of SpecA have characteristic zero. Suppose also that
every prime of A minimal over λA contains a unique minimal prime of A.
Suppose finally that M is an A-module which is O-torsion free. If M/λM
is a nearly faithful A/λA-module, then M is a nearly faithful A-module.

Proof: Consider the first part. If ℘ ⊃ I is a prime ideal we need to show
that (M/IM)℘ 6= (0). If not then

M℘/I℘M℘ = (M/IM)℘ = (0)

and so by Nakayama’s lemma M℘ = (0), a contradiction to ℘ being in the
support of M .

Now consider the second part. Let P be a minimal prime of A. Let
℘ be a minimal prime containing (λ, P ). As A is catenary (because it is
excellent) the Krull dimension of A/℘ is one less that the Krull dimension
of A/P . If q is any prime properly contained in ℘ we see that A/q has Krull
dimension at least the Krull dimension of A/P . Thus q is minimal and so
does not contain λA. Thus ℘ is a minimal prime containing λA, and so by
our assumption the only prime of A properly contained in ℘ is P , i.e. A℘
has only two primes ℘℘ and P℘. As

M℘/λM℘ = (M/λM)℘ 6= (0)

we deduce that M℘ 6= (0) and that Ann A℘M℘ ⊂ ℘℘. Thus
√

(Ann A℘M℘) = ℘℘
or P℘.
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Let $ denote a generator of λ. For all r ∈ Z>0 the map $r : M ↪→
M is injective and hence $r : M℘ ↪→ M℘. Thus $r 6∈ Ann A℘M℘ and so
$ 6∈

√
(Ann A℘M℘). We conclude that

√
(Ann A℘M℘) = P℘, so that P℘ ⊃

Ann A℘M℘. Thus

MP = (M℘)P℘ 6= (0).

�

Lemma 2.3 Suppose that A is a noetherian local ring and that M is a
finitely generated A-module. Suppose that the mA-depth of M is greater than
or equal to the Krull dimension of A. Then the mA-depth of M equals the
Krull dimension of A, and the support of M is equal to a union of irre-
ducible components of SpecA. In particular if SpecA is irreducible then M
is a nearly faithful A-module.

Proof: By proposition 18.2 of [E] every associated prime of M has di-
mension at least the mA-depth of M . Thus every minimal prime over Ann AM
(which will then be an associated prime of M by theorem 3.1a of [E]) has
dimension at least the Krull dimension of A, and so must be a minimal
prime of A. �

The rest of this section is only required for the proof of proposition
3.1. First we will consider some results about polynomials and matrices. Let
Poln/O denote the space of monic polynomials of degree n (i.e. simply affine
n-space over O). There is a finite flat map

Affn −→ Poln
(α1, ..., αn) 7−→

∏n
i=1(X − αi).

If f(t) ∈ O[t] there is a unique morphism

Poln −→ Poln
P 7−→ Pf

such that
Poln −→ Poln
↑ ↑

Affn −→ Affn

(xi) −→ (f(xi))

commutes, i.e. such that(
n∏
i=1

(X − αi)

)
f

=
∏
i

(X − f(αi)).
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Note that if R is a O-algebra and A is an n× n matrix over R then

char f(A)(X) = char A(X)f ,

where char A denotes the characteristic polynomial of A. (To see this one
can reduce to the case of A = (Xij) over O[Xij]i,j=1,...,n, and then work over
the algebraic closure of the field of fractions of O[Xij]i,j=1,...,n, where A can
be diagonalised.) The following lemma follows easily from this, the Cayley-
Hamilton theorem and standard power series identities.

Lemma 2.4 Suppose that l ≥ n and that R is a O-algebra. If A ∈ Mn(R)
has characteristic polynomial Xn then

exp(A) = 1n + A+ A2/2! + ...+ An−1/(n− 1)!

has characteristic polynomial (X − 1)n. If B ∈Mn(R) has characteristic poly-
nomial (X − 1)n then

log(B) = (B − 1n)− (B − 1n)2/2 + ...+ (−1)n(B − 1n)n−1/(n− 1)

has characteristic polynomial Xn. Moreover we have the following well known
identities:

– exp(CAC−1) = C exp(A)C−1 and log(CBC−1) = C log(B)C−1;
– log expA = A and exp logB = B;
– exp(mA) = exp(A)m and log(Bm) = m logB for any positive integer

m.

(This lemma remains true if R is any ring in which (n− 1)! is invertible.)
Let Pn denote the set of partitions n = n1 + ... + nr where the ni are

positive integers and their order does not matter. For any partition σ =
{n1, ..., nr} we set d0(σ) = 0 and define recursively di(σ) to be di−1(σ) plus
the number of j for which nj ≥ i. This sets up a bijection between Pn and
the set of non-decreasing sequences of integers

0 = d0 ≤ d1 ≤ ... ≤ dn−1 ≤ dn = n.

We define a partial order ≥ on Pn by setting σ ≥ σ′ if di(σ) ≥ di(σ
′) for

all i = 1, ..., n. We write σ > σ′ if σ ≥ σ′ and σ 6= σ′. If σ, σ′ ∈ Pn we
will denote by σ ∨ σ′ the partition corresponding to d0 ≤ d1 ≤ d2 ≤ .. ≤ dn
where di denotes the maximum of di(σ) and di(σ

′). Thus σ∨σ′ is the unique
≥-smallest partition greater than or equal to both σ and σ′.

For σ = {n1, ..., nr} ∈ Pn and for q ∈ O we will define a reduced closed
subscheme Poln(σ, q) ⊂ Poln as follows. Let Λ be the linear subspace of Affn

defined by
Xi+1 = qXi
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for all i = 1, ..., n − 1 except i = n1 or n1 + n2 or ... or n1 + ... + nr−1.
Let Poln(σ, q) denote the reduced subscheme of the scheme theoretic image
of Λ in Poln. For any field L the L-points of Poln(σ, q) are those monic
polynomials whose multiset of roots can be partitioned into r sub-multisets
each of the form {α, qα, ..., qnj−1α}. If qn 6= 1 in K and if σ = {n} then over

Poln(σ, q)×SpecO SpecK

the universal polynomial

P (X) = Xn − a1X
n−1 + ...+ (−1)nan

satisfies

P (X) =
n∏
i=1

(X − a1q
i−1/(1 + q + ...+ qn−1)).

If m is a positive integer and if q ∈ O× we will write N(m) for the
m×m matrix with N(m)ij = 1 if j = i+1 and = 0 otherwise; and Φ(m, q) for
the m×m diagonal matrix with entries (qm−1, ..., q, 1). If σ = (n1, ..., nr) ∈ Pn
set N(σ) = N(n1)⊕ ...⊕N(nr). If in addition a = (a1, ..., ar) ∈ (O×)r set

Φ(σ, a, q) = a1Φ(n1, q)⊕ ...⊕ arΦ(nr, q).

Thus
Φ(σ, a, q)N(σ)Φ(σ, a, q)−1 = qN(σ).

We will write Φ(σ, q) for Φ(σ, (1, ..., 1), q).
Let Niln denote the space of n× n matrices with characteristic polyno-

mial Xn. It is an affine scheme over O. (Brian Conrad has shown us a proof,
due to N. Fakhruddin, that Niln is reduced, but we will not need this here.)
For σ = {n1, ..., nr} ∈ Pn we define a reduced closed subscheme Niln(σ) ⊂ Niln
to be the locus of matrices N for which all n+1−di(σ) minors of N i vanish
for i = 1, ..., n − 1 together with its reduced subscheme structure. Thus the
matrix N(σ) defines an O-point of Niln(σ). Note that Niln(σ) ⊃ Niln(σ′) if
and only if σ ≤ σ′, and that

Niln(σ) ∩ Niln(σ′) = Niln(σ ∨ σ′).

Thus the Niln(σ) with σ ∈ Pn form a stratification of Niln. We will write

Niln(σ)0 = Niln(σ)−
⋃
σ′>σ

Niln(σ′).

If L/O is a field then the L-points of Niln(σ)0 correspond to nilpotent matri-
ces over L whose Jordan blocks have size n1, ..., nr, i.e. to GLn(L) conjugates
of N(σ).
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Lemma 2.5 1. Niln(σ)/O is integral, its fibres are irreducible and the
open subscheme Niln(σ)0 is fibrewise dense in Niln(σ). Moreover Niln(σ)0

is smooth over SpecO of relative dimension n2 −
∑∞

i=1(di(σ)− di−1(σ))2.
2. ZGLn(N(σ)) is a fibrewise dense open subset of the affine space as-

sociated to a free O-module of rank
∑∞

i=1(di(σ)− di−1(σ))2.
3. Locally in the Zariski topology the universal matrix over Niln(σ)0 is

conjugate, by a section of GLn, to N(σ).

Proof: This is well known over a field. As we are unaware of a reference
over a DVR, we give a proof here. We would like to thank Dennis Gaitsgory
for help with this.

Let Grass(σ) denote the moduli space of increasing filtrations (denoted
{Fil j}j=0,...,n) of the free rank n module On by locally direct summands for
which Fil j is locally free of rank dj(σ). Then Grass(σ) is smooth over O of
relative dimension (n2 −

∑
i(di(σ) − di−1(σ))2)/2. It is integral with integral

fibres. Let {Fil σj } denote the standard filtration of On, where Fil σj consists of
vectors whose last n− dj(σ) entries are zero. Locally in the Zariski topology
on Grass(σ) there is a section g of GLn such that {gFil σj } is the universal
filtration.

Let Qσ ⊂Mn×n denote the subscheme of matrices taking Fil σj to Fil σj−1

for all j. Also let Q0
σ denote the open subscheme of Qσ defined as the locus

of matrices which induce maps gr σj → gr σj−1 of rank dj(σ)− dj−1(σ) = rk gr σj .

Thus Q0
σ ⊂ Qσ is the complement of the intersection of the closed subschemes

each defined by the vanishing of the determinant of a (dj(σ) − dj−1(σ)) ×
(dj(σ) − dj−1(σ)) minor of the (dj(σ) − dj−1(σ)) × (dj−1(σ) − dj−2(σ)) matrix

representing the map gr σj → gr σj−1. Let NilFil
n (σ) denote the moduli space of

pairs ({Fil j}, N) where {Fil j} is a filtration as above and where N is an

endomorphism with NFil j ⊂ Fil j−1 for all j. Let NilFil
n (σ)0 denote the open

subspace where, for all j, the map N induces an isomorphism of Fil j+1/Fil j
with a locally direct summand of Fil j/Fil j−1. There are natural maps

NilFil
n (σ)0 ↪→ NilFil

n (σ) −→ Grass(σ).

Locally in the Zariski topology on Grass(σ) we have NilFil
n (σ) ∼= Grass(σ)×Qσ

and NilFil
n (σ)0 ∼= Grass(σ) × Q0

σ. (If on an open set U ⊂ Grass(σ) there is a
section g of GLn such that {gFil σj } is the universal filtration, then NilFil

n (σ)|U
is just U ×gQσg

−1.) Thus NilFil
n (σ) is integral and smooth over O of relative

dimension n2−
∑∞

i=1(di(σ)−di−1(σ))2. Also its fibres are integral and NilFil
n (σ)0

is fibrewise dense in NilFil
n (σ).

There is also a forgetful map NilFil
n (σ) → Niln, which factors through

Niln(σ). Using the valuative criterion one sees that this map is proper. Also
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it is surjective on points. Thus Niln(σ) is irreducible (and, as it is reduced by
definition, also integral) and all its fibres are irreducible. Moreover NilFil

n (σ)0

maps isomorphically to Niln(σ)0. (To see that the map is an isomorphism,
note that over Niln(σ)0 the sheaf kerN j is a local direct summand of dimen-
sion dj(σ) of the free sheaf of rank n. The map N 7→ ({kerN j}, N) gives a

two sided inverse to the forgetful map NilFil
n (σ)0 → Niln(σ)0.) Thus Niln(σ)0 is

connected and smooth over O of relative dimension n2−
∑∞

i=1(di(σ)−di−1(σ))2.
Moreover Niln(σ)0 is fibrewise dense in Niln(σ).

The centraliser ZGLn(N(σ)) is the open subscheme of ZMn×n(N(σ)) on
which det is non-zero. The latter centraliser is the affine space associated to
a finite, free O-module. (The subscheme ZMn×n(N(σ)) ⊂Mn×n is is the locus
where some entries of the n× n matrix are 0 and certain others equal each
other.) Moreover ZGLn(N(σ)) is fibrewise dense in ZMn×n(N(σ)) because if
one adds a generic multiple of the identity matrix to a point of ZMn×n(N(σ))
one obtains a point of ZGLn(N(σ)). Over K the natural map

GLn/ZGLn(N(σ)) −→ Niln(σ)0

is a bijection on points and hence an isomorphism. Thus ZMn×n(N(σ)) has
dimension

∑∞
i=1(di(σ)− di−1(σ))2.

Zariski locally on Niln(σ)0 = NilFil
n (σ)0 we may assume that each graded

piece of the universal filtration is free. Choose a basis of the free rank n
module as follows. Choose a basis of the top graded piece of the universal
filtration and lift these elements to elements f1, ..., fa of the free rank n mod-
ule. Add to these all non-zero images of these elements under powers of N .
Now extend Nf1, ..., Nfa to a basis of the penultimate graded piece of the
universal filtration and lift the new basis elements to fa+1, ..., fa+b. Add these
and all their non-zero images under powers of N to our putative basis and
continue in this way. We will end up with (a permutation of) a basis with
respect to which N has matrix N(σ). Thus we can find a section g of GLn
over this open set such that N = gN(σ)g−1. �

Next we turn to a couple of results about complete local rings.

Lemma 2.6 Suppose that A is a complete noetherian local O-algebra (so that
λA is contained in the maximal ideal m of A).

1. Suppose that l is not nilpotent in A and that ℘ is a maximal ideal
of A[1/l]. Then A[1/l]/℘ is a finite field extension of K and A/℘c is a
finite free O-module (and hence an order in A[1/l]/℘).

2. Any prime ideal of A[1/l] equals the intersection of the maximal
ideals containing it.
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Proof: The first part follows by the proof of lemma 5.1.1 of [BM]. (That
is, we may suppose that ℘c = (0) ⊂ A. Then A is an integral domain which is
flat over O, and A[1/l] is a field. Theorem 15.3 of [M] tells us that the Krull
dimension of A/λ is also zero, so that A/λ is a finite O-module. It follows
that A is also a finite O-module, from which the desired result follows.) The
second part is a special case of corollary 10.5.8 of [EGA]. �

Lemma 2.7 Let X/SpecO be a scheme of finite type. Write X1, ..., Xr for
the irreducible components of X with their reduced subscheme structure. As-
sume that the distinct irreducible components of X ×SpecO Spec k are the
Xi ×SpecO Spec k and that each is (non-empty and) generically reduced. Also
assume that all the Xi ×SpecO SpecK are non-empty and have the same di-
mension d.

Let x be a closed point of X ×SpecO Spec k. Then

– no minimal prime of the completion O∧X,x contains λO∧X,x;
– all maximal chains of prime ideals in O∧X,x have length d+ 2;
– every minimal prime of O∧X,x is contained in a prime minimal over

λO∧X,x; and
– every prime of O∧X,x which is minimal over λO∧X,x contains a unique

minimal prime of O∧X,x.

Proof: We may assume that X is reduced. Then X is flat over SpecO
(because it is reduced and all its generic points have characteristic 0) and
hence O∧X,x is flat over O, i.e. has no λ-torsion. Any minimal prime of O∧X,x
is also an associated prime of O∧X,x and so can not contain λO∧X,x. (Else O∧X,x
would have λ-torsion.)

Let X̃ denote the normalisation of X and let X̃i denote the pull back

of Xi to X̃. Then X̃i is simply the normalisation of Xi and X̃ is the disjoint

union of the X̃i. As X is excellent each X̃i is finite over Xi. If d denotes the
common dimension of the Xi×SpecO SpecK, then we see that each X̃i×SpecO
SpecK also has dimension d. By [EGA] IV.13.1.3 and [EGA] IV.14.3.10 we
conclude that each Xi ×SpecO Spec k and each irreducible component of each

X̃i ×SpecO Spec k also has dimension d. (We thank Brian Conrad for this

reference.) Thus each irreducible component of X̃i ×SpecO Spec k dominates
Xi×SpecOSpec k. Let Q denote the coherent sheaf on X which is the quotient
of the push forward of O eX by OX .

Let ηi denote the generic point of Xi ×SpecO Spec k. Then OXi,ηi/λ is
a field and so OXi,ηi = OX,η is a DVR with maximal ideal generated by λ.
But O eXi,ηi is just the integral closure OXi,ηi , so that

O eXi,ηi = OXi,ηi = OX,ηi .
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In particular there is a unique point of X̃i above ηi and we conclude that

X̃i ×SpecO Spec k is irreducible. Moreover we see that Qηi = (0).

As X̃/X is finite we have

O∧eX,x =
⊕
i,y

O∧eXi,y
where y runs over the points of X̃i above x. Thus there is an exact sequence

(0) −→ O∧X,x −→
⊕
i,y

O∧eXi,y −→ Q∧x −→ (0).

As X̃i is excellent, reduced and normal, we deduce that each O∧eXi,y is reduced

and integrally closed and hence (as it is also local) an integral domain. Let
pi,y denote the prime ideal which is the kernel of the map O∧X,x → O∧eXi,y. If

℘ is a prime of O∧X,x above a generic point of some Xi or of some Xi×SpecO
Spec k then (Q∧x )℘ = (0) and so

(O∧X,x)℘
∼−→
⊕
i,y

(O∧eXi,y)℘.
(The module Qx is killed by some element f ∈ OX,x−℘, and f will also kill
Q∧x .) As (O∧X,x)℘ is local we see that ℘ contains pi,y for a unique pair (i, y).

Suppose first that ℘ is a minimal prime of O∧X,x. Then ℘ lies above
the generic point of one of the Xi (by the going down theorem, because
O∧X,x is flat over OX,x). Thus ℘ ⊃ pi,y for a unique pair (i, y). As each
pi,y contains some minimal prime ideal of O∧X,x we deduce that the pi,y are
minimal, distinct and in fact exhaust the minimal primes of O∧X,x.

As O∧eXi,y ⊃ O∧X,x/pi,y is a finite extension of domains, they both have

the same dimension (see section 4.4 of [E]). On the other hand O∧eXi,y has

the same dimension as O eXi,y (corollary 12.5 of [E]), which equals one plus

dimO eXi×Spec k,y (theorem 10.10 of [E]), which in turn equals 1+dim(X̃i×SpecO
Spec k) (theorem A of section 13.1 of [E]). We have already seem that this
number is just 1 + d. As O∧eXi,y is catenary, the second part of the lemma

follows.
Suppose that ℘ is a prime of O∧X,x which is minimal over (λ, pi,y). We

claim that ℘ is a minimal prime over λO∧X,x, from which the third part of
the lemma would follow. If not we can find a prime q with ℘ ⊃ q ⊃ λO∧X,x,
but q 6= ℘. Then q must contain a minimal prime pi′,y′ 6= pi,y. It would follow
that

dimO∧X,x/pi,y = 1 + dimO∧X,x/℘ > 1 + dimO∧X,x/pi′,y′
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(see theorem 10.1 of [E]), which would contradict the second part of this
lemma.

Suppose now that ℘ is any prime of O∧X,x minimal over λO∧X,x. As
the quotient O∧X,x/λO∧X,x = O∧X×Spec k,x is flat over OX×Spec k,x we deduce (by
the going down theorem) that ℘ lies over the generic point of one of the
Xi×SpecO Spec k. Thus ℘ contains a unique pi,y, i.e. a unique minimal prime
of O∧X,x. This proves the fourth part of the lemma. �

3. Some more local deformation problems

This section may be considered a continuation of section 2.4 of [CHT].
We will study some further local deformation problems which are of key
importance to the main strategy of this paper.

Fix a positive integer n and a prime number l > n. Let K denote a
finite extension of Ql with ring of integers O, maximal ideal λ and residue
field k. Let p 6= l be a second prime and Fev be a finite extension of Qp with
residue field k(ṽ). We will suppose that

#k(ṽ) ≡ 1 mod l.

Further we will let
r : GFev −→ {1n} ⊂ GLn(k)

denote the trivial representation.
We will let GFev denote the absolute Galois group of Fev. Also IFev will

denote its inertia subgroup and Frobev the geometric Frobenius in GFev/IFev .
Choose a lifting φev ∈ GFev of Frob−1ev . In addition CfO will denote the category
of Artinian local O-algebras with residue field k and CO the category of
topological local O-algebras which are isomorphic to inverse limits of objects
in CfO.

Suppose that

χv,1, ..., χv,n : GFev → (1 + λ) ⊂ O×

are continuous characters. Thus

χv,i|#k(ev)−1
IFev = 1.

We will let D(χv,1,...,χv,n)
v denote the set of liftings r of r to objects of CO

such that for all σ ∈ IFev
char r(σ)(X) =

n∏
i=1

(X − χv,j(σ)).
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The collection D(χv,1,...,χv,n)
v is a local deformation problem in the sense of

definition 2.2.2 of [CHT]. Let I(χv,1,...,χv,n)
v denote the corresponding ideal of

the universal local lifting ring Rloc
v for r. We will also let DStein,1

v ⊂ D(1,1,...,1)
v

denote the subset consisting of liftings r such that

char r(φev)(X) ∈ Poln({n},#k(v)).

It is again local deformation problem and we will write IStein,1
v for the cor-

responding ideal of Rloc
v . Then we let IStein

v ⊃ IStein,1
v denote the preimage

in Rloc
v of the ideal of Rloc

v /IStein,1
v consisting of all elements killed by a

power of λ. We also let DStein denote the corresponding deformation prob-
lem. Note that Rloc

v /IStein
v is by definition flat over O. (It seems likely that

DStein = DStein,1 and IStein
v = IStein,1

v . However we won’t need this, so we
haven’t tried to prove it.) The sole purpose of this (and most of the previ-
ous) section is to prove the following proposition.

Proposition 3.1 1. If all the χv,i|IFev are distinct characters then the

spectrum SpecRloc
v /I(χv,1,...,χv,n)

v is irreducible and its generic point has char-

acteristic zero. Moreover Rloc
v /I(χv,1,...,χv,n)

v has Krull dimension n2 + 1.

2. Rloc
v /(λ, I(χv,1,...,χv,n)

v ) = Rloc
v /(λ, I(1,1,...,1)

v ).

3. All irreducible components of SpecRloc
v /I(1,1,...,1)

v have dimension n2+
1 and their generic points all have characteristic zero. Moreover every

prime of Rloc
v /I(1,1,...,1)

v which is minimal over λ(Rloc
v /I(1,1,...,1)

v ) contains a
unique minimal prime.

4. SpecRloc
v /IStein

v is irreducible and the generic point has characteris-
tic zero. Moreover Rloc

v /IStein
v has Krull dimension n2 + 1.

Note that any lifting of r to an Artinian local O-algebra will factor
through

TFev = GFev/PFev ,
where PFev denotes the kernel of any (and hence all) non-trivial maps from
IFev to Zl. Fix a topological generator σev of IFev/PFev . Then TFev is topologically
generated by σev and φev subject only to σev generating a pro-l-group and to

φevσevφ−1ev = σ
#k(v)ev .

If P ∈ O[X] is a monic polynomial of degree n and if q is a positive
integer not divisible by l we will let M(P, q)/O denote the moduli space of
pairs of n× n-matrices (Φ,Σ) such that

– Φ is invertible;
– Σ has characteristic polynomial P ;
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– ΦΣΦ−1 = Σq.

Thus M(P, q) is an affine scheme over O. Also write MStein
n (q) for the closed

subscheme of M((X − 1)n, q) defined by

char Φ(X) ∈ Poln({n}, q).

Then Rloc
v /I(χv,1,...,χv,n)

v (resp. Rloc
v /IStein

v ) is the formal completion of the
structure sheaf of

M(
n∏
i=1

(X − χv,i(σev)),#k(v))

(resp. MStein
n (#k(v))) at the closed point (1n, 1n) (in the special fibre). We

will first prove the following global result.

Lemma 3.2 Let q be a positive integer with q ≡ 1 mod l.

1. Let Mi denote the irreducible components of M((X − 1)n, q) with
their reduced subscheme structure. Then each Mi ×SpecO SpecK is non-
empty of dimension n2. Moreover the distinct irreducible components of
M((X − 1)n, q) ×SpecO Spec k are the Mi ×SpecO Spec k and each is (non-
empty and) generically reduced.

2. Suppose α1, ..., αn are distinct (q− 1)st roots of unity in 1 + λ ⊂ O.
(If q = 1 we allow any α1, ..., αn ∈ 1 + λ, not necessarily distinct.) Then
M(
∏n

i=1(X − αi), q)red is flat over O.

Proof: We first give another model for M((X − 1)n, q). To this end let
N (q)/O denote the moduli space of pairs of n×n-matrices (Φ,N) such that

– Φ is invertible;
– N has characteristic polynomial Xn;
– ΦNΦ−1 = qN .

Then N (q) is an affine scheme over O. It follows from lemma 2.4 that

M((X − 1)n, q) ∼= N (q).

The map sends (Φ,Σ) to (Φ, logΣ). (In the original version of the paper we
only showed that the reduced subschemes were isomorphic, and this is all
we actually need in the sequel. We thank Brian Conrad for suggesting we
include this slightly stronger result and for showing us a proof due to N.
Fakhruddin. This is not, however, the proof we have presented here.)

There are natural maps

N (q) −→ Niln

(taking (Φ,N) to N) and
N (q) −→ Poln

(taking (Φ,N) to the characteristic polynomial of Φ). For σ ∈ Pn let
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– N (q, σ)0 denote the locally closed preimage of Niln(σ)0 under the first
of these maps ;

– N (q, σ) denote the reduced subscheme of the closure of N (q, σ)0 in
N (q);

– and N (q, σ)′ denote the reduced subscheme of the intersection of the
preimage under the first map of Niln(σ) with the preimage under the sec-
ond map of Poln(σ, q).

Suppose that L is a field and that (Φ,N) ∈Mn×n(L)2 defines an L-point of
N (q, σ)0. Then Φ acts on kerN i/ kerN i−1 for i = 1, ..., n and

char Φ|(kerNi+1/ kerNi)
(X)|char Φ|(kerNi/ kerNi−1)

(qX).

Thus char Φ(X) ∈ Pol(σ, q)(L). It follows that

N (q, σ)′ ⊃ N (q, σ) ⊃ (N (q, σ)0)red.

Locally in the Zariski topology the map

N (q, σ)0 −→ Niln(σ)0

is isomorphic to the projection

Niln(σ)0 × ZGLn(N(σ)) −→ Niln(σ)0.

(If over an open subset U ⊂ Niln(σ)0 the universal matrix is gN(σ)g−1 with
g a section of GLn over U , then the preimage of U in N (q, σ)0 is just
U × gΦ(σ, q)ZGLn(N(σ))g−1.) In particular N (q, σ)0 is smooth over O and

fibrewise integral of pure relative dimension n2. Suppose that a1, ..., ar ∈ k
×

are such that aiq
j 6= ai′q

j′ for i 6= i′ and 0 ≤ j ≤ ni and 0 ≤ j′ ≤ ni′ . Then
(Φ(σ, a, q), N(σ)) is a point of(

N (q, σ)−
⋃
σ′ 6=σ

N (q, σ′)′

)
(k) ⊂

(
N (q, σ)−

⋃
σ′ 6=σ

N (q, σ′)

)
(k).

We conclude that the N (q, σ) (resp. (N (q, σ) × Spec k)red) are the reduced
irreducible components of N (q) (resp. N (q)× Spec k). Each irreducible com-
ponent of N (q) × Spec k is contained in a unique irreducible component of
N (q). The first part of the lemma follows.

Notice that if α1, ..., αn ∈ 1 + λ then

M(
∏n

i=1(X − αi), 1)×SpecO Spec k =M((X − 1)n, 1)×SpecO Spec k
∼= N (q)×SpecO Spec k.

Over the generic point of N (q, σ)×SpecOSpec k the pair (Φ,N) is of the form
(AΦ(σ, a, q)A−1, AN(σ)A−1) for some a and A. Thus over the generic point
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of the corresponding component of M(
∏n

i=1(X−αi), 1)×SpecO Spec k the pair
(Φ,Σ) is of the form (AΦ(σ, a, 1)A−1, A(expN(σ))A−1). Choosing liftings ã of

a and Ã of A to characteristic 0 we can lift this to the characteristic zero
pair

(ÃΦ(σ, ã, 1)Ã−1, Ãdiag(α1, ..., αn)(expN(σ))Ã−1).

Thus all generic points of M(
∏n

i=1(X − αi), 1) have characteristic zero and
M(
∏n

i=1(X − αi), 1)red is flat over O.
If α1, ..., αn are distinct (q − 1)st roots of unity in O and if Σ is an

n× n matrix with

char Σ(X) =
n∏
i=1

(X − αi)|(Xq−1 − 1),

then Σq−1 = 1n. Thus

M(
n∏
i=1

(X − αi), q) =M(
n∏
i=1

(X − αi), 1)

and the second part of the lemma follows. �

Lemma 3.3 Suppose that all the χv,i|IFev are distinct characters. Then the

formal completion of (Rloc
v /I(χv,1,...,χv,n)

v )[1/l] at any maximal ideal is formally
smooth over K. Similarly the formal completion of

(Rloc
v /IStein

v )[1/l] = (Rloc
v /IStein,1

v )[1/l]

at any maximal ideal is formally smooth over K.

Proof: Consider first the case of

R = Rloc
v /I(χv,1,...,χv,n)

v = O∧M(
Qn
i=1(X−χv,i(σev)),#k(v)),(1n,1n).

Let ℘ be a maximal ideal of R[1/l]. The residue field k(℘) is a finite ex-
tension of K. Let O′k(℘) denote the subring of Ok(℘) consisting of elements

which reduce modulo the maximal ideal to an element of k. Then R/℘c is a
subring of O′k(℘). (See lemma 2.6.)

Suppose that A is a K-algebra with an ideal I satisfying I2 = (0).
Suppose also that

f : R[1/l]/℘r −→ A/I

is a map of K-algebras. We must show that f can be lifted to a map

f̃ : R[1/l]/℘2r −→ A.
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First of all we may replace A by the preimage in A of the image of f in
A/I. Thus we may suppose that A is local with nilpotent maximal ideal.
Secondly we may replace A by a finitely generated K-subalgebra, so we may
suppose that A is in fact an Artinian local ring. In particular the homomor-
phism A→→ k(℘) has a section (because A contains the field K) and we can
consider A as a k(℘)-algebra. (For instance, by theorem 7.7 of [E].)

Let (Φ,Σ) ∈ GLn(A/I)2 denote the image of the universal matrices over
M(
∏n

i=1(X − χv,i(σev)),#k(v)). As the roots of the characteristic polynomial
of Σ are distinct elements of K we may find a basis e1, ..., en of (A/I)n so
that

Σei = χv,i(σev)ei.
As Σ#k(v) = Σ, we must have ΣΦ = ΦΣ and so

Φei = αiei

for some αi ∈ A/I. Choose a lifting of {e1, ..., en} to a basis {ẽ1, ..., ẽn} of

An and a lifting α̃i to A of each αi. Define a lifting (Φ̃, Σ̃) of (Φ,Σ) to A
by

Σ̃ẽi = χv,i(σev)ẽi
and

Φ̃ẽi = α̃iẽi.

Then Σ̃ has characteristic polynomial

n∏
i=1

(X − χv,i(σev))
and

Φ̃Σ̃Φ̃−1 = Σ̃#k(v).

Note that the reductions Φ and Σ of Φ and Σ modulo the maximal
ideal of A lie in O′k(℘). The entries of Φ̃ − Φ and Σ̃ − Σ are in the maxi-

mal ideal of A and hence nilpotent. Let A0 denote the O′k(℘)-subalgebra of

A generated by the entries of Φ̃ − Φ and Σ̃ − Σ. Then A0 is a complete
noetherian local O-algebra with residue field k. Thus we can find a map of
O-algebras

R −→ A0

so that the universal matrices over M(
∏n

i=1(X − χv,i(σev)),#k(v)) map to

(Φ̃, Σ̃). This map extends to the desired map

f̃ : R[1/l] −→ A.
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The proof in the case

R = Rloc
v /IStein

v = O∧MStein(#k(v)),(1n,1n)

is very similar. The key point is to show that (Φ,Σ) ∈ GLn(A/I)2 lifts to

(Φ̃, Σ̃) ∈ GLn(A)2 such that Σ̃ has characteristic polynomial (X − 1)n, while

Φ̃ has characteristic polynomial in Poln({n},#k(v)) and Φ̃Σ̃Φ̃−1 = Σ̃#k(v).
The characteristic polynomial

char Φ(X) =
n∏
i=1

(X − αqi−1),

where
α = (trΦ)/(1 + q + ...+ qn−1).

As the roots of char Φ(X) are distinct modulo the maximal ideal of A/I, we
can choose a basis e1, ..., en of (A/I)n such that

Φei = αqi−1ei.

Then we must have
Σei = βiei−1

where βi ∈ A/I and where we set e0 = 0. Choose a lifting of {e1, ..., en} to

a basis {ẽ1, ..., ẽn} of An, a lifting α̃ of α to A and a lifting β̃i of each βi
to A. Define liftings (Φ̃, Σ̃) of (Φ,Σ) to A by

Φ̃ẽi = α̃qi−1ẽi

and
Σ̃ei = β̃iẽi−1

(with ẽ0 = 0). This lifting has the desired properties, and allows one to
complete the proof of the lemma in the second case. �

Lemma 3.4 Spec (Rloc
v /I(χv,1,...,χv,n)

v )[1/l] and Spec (Rloc
v /IStein

v )[1/l] are con-
nected.

Proof: Consider first the case of

R = Rloc
v /I(χv,1,...,χv,n)

v = O∧M(
Qn
i=1(X−χv,i(σev)),#k(v)),(1n,1n).

Let ℘0 be the maximal ideal of R[1/l] corresponding to

(Φ0, Σ0) = (1n, diag(χv,n(σev), ..., χv,1(σev))) ∈Mn(K)2.
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We will show that any other maximal ideal ℘ of R[1/l] is in the same con-
nected component. The result will then follow from lemma 2.6.

The residue field k(℘) is a finite extension of K. Let Ok(℘) denote its
ring of integers and and mk(℘) the maximal ideal of Ok(℘). Then R/℘c ↪→
Ok(℘), and this corresponds to some (Φ,Σ) ∈ Mn(Ok(℘))

2. (See lemma 2.6.)
Let A denote the complete topological domain

Ok(℘)〈Xij, Y 〉i,j=1,...,n/(Y det(Xij)− 1),

where 〈 〉 denotes power series whose coefficients tend to zero. (The topology
being the mk(℘) topology.) Consider the pair

((Xij)
−1Φ(Xij), (Xij)

−1Σ(Xij)).

This defines a map

SpecA −→M(
n∏
i=1

(X − χv,i(σev)),#k(v))

such that SpecA/mk(℘)A maps to the point

(1n, 1n) ∈M(
n∏
i=1

(X − χv,i(σev)),#k(v))(k).

Thus we get a (continuous) homomorphism

R ∼= O∧M(
Qn
i=1(X−χv,i(σev)),#k(v)),(1n,1n) −→ A.

We conclude that ℘ is in the same connected component of SpecR[1/l] as the
maximal ideal corresponding to (E−1ΦE,E−1ΣE) for any E ∈ GLn(Ok(℘)).

We can choose a decreasing filtration Fil i of k(℘)n such that

– each Fil i is a preserved by Φ and Σ and
– for i = 1, ..., n the graded piece gr i is one dimensional and Σ acts

on it by χv,i(σev).
(As χv,i(σev)#k(ev) = χv,i(σev) we see that Φ preserves ker(Σ − χv,i(σev))a for all
positive integers a.) Let e1, ..., en be a basis of Onk(℘) such that ei, ..., en is a

k(℘)-basis of Fil i for all i = 1, ..., n, and let

E = (enen−1...e1) ∈ GLn(O).

Then E−1ΦE ∈ GLn(Ok(℘)) is upper triangular and E−1ΣE ∈ GLn(Ok(℘)) is
upper triangular with diagonal entries χv,n(σev), ..., χv,1(σev) (reading from top
left to bottom right).
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Thus we are reduced to the case that Φ is upper triangular and Σ is
upper triangular with diagonal entries χv,n(σev), ..., χv,1(σev) (reading from top
left to bottom right). Let

B = Ok(℘) < X > .

Let Λ = diag(1, X, ..., Xn−1) and consider the pair

(Λ−1ΦΛ,Λ−1ΣΛ).

This defines a map

SpecB −→M(
n∏
i=1

(X − χv,i(σev)),#k(v))

such that SpecB/mk(w) maps to the point

(1n, 1n) ∈M(
n∏
i=1

(X − χv,i(σev)),#k(v))(k).

(Although Λ−1 is not defined over B, the products Λ−1ΦΛ and Λ−1ΣΛ are
defined over B.) Thus we get a (continuous) homomorphism

R ∼= O∧M(
Qn
i=1(X−χv,i(σev)),#k(v)),(1n,1n) −→ B.

The point of R[1/l] corresponding to the map B → Ok(℘) sending X to 1 is
℘. The point of R[1/l] corresponding to the map B → Ok(℘) sending X to 0
corresponds to a pair

(diag(α1, ..., αn), diag(χv,n(σev), ..., χv,1(σev))).
These two points are in the same connected component of SpecR[1/l].

Thus we are reduced to the case that Σ = diag(χv,n(σev), ..., χv,1(σev))
and Φ = diag(α1, ..., αn). Let

C = Ok(℘)[[X1, ..., Xn]].

Consider the pair

(diag(1 +X1, ..., 1 +Xn)−1Φ,Σ).

This defines a map

SpecC −→M(
n∏
i=1

(X − χv,i(σev)),#k(v))
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such that SpecC/(X1, ..., Xn, λ) maps to the point

(1n, 1n) ∈M(
n∏
i=1

(X − χv,i(σev)),#k(v))(k).

Thus we get a (continuous) homomorphism

R ∼= O∧M(
Qn
i=1(X−χv,i(σev)),#k(v)),(1n,1n) −→ C.

The point ℘ corresponds to the map C → Ok(℘) sending Xi 7→ 0 for all i;
while the point ℘0 corresponds to the map C → Ok(℘) sending Xi 7→ αi − 1
for all i. Thus ℘ and ℘0 are in the same connected component of SpecR[1/l],
and the lemma follows.

Consider now the case

R = Rloc
v /IStein

v = O∧MStein(#k(v)),(1n,1n).

Let ℘0 be the maximal ideal of R[1/l] corresponding to

(Φ,Σ) = (diag((#k(v))n−1, ..., (#k(v)), 1), 1n) ∈Mn(K)2.

We will show that any other maximal ideal ℘ of R[1/l] is in the same con-
nected component. The argument is much the same as the previous case,
so we will simply sketch it. We first reduce to the case that Σ is upper
triangular with 1’s on the diagonal and Φ is upper triangular with entries
α(#k(v))n−1, ..., α(#k(v)), α (reading from top left to bottom right). Then
one reduces to the case that Σ and Φ are diagonal of the same form and
finally to the case α = 1. �

Finally we complete the proof of proposition 3.1.
Proof of proposition 3.1: Consider the first part of the proposition.

Lemma 3.3 tells us that for any maximal ideal ℘ of (Rloc
v /I(χv,1,...,χv,n)

v )[1/l]

the localisation (Rloc
v /I(χv,1,...,χv,n)

v )[1/l]℘ is a domain. Combining this with
lemma 3.4 and the fact that the maximal ideals are dense in the spectrum

Spec (Rloc
v /I(χv,1,...,χv,n)

v )[1/l], we see that (Rloc
v /I(χv,1,...,χv,n)

v )[1/l] is an integral

domain. Lemma 3.2 implies that (Rloc
v /I(χv,1,...,χv,n)

v )red is flat over O and we
deduce that this ring is also an integral domain.

The second part of the proposition follows from the definitions. The
third part follows from lemmas 2.7 and 3.2. The fourth part follows from
lemmas 3.3 and 3.4 in the same way that the first part did. (Except in this
case Rloc

v /IStein
v is flat over O by definition.) �
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4. An Rred = T theorem.

Fix a positive integer n ≥ 2 and a prime l > n.
Fix an imaginary quadratic field E in which l splits and a totally real

field F+ such that

– F = F+E/F+ is unramified at all finite primes, and
– F+/Q is unramified at l.

Fix a finite non-empty set of places S(B) of places of F+ with the
following properties:

– Every element of S(B) splits in F .
– S(B) contains no place above l.
– If n is even then

n[F+ : Q]/2 + #S(B) ≡ 0 mod 2.

Choose a division algebra B with centre F with the following properties:

– dimF B = n2.
– Bop ∼= B ⊗E,c E.
– B splits outside S(B).
– If w is a prime of F above an element of S(B), then Bw is a division

algebra.

also choose an involution ‡ on B and define an algebraic group G/F+ by

G(A) = {g ∈ B ⊗F+ A : g‡⊗1g = 1},

such that

– ‡|F = c,
– for a place v|∞ of F+ we have G(F+

v ) ∼= U(n), and
– for every finite place v 6∈ S(B) of F+ the group G(F+

v ) is quasi-split.

Because of the first and third itemized assumptions on S(B), it is always
possible to choose such a B and then such a ‡. (The argument is exactly
analogous to the proof of lemma 1.7.1 of [HT].) The purpose of the assump-
tion that S(B) 6= ∅ is to simplify the use of the trace formula in relating
automorphic forms on G to automorphic forms on GLn/F and in attaching
Galois representations to automorphic forms on G.

Choose an order OB in B such that O‡B = OB and OB,w is maximal for
all primes w of F which are split over F+. (See section 3.3 of [CHT].) This
gives a model of G over OF+ . If v 6∈ S(B) is a prime of F+ which splits
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in F choose an isomorphism iv : OB,v
∼→ Mn(OFv) such that iv(x

‡) = tiv(x)c.
The choice of a prime w of F above v then gives us an identification

iw : G(F+
v )

∼−→ GLn(Fw)
i−1
v (x, tx−c) 7−→ x

with iwG(OF+,v) = GLn(OF,w) and iwc = t(c ◦ iw)−1. If v ∈ S(B) and w is

a prime of F above v choose isomorphisms iw : G(F+
v )

∼→ B×w such that
iwc = i−‡w and iwG(OF+,v) = O×B,w.

If w is a finite place of F which is split over a place v 6∈ S(B) of F+,
then write Iw(w) for the inverse image under iw of the group of matrices in
GLn(OF,w) which reduce modulo w to an upper triangular matrix. There is
a natural homomorphism

Iw(w)→→ (k(w)×)n,

which takes g to the diagonal entries of of the reduction modulo w of iw(g).
Denote the kernel of this map by Iw1(w). Similarly write U0(w) (resp. U1(w))
for the inverse image under iw of the group of matrices in GLn(OF,w) whose
reduction modulo w has last row (0, ..., 0, ∗) (resp. (0, ..., 0, 1)). Then U1(w)
is a normal subgroup of U0(w) and we have a natural isomorphism

U0(w)/U1(w)
∼−→ k(w)×.

(It sends g to the lower right entry of the reduction modulo w of iw(g).)
Let Sl denote the set of primes of F+ above l. Let Sa denote a non-

empty set, disjoint from Sl ∪ S(B), of primes of F+ such that

– if v ∈ Sa then v splits in F , and
– if v ∈ Sa lies above a rational prime p then [F (ζp) : F ] > n.

(The only role played by the primes in Sa will be to ensure that certain
open compact subgroups of G(A∞F+) are sufficiently small.) Let R denote a
set, disjoint from Sl ∪ S(B) ∪ Sa, of primes of F+ such that

– if v ∈ R then v splits in F , and
– if v ∈ R then Nv ≡ 1 mod l.

(The set R is to allow us to prove modularity of l-adic representations ram-
ified at more primes than their modl reduction. These extra primes of ram-
ification will be the elements of R.) Fix a decomposition

S(B) = S(B)1

∐
S(B)2.

(This will correspond to two different sort of discrete series deformations we

will allow.) Let T = R ∪ S(B) ∪ Sl ∪ Sa. Let T̃ denote a set of primes of F
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above T such that T̃
∐
T̃ c is the set of all primes of F above T . If v ∈ T

we will let ṽ denote the prime of T̃ above v. If S ⊂ T we will let S̃ denote
the set of ṽ for v ∈ S.

Let U =
∏

v Uv denote an open compact subgroup of G(A∞F+) such that

– if v is not split in F then Uv is a hyperspecial maximal compact
subgroup of G(F+

v ),
– if v 6∈ Sa ∪R splits in F then Uv = G(OF+,v),
– if v ∈ R then Uv = Iw(ṽ), and
– if v ∈ Sa then Uv = i−1ev ker(GLn(OF,ev)→ GLn(k(ṽ))).

Then U is sufficiently small in the sense that for some place v its projection
to G(F+

v ) contains only one element of finite order, namely 1. (In fact for
v ∈ Sa.)

If Q is a finite set of primes of F+ which split in F and if Q is disjoint

from T , then we will write T (Q) for T ∪Q and T̃ (Q) ⊃ T̃ for a set consisting
of one place of F above each place in T (Q). We will also write U0(Q) for∏

v 6∈Q Uv ×
∏

v∈Q U0(ṽ), and U1(Q) for
∏

v 6∈Q Uv ×
∏

v∈Q U1(ṽ).

Let K/Ql be a finite extension which contains a primitive lth root of
unity and contains the image of every embedding F+ ↪→ K. Let O denote
its ring of integers, λ the maximal ideal of O and k the residue field O/λ.

For v ∈ R let

χv = χv,1 × ...× χv,n : Iw(ṽ)/Iw1(ṽ) −→ O×

denote a character of order dividing l. We will be particularly interested in
the case χv = 1 and the case χv,i 6= χv,j for all i 6= j. (Recall that l > n.)

For each τ : F ↪→ K choose integers aτ,1, ..., aτ,n such that

– aτc,i = −aτ,n+1−i, and

– if τ gives rise to a place in S̃l then

l − 1− n ≥ aτ,1 ≥ ... ≥ aτ,n ≥ 0.

We get a K-vector space Wa and an irreducible representation

ξa : G(F+
l ) −→ GL(Wa)
g 7−→ ⊗τ∈eIlξaτ (τiτg)

coming from the algebraic representation with highest weight a. (See section
3.3 of [CHT].) The representation ξa contains a G(OF+,l)-invariant O-lattice
Ma.
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For each v ∈ S(B) let ρv : G(F+
v ) −→ GL(Mρv) denote a representation

of G(F+
v ) on a finite free O-module such that ρv has open kernel and Mρv⊗O

K is irreducible. For v ∈ S(B), define mv, πev and r̃ev by

JL (ρv ◦ i−1ev ) = Spmv(πev)
and

r̃ev = rl(πev| |(n/mv−1)(1−mv)/2).

(Here we let JL denote the Jacquet-Langlands map and Spm(σ) a gener-
alised Steinberg representation as in section I.3 of [HT]. We also let rl denote
the reciprocity map with its ‘arithmetic normalisation’ as in section VII.1 of
[HT].) We will suppose that

r̃ev : Gal (F ev/Fev) −→ GLn/mv(O)

(as opposed to GLn/mv(K)). If v ∈ S(B)1 we will further suppose that Nv ≡
1 mod l, that mv = n and that πev is unramified. If v ∈ S(B)2 we will further
suppose that the reduction of r̃ev mod λ is absolutely irreducible and

r̃ev ⊗O k 6∼= r̃ev ⊗O k(εj)

for j = 1, ...,mv. (It should be possible to treat the common generalisation
of these two extreme cases, but we will not do so here.)

Set
Ma,{ρv},{χv} = Ma ⊗

⊗
v∈S(B)

Mρv ⊗
⊗
v∈R

O(χv).

Suppose that either A is a K-algebra or that the projection of U to G(F+
l )

is contained in G(OF+,l). Then we define a space of automorphic forms

Sa,{ρv},{χv}(U,A)

to be the space of functions

f : G(F+)\G(A∞F+) −→ A⊗OMa,{ρv},{χv}

such that
f(gu) = u−1

S(B)∪R∪Slf(g)

for all u ∈ U and g ∈ G(A∞F+). Here uS(B)∪R∪Sl denotes the projection of u
to G(F+

l )×
∏

v∈S(B) G(F+
v )×

∏
v∈R Iw(ṽ). If A is a O-module we have

Sa,{ρv},{χv}(U,A) = Sa,{ρv},{χv}(U,O)⊗O A

(because U is sufficiently small). We make an exactly analogous definition
with U0(Q) or U1(Q) replacing U . These spaces satisfy the same base change
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property as U0(Q) and U1(Q) are also sufficiently small. (See section 3.3 of
[CHT] for details.)

We will denote by
TT
a,{ρv},{χv}(U)

the O-subalgebra of End (Sa,{ρv},{χv}(U,O)) generated by the Hecke operators

T (j)
w = i−1

w

(
GLn(OF,w)

(
$w1j 0

0 1n−j

)
GLn(OF,w)

)
× U v

for j = 1, ..., n and (T
(n)
w )−1, where w runs over places of F which are

split over a place v 6∈ T of F+. (Note that T
(j)
wc = (T

(n)
w )−1T

(n−j)
w , so we

need only consider one place w above a given place v of F+.) The algebra
TT
a,{ρv},{χv}(U) is reduced (see corollary 3.3.3 of [CHT]) and finite, free as a
O-module. Again we make an exactly analogous definition with U replaced
by U0(Q) or U1(Q) and T replaced by T (Q). The algebras TT

a,{ρv},{χv}(U0(Q))

and T
T (Q)
a,{ρv},{χv}(U1(Q)) are also reduced and finite free as O-modules.

We now turn to some Galois theory. Recall that in [CHT] we defined
a group scheme Gn over Z to be the semi-direct product of GLn × GL1 by
the group {1, } acting on GLn ×GL1 by

(g, µ)−1 = (µtg−1, µ).

There is a homomorphism ν : Gn → GL1 which sends (g, µ) to µ and  to −1.
We also defined a subgroup H ⊂ Gn(k) to be big if the following conditions
are satisfied.

– H ∩ G0
n(k) has no l-power order quotient.

– H0(H, gn(k)) = (0).
– H1(H, gn(k)) = (0).
– For all irreducible k[H]-submodules W of gn(k) we can find h ∈

H ∩ G0
n(k) and α ∈ k with the following properties. The α generalised

eigenspace Vh,α of h in kn is one dimensional. Let πh,α : kn → Vh,α (resp.
ih,α) denote the h-equivariant projection of kn to Vh,α (resp. h-equivariant
injection of Vh,α into kn). Then πh,α ◦W ◦ ih,α 6= (0).

(See section 2.5 of [CHT] for this and for some examples of big subgroups.)
Let m be a maximal ideal of TT

a,{ρv},{1}(U) with residue field k and let

rm : Gal (F/F ) −→ GLn(k)

be a continuous homomorphism associated to m as in proposition 3.4.2 of
[CHT]. Thus if w is a prime of F split over a prime v 6∈ T of F+ then rm

is unramified at w and rm(Frobw) has characteristic polynomial

Xn − T (1)
w Xn−1 + ...+ (−1)j(Nw)j(j−1)/2T (j)

w Xn−j + ...+ (−1)n(Nw)n(n−1)/2T (n)
w .
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We will assume that the representation rm is absolutely irreducible, i.e. that
m is non-Eisenstein. Then by proposition 3.4.4 of [CHT] rm extends to a
continuous homomorphism

rm : Gal (F/F+) −→ Gn(k)

with
ν ◦ rm = ε1−nδµm

F/F+

where δF/F+ is the non-trivial character of Gal (F/F+) and where µm ∈ Z/2Z.
We will assume that rm has the following properties.

– rm(Gal (F/F+(ζl))) is big.
– If v ∈ R then rm(GFev) = {1n}.
– If v ∈ Sa then rm is unramified at v and

H0(Gal (F ev/Fev), (ad rm)(1)) = (0).

– If v ∈ S(B)1 then rm(Gal (F ev/Fev)) = {1}.
Set T = TT

a,{ρv},{1}(U)m and H = Sa,{ρv},{1}(U,O)m. By proposition 3.4.4

of [CHT] there is a continuous representation

rm : GF+ −→ Gn(T)

lifting rm and such that if w is a prime of F split over a prime v 6∈ T of
F+ then rm is unramified at w and rm(Frobw) has characteristic polynomial

Xn − T (1)
w Xn−1 + ...+ (−1)j(Nw)j(j−1)/2T (j)

w Xn−j + ...+ (−1)n(Nw)n(n−1)/2T (n)
w .

For v ∈ T we write

runiv
v : GFev −→ GLn(Rloc

v )

for the universal lifting (not deformation, i.e. it parametrises lifts not con-
jugacy classes of lifts) of rm|GFev . (See section 2.2 of [CHT].) Consider the
deformation problem S given by

(F/F+, T, T̃ ,O, rm, ε
1−nδµm

F/F+ , {Dv}v∈T )

and the ideals Iv of Rloc
v corresponding to Dv, where:

– For v ∈ Sa, Dv will consist of all lifts of rm|Gal (F ev/Fev) and Iv = (0).

– For v ∈ Sl, Dv and Iv will be as described in section 2.4.1 of [CHT]
(i.e. consists of crystalline deformations).

– If v ∈ S(B)1 then Dv will correspond to Iv = IStein
v .

– If v ∈ S(B)2 then Dv will consist of lifts which are r̃ev-discrete series
as described in section 2.4.5 of [CHT].
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– For v ∈ R then Dv corresponds to the ideal Iv = I(1,...,1)
v of Rloc

v .

Also let
runiv
S : Gal (F/F+) −→ Gn(Runiv

S )

denote the universal deformation of rm of type S. (Again see section 2.2 of
[CHT].) By proposition 3.4.4 of [CHT] the representation rm gives rise to a
surjection

Runiv
S →→ T

which makes H an Runiv
S -module.

We can now state our main result.

Theorem 4.1 Keep the notation and assumptions of the start of this section.
Then

(Runiv
S )red ∼−→ T.

Moreover µm ≡ n mod 2.

Proof: The proof will involve the consideration of various other deforma-
tion problems and the corresponding Hecke algebras and spaces of modular
forms. More specifically we will consider sets of characters

{χv : Iw(ṽ)/Iw1(ṽ)→ O×}v∈R
of order dividing l, and finite sets Q of primes of F+ disjoint from T and
such that if v ∈ Q then

– v splits wwc in F ,
– Nv ≡ 1 mod l, and
– rm|GFw = ψw ⊕ sw, with dimψw = 1 and ψw not isomorphic to any

subquotient of sw.

We must first assemble some notations.
Consider the deformation problem S{χv},Q given by

(F/F+, T (Q), T̃ (Q),O, rm, ε
1−nδµm

F/F+ , {Dv}v∈T (Q))

and the ideals Iv of Rloc
v corresponding to Dv, where:

– For v ∈ Sa, Dv will consist of all lifts of rm|Gal (F ev/Fev) and Iv = (0).

– For v ∈ Sl, Dv and Iv will be as described in section 2.4.1 of [CHT]
(i.e. consists of crystalline deformations).

– If v ∈ S(B)1 then Dv will correspond to Iv = IStein
v .

– If v ∈ S(B)2 then Dv will consist of lifts which are r̃ev-discrete series
as described in section 2.4.5 of [CHT].

– For v ∈ R then Dv corresponds to the ideal Iv = I(χv,1,...,χv,n)
v of Rloc

v .
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– For v ∈ Q then Dv corresponds to the maximal quotient Rloc
v /Iv of

Rloc
v over which runiv

v becomes equivalent to ψv ⊕ sv where ψ lifts ψv and
where s is unramified and lifts sv. (See section 2.4.6 of [CHT].)

(For v ∈ R the sets Dv and the ideals Iv depend on χv, but we suppress
this in the notation.) Let

runiv
S{χv},Q

: Gal (F/F+) −→ Gn(Runiv
S{χv},Q

)

denote the universal deformation of rm of type S{χv},Q, and let

r�T
S{χv},Q

: Gal (F/F+) −→ Gn(R�T
S{χv},Q

)

denote the universal deformation of rm of type S{χv},Q framed at all v ∈ T .
Thus Runiv

S{1},∅ = Runiv
S . (See section 2.2 of [CHT].) Note that

Runiv
S{χv},Q

/λ ∼= Runiv
S{1},Q/λ

and

R�T
S{χv},Q

/λ ∼= R�T
S{1},Q/λ

compatibly with the natural maps

Runiv
S{χv},Q

→→ Runiv
S{χv},∅

↓ ↓
R�T
S{χv},Q

→→ R�T
S{χv},∅

and
Runiv
S{1},Q →→ Runiv

S{1},∅
↓ ↓

R�T
S{1},Q →→ R�T

S{1},∅ .

Let

Rloc
{χv},T =

⊗
v∈T

Rloc
v /Iv,

so that again

Rloc
{χv},T/λ

∼= Rloc
{1},T/λ.

There are natural maps

Rloc
{χv},T −→ R�T

S{χv},Q

which modulo λ are compatible with the identifications Rloc
{χv},T/λ

∼= Rloc
{1},T/λ

and R�T
S{χv},Q

/λ ∼= R�T
S{1},Q/λ. (See section 2.2 of [CHT].)
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(The sets Q will be the auxiliary primes needed for the Taylor-Wiles
method (see [TW]). To handle non-minimal deformations we will work si-
multaneously with Runiv

S and RS{χv},∅ for suitably chosen characters {χv}v∈S.

The Taylor-Wiles method as modified by Kisin [K] will work for RS{χv},∅ . By

making the argument simultaneously for Runiv
S and RS{χv},∅ we will be able

to finesse the result for Runiv
S from the RS{χv},∅ case.)

Write
T = O[[Xv,i,j : v ∈ T, i, j = 1, ..., n]].

A choice of lifting runiv
S{χv},Q

of rm over Runiv
S{χv},Q

representing the universal de-

formation of type S{χv},Q gives rise to an isomorphism of Runiv
S{χv},Q

-algebras

R�T
S{χv},Q

∼−→ Runiv
S{χv},Q

⊗̂OT

so that
(runiv
S{χv},Q

; {1n + (Xv,i,j)}v∈T )

is the universal framed deformation. (See section 2.2 of [CHT].) We can, and
will, choose the lifting runiv

S{χv},Q
so that

runiv
S{χv},Q

⊗O k = runiv
S{1},Q ⊗O k

under the natural identification Runiv
S{χv},Q

/λ ∼= Runiv
S{1},Q/λ. Then the isomor-

phisms
R�T
S{χv},Q

∼−→ Runiv
S{χv},Q

⊗̂OT
and

R�T
S{1},Q

∼−→ Runiv
S{1},Q⊗̂OT

are compatible with the identification R�T
S{χv},Q

/λ ∼= R�T
S{1},Q/λ and the identi-

fication Runiv
S{χv},Q

/λ ∼= Runiv
S{1},Q/λ.

Also write ∆Q for the maximal l-power quotient of
∏

v∈Q k(v)× and let

aQ denote the ideal of T [∆Q] generated by the augmentation ideal of O[∆Q]
and by the Xv,i,j for v ∈ T and i, j = 1, ..., n. Then∏

v∈Q

(ψv ◦ Art Fev) : ∆Q −→ (Runiv
S{χv},Q

)×

makes Runiv
S{χv},Q

an T [∆Q]-algebra. This T [∆Q]-algebra structure is compatible

with the identification Runiv
S{χv},Q

/λ ∼= Runiv
S{1},Q/λ, because the liftings r�T

S{χv},Q

and r�T
S{1},Q were chosen compatibly. We also obtain isomorphisms of Rloc

{χv},T -

algebras
R�T
S{χv},Q

/aQ
∼−→ Runiv

S{χv},∅
,
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compatibly with the identifications R�T
S{χv},Q

/λ ∼= R�T
S{1},Q/λ and Runiv

S{χv},∅
/λ ∼=

Runiv
S{1},∅/λ.

We have

Sa,{ρv},{1}(U, k) = Sa,{ρv},{χv}(U, k) ↪→ Sa,{ρv},{χv}(U1(Q), k).

Thus there is a maximal ideal m{χv},Q of T
T (Q)
a,{ρv},{χv}(U1(Q)) with residue field

k such that for a prime w of F split over a prime v 6∈ T (Q) of F+ the Hecke

operators T
(i)
w have the same image in T

T (Q)
a,{ρv},{χv}(U1(Q))/m{χv},Q = k as in

T
T (Q)
a,{ρv},{1}(U)/m = k. By proposition 3.4.4 of [CHT] there is a continuous

representation

rm{χv},Q
: GF+ −→ Gn(T

T (Q)
a,{ρv},{χv}(U1(Q))m{χv},Q

)

lifting rm and such that if w is a prime of F split over a prime v 6∈ T (Q)
of F+ then rm{χv},Q

is unramified at w and rm{χv},Q
(Frobw) has characteristic

polynomial

Xn − T (1)
w Xn−1 + ...+ (−1)j(Nw)j(j−1)/2T (j)

w Xn−j + ...+ (−1)n(Nw)n(n−1)/2T (n)
w .

Set T{χv} = TT
a,{ρv},{χv}(U)m{χv},∅

and H{χv} = Sa,{ρv},{χv}(U,O)m{χv},∅
. By

corollary 3.4.5 of [CHT] we see that we have

T
T (Q)
a,{ρv},{χv}

(U1(Q))m{χv},Q
→→ T

T (Q)
a,{ρv},{χv}

(U0(Q))m{χv},Q
→→ T

T (Q)
a,{ρv},{χv}

(U)m{χv},Q
= T{χv}.

For v ∈ Q choose φev ∈ Gal (F ev/Fev) lifting Frobev and $ev ∈ F×ev with φev =
Art Fev$ev on the maximal abelian extension of Fev. Let

Pev ∈ T
T (Q)
a,{ρv},{χv}(U1(Q))m{χv},Q

[X]

denote the characteristic polynomial of rm{χv},Q
(φev). By Hensel’s lemma we

have a unique factorisation

Pev(X) = (X − Aev)Qev(X)

over T
T (Q)
a,{ρv},{χv}(U1(Q))m{χv},Q

, where Aev lifts ψv(φev) and

Qev(Aev) ∈ T
T (Q)
a,{ρv},{χv}(U1(Q))×m{χv},Q .

If v ∈ Q and α ∈ Fev write

Vα = i−1ev
(
U1(ṽ)

(
1n−1 0

0 α

)
U1(ṽ)

)
× U v.



34 RICHARD TAYLOR

(See section 3.4 of [CHT] for details.) Using lemmas 3.1.3 and 3.1.5 of [CHT]
we see that Pev(V$tv) = 0 on Sa,{ρv},{χv}(U1(Q),O)m{χv},Q

. Set

H1,{χv},Q = (
∏
v∈Q

Qev(V$ev))Sa,{ρv},{χv}(U1(Q),O)m{χv},Q

and
H0,{χv},Q = (

∏
v∈Q

Qev(V$ev))Sa,{ρv},{χv}(U0(Q),O)m{χv},Q

We see that H1,{χv},Q is a T
T (Q)
a,{ρv},{χv}(U1(Q))-direct summand of the module

Sa,{ρv},{χv}(U1(Q),O). Also lemmas 3.1.5 and 3.2.2 of [CHT] tell us that

(
∏
v∈Q

Qev(V$ev)) : H{χv}
∼−→ H0,{χv},Q.

Write T0,{χv},Q (resp. T1,{χv},Q) for the image of T
T (Q)
a,{ρv},{χv}(U1(Q)) in

the endomorphism ring of H0,{χv},Q (resp. H1,{χv},Q). For all v ∈ Q, V$ev = Aev
on H1,{χv},Q. By part 8 of proposition 3.4.4 of [CHT] we see that for each
v ∈ Q there is a character

Vev : F×ev −→ T×1,{χv},Q

such that

– if α ∈ F×ev ∩ OF,ev then Vev(α) = Vα on H1,{χv},Q, and

– (rm{χv},Q
⊗T1,{χv},Q)|WFev = s⊕ (Vev ◦ Art −1

Fev ) where s is unramified.

The representation rm{χv},Q
gives rise to a surjection

Runiv
S{χv},Q

→→ T1,{χv},Q,

and the composite∏
v∈Q

O×F,ev →→ ∆QN −→ (Runiv
S{χv},Q

)× −→ T×1,{χv},Q

coincides with
∏

v Vev. Thus H1,{χv},Q becomes an Runiv
S{χv},Q

-module and we set

H�T
1,{χv},Q = H1,{χv},Q ⊗Runiv

S{χv},Q
R�T
S{χv},Q

= H1,{χv},Q ⊗O T .

As H1,{χv},Q is a direct summand of Sa,{ρv},{χv}(U1(Q),O) as modules for

T
T (Q)
a,{ρv},{χv}(U1(Q)) and as ker(

∏
v∈Q k(v)× → ∆Q) acts trivially on H1,{χv},Q,

lemma 3.3.1 of [CHT] tells us that H1,{χv},Q is a free O[∆Q]-module and that

(H1,{χv},Q)∆Q
∼−→ H0,{χv},Q

∼= H{χv}.
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As U is sufficiently small we get isomorphisms

Sa,{ρv},{χv}(U,O)⊗O k ∼= Sa,{ρv},{χv}(U, k) = Sa,{ρv},{1}(U, k)
∼= Sa,{ρv},{1}(U,O)⊗O k

and

Sa,{ρv},{χv}(U1(Q),O)⊗O k ∼= Sa,{ρv},{χv}(U1(Q), k) = Sa,{ρv},{1}(U1(Q), k)
∼= Sa,{ρv},{1}(U1(Q),O)⊗O k.

Thus we get identifications

H{χv}/λ
∼= H{1}/λ

and
H1,{χv},Q/λ

∼= H1,{1},Q/λ

compatible with the actions of Runiv
S{χv},∅

/λ ∼= Runiv
S{1},∅/λ and of Runiv

S{χv},Q
/λ ∼=

Runiv
S{1},Q/λ, and also compatible with the maps H1,{χv},Q/λ →→ H{χv}/λ and

H1,{1},Q/λ→→ H{1}/λ. Similarly we get an identification

H�T
1,{χv},Q/λ

∼= H�T
1,{1},Q/λ

compatible both with the isomorphism R�T
S{χv},Q

/λ ∼= R�T
S{1},Q/λ and with the

maps H�T
1,{χv},Q/λ→→ H{χv}/λ and H�T

1,{1},Q/λ→→ H{1}/λ.

Proposition 1.5.9 of [CHT] tells us that there is a non-negative integer
q, such that for any positive integer N there is a set QN (and ψw for w|v ∈
QN) as above such that

– #QN = q ≥ [F+ : Q]n(n− 1)/2 + [F+ : Q]n(1− (−1)µm−n)/2;
– if v ∈ QN then Nv ≡ 1 mod lN ; and
– R�T

S{1},QN
can be topologically generated over Rloc

{1},T by

q − [F+ : Q]n(n− 1)/2− [F+ : Q]n(1− (−1)µm−n)/2

elements.

Set

– q′ = q − [F+ : Q]n(n− 1)/2− [F+ : Q]n(1− (−1)µm−n)/2 ≥ 0

– and R�T
{χv},∞ = Rloc

{χv},T [[Y1, ..., Yq′ ]].

Suppose that either χv = 1 for all v ∈ R or that χv,i 6= χv,j for all

v ∈ R and all i 6= j. Then all irreducible components of SpecR�T
{χv},∞ have

dimension
1 + q + n2#T − [F+ : Q]n(1− (−1)µm−n)/2
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and their generic points have characteristic 0. If for all v ∈ R the characters
χv,i are all distinct for i = 1, ..., n then SpecR�T

{χv},∞ is irreducible. Every

prime of R�T
{1},∞, which is minimal over λR�T

{1},∞, contains a unique minimal

prime of R�T
{1},∞. (See proposition 3.1 and section 2.4 of [CHT].)

Note that we have a natural identification

R�T
{χv},∞/λ

∼= R�T
{1},∞/λ.

Choose a surjection
R�T
{1},∞ →→ R�T

S{1},QN

extending the natural map Rloc
{1},T → R�T

S{1},QN
. Reducing modulo λ and apply-

ing the natural comparisons, this gives rise to a surjection

R�T
{χv},∞/λ→→ R�T

S{χv},QN
/λ

extending the natural map Rloc
{χv},T/λ → R�T

S{χv},QN
/λ. This in turn can be

lifted to a surjection
R�T
{χv},∞ →→ R�T

S{χv},QN

extending the natural map Rloc
{χv},T → R�T

S{χv},QN
.

Also set

– ∆∞ = Zq
l ;

– S∞ = T [[∆∞]];
– and a = ker(S∞ →→ O), where the map sends each element of ∆∞ to

1 and each Xv,i,j to 0.

Thus S∞ is isomorphic to a power series ring in q + n2#T variables over
O in such a way that a is the ideal generated by these variables. Choose
continuous surjections

∆∞ →→ ∆QN

for all N and let cN denote the kernel of the corresponding map

O[[∆∞]]→→ O[∆QN ].

Note that any open ideal of O[[∆∞]] contains cN for all sufficiently large N .
The choice of ∆∞ →→ ∆QN gives rise to a map

S∞ →→ T [∆QN ] −→ R�T
S{χv},QN

.

We see that

– R�T
S{χv},QN

/a
∼→ Runiv

S{χv},∅
,
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– H�T
1,{χv},QN is finite free over S∞/cN ,

– H�T
1,{χv},QN/a

∼→ H{χv}.

Our aim is to ‘patch’ the R�T
S{χv},QN

to form in the limit a copy of

R�T
{χv},∞ and simultaneously patch the H�T

1,{χv},QN to produce a R�T
{χv},∞-module,

which is also finite and free over S∞. To do this patching it is better to
work with finite cardinality quotients of the R�T

S{χv},QN
. We will next construct

suitable quotients of this sort.
Choose open ideals bN in S∞ such that

– bN ⊃ aN ,
– bN ⊃ bN+1,
– and

⋂
N bN = (0).

Also choose open ideals d{χv},N in Runiv
S{χv},∅

such that

– ker(Runiv
S{χv},∅

→ T{χv}) + bNR
univ
S{χc},∅

⊃ d{χv},N ⊃ bNR
univ
S{χv},∅

;
– d{χv},N ⊃ d{χv},N+1;
–
⋂
N d{χv},N = (0);

– (d{χv},N mod λ) = (d{1},N mod λ) in Runiv
S{χv},∅

/λ = Runiv
S{1},∅/λ.

(Set

d′{χv},N = (ker(Runiv
S{χv},∅

→ T{χv}) + bNR
univ
S{χc},∅

) ∩ (mN
Runiv
{χv},∅

+ bNR
univ
{χv},∅).

As T{1} is finite over O, the ideal bNT{1} is open in T{1} and so d′{χv},N will

be open in Runiv
S{χv},∅

. Thus d′{χv},N satisfies the first three of the required prop-

erties. Then define d{χv},N to be the intersection of d′{χv},N and the preimages

in Runiv
S{χv},∅

of d′{χ′v},N mod λ in Runiv
S{χ′v},∅

/λ = Runiv
S{χv},∅

/λ for all (the finite num-

ber of) {χ′v}.)
Thus we obtain maps

R�T
{χv},∞ →→ R�T

S{χv},QN
/bN →→ Runiv

S{χv},∅
/dN

which agree modulo λ. If M ≥ N then

H�T
1,{χv},QM/bN

becomes an R�T
{χv},∞⊗̂OS∞/bN -module which is finite free over S∞/bN and

such that the image of S∞ in End (H�T
1,{χv},QM/bN) is contained in the image

of R�T
{χv},∞. Moreover

H�T
1,{χv},QM/(bN + λ) ∼= (H�T

1,{1},QM )/(bN + λ)
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as R�T
{χv},∞/λ = (R�T

{1},∞)/λ-modules. Finally we have isomorphisms of R�T
{χv},∞-

modules

H�T
1,{χv},QM/(bN + a)

∼−→ H{χv}/bN

which are compatible modulo λ. (R�T
{χv},∞ acts on the right hand module via

the map R�T
{χv},∞ →→ Runiv

S{χv},∅
/dN .)

Because R�T
{χv},∞⊗̂OS∞ is topologically finitely generated and because the

module H�T
1,{χv},QM/bN and the ring Runiv

S{χv},∅
/dN have finite cardinality inde-

pendent of M ≥ N we can find an infinite sequence of pairs of integers
(Mi, Ni) with Mi ≥ Ni such that

– Ni+1 > Ni and Mi+1 > Mi;
– the reduction modulo dNi of the maps R�T

{χv},∞ → Runiv
S{χv},∅

/dNi+1
equals

the map R�T
{χv},∞ → Runiv

S{χv},∅
/dNi for all (the finite number of choices for)

{χv};
– there are isomorphisms of R�T

{χv},∞⊗̂OS∞-modules

H�T
1,{χv},QMi+1

/bNi
∼−→ H�T

1,{χv},QMi
/bNi

compatible both with the isomorphisms

H�T
1,{χv},QMi+1

/(λ+ bNi)
∼= (H�T

1,{1},QMi+1
)/(λ+ bNi)

and

H�T
1,{χv},QMi

/(λ+ bNi)
∼= (H�T

1,{1},QMi
)/(λ+ bNi);

and with the maps

H�T
1,{χv},QMi+1

/bNi → H{χv}/bNi

and

H�T
1,{χv},QMi

/bNi → H{χv}/bNi .

Taking the limit as i→∞ we get maps

R�T
{χv},∞ →→ Runiv

S{χv},∅

which agree modulo λ.
Set

H�T
1,{χv},∞ = lim

←
H�T

1,{χv},QMi
/bNi .
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Thus H�T
1,{χv},∞ is an R�T

{χv},∞⊗̂OS∞-module. The action of S∞ can be factored

through R�T
{χv},∞. (As S∞ is formally smooth.) The lifts

S∞ → R�T
{χv},∞

can be chosen to agree modulo λ. There is a natural isomorphism

H�T
1,{χv},∞/λ

∼= H�T
1,{1},∞/λ

of R�T
{χv},∞/λ⊗̂OS∞ ∼= R�

{1},∞/λ⊗̂OS∞-modules. There are also isomorphisms

H�T
1,{χv},∞/a

∼−→ H{χv}

which agree modulo λ and are compatible with the maps

R�T
{χv},∞ →→ Runiv

S{χv},∅
→→ T{χv}.

Now choose characters χv for v ∈ R such that χv,i 6= χv,j for i 6= j. (This

is possible as l > n.) As H�T
{χv},∞ is finite, free over S∞ and H�T

{χv},∞/a
∼=

H{χv} we see that H�T
{χv},∞ has R�T

{χv},∞-depth at least 1 + q + n2#T . Thus

R�T
{χv},∞/AnnH�T

1,{χv},∞ has dimension at least 1 + q + n2#T . However R�T
{χv},∞

has dimension

1 + q + n2#T − [F+ : Q]n(1− (−1)µm−n)/2

and a unique minimal ideal. Thus (see lemma 2.3) µm ≡ n mod 2 and H�T
{χv},∞

is a nearly faithful R�T
{χv},∞-module.

We also deduce that H�T
1,{χv},∞/λ

∼= H�T
1,{1},∞/λ is a nearly faithful as a

module over R�T
{χv},∞/λ

∼= R�T
{1},∞/λ. (See section 2 for the definition of ‘nearly

faithful’.) Recall that all generic points of SpecR�T
{1},∞ have characteristic zero

and every prime of R�T
{1},∞, which is minimal over λR�T

{1},∞, contains a unique

minimal prime of R�T
{1},∞. Thus lemma 2.2 implies that H�T

1,{1},∞ is a nearly

faithful R�T
{1},∞-module. Finally this implies that H is a nearly faithful Runiv

S -

module. As T is reduced, the theorem follows. �
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5. Modularity lifting theorems.

In this section we combine theorem 4.1 with the theory of base change
to deduce more explicit and useful modularity lifting theorems.

Let F be a CM field. By a RACSDC (regular, algebraic, conjugate self
dual, cuspidal) automorphic representation π of GLn(AF ) we mean a cuspidal
automorphic representation such that

– π∨ ∼= πc, and
– π∞ has the same infinitesimal character as some irreducible algebraic

representation of the restriction of scalars from F to Q of GLn.

Let a ∈ (Zn)Hom (F,C) satisfy

– aτ,1 ≥ ... ≥ aτ,n, and
– aτc,i = −aτ,n+1−i.

Let Ξa denote the irreducible algebraic representation of GL
Hom (F,C)
n which

is the tensor product over τ of the irreducible representations of GLn with
highest weights aτ . We will say that a RACSDC automorphic representation
π of GLn(AF ) has weight a if π∞ has the same infinitessimal character as
Ξ∨a .

Let S be a finite set of finite places of F . For v ∈ S let ρv be an
irreducible square integrable representation of GLn(Fv). We will say that a
RACSDC automorphic representation π of GLn(AF ) has type {ρv}v∈S if for
each v ∈ S, πv is an unramified twist of ρ∨v .

The following is a restatement of theorem VII.1.9 of [HT].

Proposition 5.1 Let ı : Ql
∼→ C. Let F be an imaginary CM field, S a finite

non-empty set of finite places of F and, for v ∈ S, ρv a square integrable
representation of GLn(Fv). Let a ∈ (Zn)Hom (F,C) be as above. Suppose that π
is a RACSDC automorphic representation of GLn(AF ) of weight a and type
{ρv}v∈S. Then there is a continuous semisimple representation

rl,ı(π) : Gal (F/F ) −→ GLn(Ql)

with the following properties.

1. For every prime v 6 |l of F we have

rl,ı(π)|ss
Gal (F v/Fv)

= rl(ı
−1πv)

∨(1− n)ss.

2. rl,ı(π)c = rl,ı(π)∨ε1−n.
3. If v|l is a prime of F then rl,ı(π)|Gal (F v/Fv) is potentially semistable,

and if πv is unramified then it is crystalline.
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4. If v|l is a prime of F and if τ : F ↪→ Ql lies above v then

dimQl
gr i(rl,ı(π)⊗τ,Fv BDR)Gal (F v/Fv) = 0

unless i = aıτ,j + n− j for some j = 1, ..., n in which case

dimQl
gr i(rl,ı(π)⊗τ,Fv BDR)Gal (F v/Fv) = 1.

Proof: We can take rl,ı(π) = Rl(π
∨)(1−n) in the notation of [HT]. Note

that the definition of highest weight we use here differs from that in [HT].
�

The representation rl,ı(π) can be taken to be valued in GLn(O) where
O is the ring of integers of some finite extension of Ql. Thus we can reduce
it modulo the maximal ideal of O and semisimplify to obtain a continuous
semisimple representation

rl,ı(π) : Gal (F/F ) −→ GLn(Fl)

which is independent of the choices made.
Let ı : Ql

∼→ C. Suppose that a ∈ (Zn)Hom (F,Ql) satisfies

– aτ,1 ≥ ... ≥ aτ,n, and
– aτc,i = −aτ,n+1−i.

Then we define ı∗a by
(ı∗a)ıτ,i = aτ,i.

Suppose also that S is a finite set of finite places of F not containing any
prime above l and that ρv is a discrete series representation of GLn(Fv) over
Ql for all v ∈ S. We will call a continuous semisimple representation

r : Gal (F/F ) −→ GLn(Ql)

(resp.
r : Gal (F/F ) −→ GLn(Fl))

automorphic of weight a and type {ρv}v∈S if there is an isomorphism ı : Ql
∼→

C and a RACSDC automorphic representation π of GLn(AF ) of weight ı∗a
and type {ıρv}v∈S (resp. and with πl unramified) such that r ∼= rl,ı(π) (resp.
r ∼= rl,ı(π)). We will say that r is automorphic of weight a and type {ρv}v∈S
and level prime to l if there is an isomorphism ı : Ql

∼→ C and a RACSDC
automorphic representation π of GLn(AF ) of weight ı∗a and type {ıρv}v∈S
and with πl unramified such that r ∼= rl,ı(π).

Recall that (see definition 2.5.1 of [CHT]) we call a subgroup H ⊂
GLn(k) big if the following conditions are satisfied.
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– H has no l-power order quotient.
– H i(H, gl0n(k)) = (0) for i = 0, 1.
– For all irreducible k[H]-submodules W of gl0n(k) we can find h ∈ H

and α ∈ k with the following properties. The α generalised eigenspace Vh,α
of h in kn is one dimensional. Let πh,α : kn → Vh,α (resp. ih,α) denote the
h-equivariant projection of kn to Vh,α (resp. h-equivariant injection of Vh,α
into kn). Then πh,α ◦W ◦ ih,α 6= (0).

(Recall that gl0n denotes the trace zero subspace of gln = LieGLn.)

Theorem 5.2 Let F be an imaginary CM field and let F+ denote its max-
imal totally real subfield. Let n ∈ Z≥1 and let l > n be a prime which is
unramified in F . Let

r : Gal (F/F ) −→ GLn(Ql)

be a continuous irreducible representation with the following properties. Let r
denote the semisimplification of the reduction of r.

1. rc ∼= r∨ε1−n.
2. r is unramified at all but finitely many primes.
3. For all places v|l of F , r|Gal (F v/Fv) is crystalline.

4. There is an element a ∈ (Zn)Hom (F,Ql) such that
– for all τ ∈ Hom (F,Ql) we have

l − 1− n ≥ aτ,1 ≥ ... ≥ aτ,n ≥ 0

or
l − 1− n ≥ aτc,1 ≥ ... ≥ aτc,n ≥ 0;

– for all τ ∈ Hom (F,Ql) and all i = 1, ..., n

aτc,i = −aτ,n+1−i;

– for all τ ∈ Hom (F,Ql) above a prime v|l of F ,

dimQl
gr i(r ⊗τ,Fv BDR)Gal (F v/Fv) = 0

unless i = aτ,j + n− j for some j = 1, ..., n in which case

dimQl
gr i(r ⊗τ,Fv BDR)Gal (F v/Fv) = 1.

5. There is a non-empty finite set S = S1

∐
S2 of places of F not

dividing l and for each v ∈ S a square integrable representation ρv of
GLn(Fv) over Ql such that

r|ss
Gal (F v/Fv)

= rl(ρv)
∨(1− n)ss.
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If ρv = Spmv(ρ
′
v) then set

r̃v = rl((ρ
′
v)
∨| |(n/mv−1)(1−mv)/2).

Note that r|Gal (F v/Fv) has a unique filtration Fil jv such that

gr jvr|Gal (F v/Fv)
∼= r̃vε

j

for j = 0, ...,mv − 1 and equals (0) otherwise.
For v ∈ S1 we assume that mv = n.
For v ∈ S2 we assume that r̃v has irreducible reduction rv. Then the re-

striction r|Gal (F v/Fv) inherits a filtration Fil
j

v with

gr jvr|Gal (F v/Fv)
∼= rvε

j

for j = 0, ...,mv − 1. We also suppose that for v ∈ S2 and for j = 1, ...,mv

we have

rv 6∼= rvε
i.

6. F
ker ad r

does not contain F (ζl).
7. The image r(Gal (F/F (ζl))) is big in the sense recalled above.
8. The representation r is irreducible and automorphic of weight a and

type {ρv}v∈S with S 6= ∅.

Then r is automorphic of weight a and type {ρv}v∈S and level prime to
l.

Proof: Choose a CM field L/F with the following properties

– L = L+E with E an imaginary quadratic field and L+ totally real.
– L/F is Galois and soluble.

– L is linearly disjoint from F
ker r

(ζl) over F .
– l splits in E and is unramified in L.
– All primes in S split completely in L/F and in L/L+.

By lemma 4.1.5 of [CHT] we can find an embedding τE : E ↪→ Ql, an alge-

braic character ψ : Gal (L/L) → Q
×
l and an element a′ ∈ (Zn)Hom (L,Ql) such

that

– ψc = ψ−1;
– ψ is crystalline at all places above l;
– for all τ ∈ Hom (L,Ql) extending τE we have

l − 1− n ≥ a′τ,1 ≥ ... ≥ a′τ,n ≥ 0;
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– for all τ ∈ Hom (F,Ql) and all i = 1, ..., n

a′τc,i = −a′τ,n+1−i;

– for all τ ∈ Hom (F,Ql) above a prime v|l of F ,

dimQl
gr i((r ⊗ ψ)⊗τ,Fv BDR)Gal (F v/Fv) = 0

unless i = a′τ,j + n− j for some j = 1, ..., n in which case

dimQl
gr i((r ⊗ ψ)⊗τ,Fv BDR)Gal (F v/Fv) = 1.

Using lemmas 4.1.3 and 4.2.2 of [CHT] and theorem 4.2 of [AC] we see that
we may reduce to the case where F contains an imaginary quadratic field E
with an embedding τE : E ↪→ Ql, such that

l − 1− n ≥ aτ,1 ≥ ... ≥ aτ,n ≥ 0

for all τ : F ↪→ Ql extending τE. (Replace F by L.) We may also assume
that S1 ∪ cS1 and S2 ∪ cS2 are disjoint.

Now suppose that r = rl,ı(π), where ı : Ql
∼→ C and where π is a

RACSDC automorphic representation of GLn(AF ) of weight ı∗a and type
{ıρv}v∈S and with πl unramified. Let Sl denote the primes of F above l. Let
R denote the primes of F outside Sc ∪ S ∪ Sl at which r or π is ramified.

Because F
ker ad r

does not contain F (ζl), we can choose a prime v1 of F with
the following properties

– v1 6∈ R ∪ Sl ∪ S ∪ Sc,
– v1 is unramified over a rational prime p for which [F (ζp) : F ] > n,
– v1 does not split completely in F (ζl),
– ad r(Frobv1) = 1.

(We will use primes above v1 as auxiliary primes to augment the level so
that the open compact subgroups of the finite adelic points of certain unitary
groups we consider will be sufficiently small. The properties of v1 will ensure
that the Galois deformation problems we consider will not change when we
allow ramification at primes above v1.)

Choose a totally real field L+/F+ with the following properties

– 4|[L+ : F+].
– L+/F+ is Galois and soluble.
– L = L+E is everywhere unramified over L+.

– L is linearly disjoint from F
ker r

(ζl) over F .
– l is unramified in L.
– All primes of L above R ∪ S ∪ {v1} are split over L+.
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– All primes of S2 ∪ cS2 ∪ {v1, cv1} split completely in L/F .
– Let πL denote the base change of π to L. If v is a place of L above

R ∪ S1 ∪ cS1 then Nv ≡ 1 mod l and rGal (L/L) = {1n} and r|ss
Gal (L/L)

= 1

and π
Iw(v)
L,v 6= (0).

– If S(L+) denotes the set of primes of L+ whose restriction to F+ lies
below an element of S, then 2|#S(L).

Let aL ∈ (Zn)Hom (L,Ql) be defined by aL,τ = aτ |F . Choose a division algebra
B/L and an involution ‡ of B as at the start of section 4, with S(B) =
S(L+). Let Sl(L

+) denote the primes of L+ above l, let R(L+) denote the
primes of L+ lying above the restriction to F+ of an element of R and let
Sa(L

+) denote the primes of L+ above v1|F+ . Let T (L+) = S(L+)∪ Sl(L+)∪
R(L+)∪Sa(L+). It follows from proposition 3.3.2 of [CHT] and theorem 4.1 of
this paper that r|Gal (F/L) is automorphic of weight aL and type {ρv|F }v∈S(L)

and level prime to l. The theorem now follows from lemma 4.2.2 of [CHT].
�

As in section 4.4 of [CHT] we will say a few words about the conditions
in this theorem. The first condition ensures that r is conjugate self-dual. Only
for such representations will the numerology behind the Taylor-Wiles argu-
ment work. Also it is only for such representations that one can work on a
unitary group. Indeed whenever one has a cuspidal automorphic representa-
tion of GLn(AF ) for which one knows how to construct a Galois representa-
tion, that Galois representation will have this property. The second condition
should be necessary, i.e. it should hold for any Galois representation associ-
ated to an automorphic form. A weakened form of the third condition which
required only that these restrictions are de Rham is also expected to be nec-
essary. The stronger form here (requiring the restrictions to be crystalline),
the assumption that l is unramified in F and the bounds on the Hodge-Tate
numbers in condition four are all needed so that we can apply the theory
of Fontaine and Laffaille to calculate the local deformation rings at primes
above l. Condition four also requires the Hodge-Tate numbers to be distinct.
Otherwise the numerology behind the Taylor-Wiles method would again fail.
The fifth condition is there to ensure that the corresponding automorphic
form will be discrete series at some places (ie those in S). With the current
state of the trace formula this is necessary to move automorphic forms be-
tween unitary groups and GLn and also to construct Galois representations
for automorphic forms on GLn. There is some choice for the exact form of
condition five. At the primes in S2 we impose conditions to make the local
deformation problem as simple as possible. At primes in S1 we allow more
complicated local deformation rings, but only in a special case. Some common
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generalisation of these two cases is probably possible, but we have not spent
the time to work this out. The sixth condition is to allow us to choose aux-
iliary primes which can be used to augment the level and ensure that certain
level structures we work with are sufficiently small. The seventh condition is
to make the Cebotarev argument used in the Taylor-Wiles argument work.
It seems to be often satisfied in practice.

Now we turn to the case of a totally real field. Let F+ be a totally
real field. By a RAESDC (regular, algebraic, essentially self dual, cuspidal)
automorphic representation π of GLn(AF+) we mean a cuspidal automorphic
representation such that

– π∨ ∼= χπ for some character χ : (F+)×\A×F+ → C× with χv(−1) inde-
pendent of v|∞, and

– π∞ has the same infinitesimal character as some irreducible algebraic
representation of the restriction of scalars from F+ to Q of GLn.

(If n = 2 or if n is odd then one does not require the condition that χv(−1)
is independent of v|∞, in the sense that, if the definition is satisfied with
some χ it will also be satisfied for another χ′ with χ′v(−1) independent of
v|∞. We do not know if it is required for even n > 2. See the start of section
4.3 of [CHT].)

Let a ∈ (Zn)Hom (F+,C) satisfy

aτ,1 ≥ ... ≥ aτ,n

Let Ξa denote the irreducible algebraic representation of GL
Hom (F+,C)
n which

is the tensor product over τ of the irreducible representations of GLn with
highest weights aτ . We will say that a RAESDC automorphic representation
π of GLn(AF ) has weight a if π∞ has the same infinitesimal character as
Ξ∨a .

Let S be a finite set of finite places of F+. For v ∈ S let ρv be an
irreducible square integrable representation of GLn(F+

v ). We will say that a
RAESDC automorphic representation π of GLn(AF+) has type {ρv}v∈S if for
each v ∈ S, πv is an unramified twist of ρ∨v .

We recall proposition 4.3.1 of [CHT].

Proposition 5.3 Let ı : Ql
∼→ C. Let F+ be a totally real field, S a finite

non-empty set of finite places of F+ and, for v ∈ S, ρv a square integrable
representation of GLn(F+

v ). Let a ∈ (Zn)Hom (F+,C) be as above. Suppose that
π is a RAESDC automorphic representation of GLn(AF+) of weight a and
type {ρv}v∈S. Specifically suppose that π∨ ∼= πχ where χ : A×F+/(F+)× → C×.
Then there is a continuous semisimple representation

rl,ı(π) : Gal (F
+
/F+) −→ GLn(Ql)
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with the following properties.

1. For every prime v 6 |l of F+ we have

rl,ı(π)|ss
Gal (F

+
v /F

+
v )

= rl(ı
−1πv)

∨(1− n)ss.

2. rl,ı(π)∨ = rl,ı(π)εn−1rl,ı(χ).
3. If v|l is a prime of F+ then the restriction rl,ı(π)|

Gal (F
+
v /F

+
v )

is po-

tentially semistable, and if πv is unramified then it is crystalline.
4. If v|l is a prime of F+ and if τ : F+ ↪→ Ql lies above v then

dimQl
gr i(rl,ı(π)⊗τ,F+

v
BDR)Gal (F

+
v /F

+
v ) = 0

unless i = aıτ,j + n− j for some j = 1, ..., n in which case

dimQl
gr i(rl,ı(π)⊗τ,F+

v
BDR)Gal (F

+
v /F

+
v ) = 1.

The representation rl,ı(π) can be taken to be valued in GLn(O) where
O is the ring of integers of some finite extension of Ql. Thus we can reduce
it modulo the maximal ideal of O and semisimplify to obtain a continuous
semisimple representation

rl,ı(π) : Gal (F
+
/F+) −→ GLn(Fl)

which is independent of the choices made.
Let ı : Ql

∼→ C. Suppose that a ∈ (Zn)Hom (F+,Ql) satisfies

aτ,1 ≥ ... ≥ aτ,n.

Then we define ı∗a by
(ı∗a)ıτ,i = aτ,i.

Suppose that a ∈ (Zn)Hom (F+,Ql) satisfies the conditions of the previous
paragraph, that S is a finite set of finite places of F+ not containing any
prime above l and that ρv is a discrete series representation of GLn(F+

v ) over
Ql for all v ∈ S. We will call a continuous semisimple representation

r : Gal (F
+
/F+) −→ GLn(Ql)

(resp.

r : Gal (F
+
/F+) −→ GLn(Fl))

automorphic of weight a and type {ρv}v∈S if there is an isomorphism ı : Ql
∼→

C and a RAESDC automorphic representation π of GLn(AF+) of weight ı∗a
and type {ıρv}v∈S (resp. and with πl unramified) such that r ∼= rl,ı(π) (resp.
r ∼= rl,ı(π)). We will say that r is automorphic of weight a and type {ρv}v∈S
and level prime to l if there is an isomorphism ı : Ql

∼→ C and a RAESDC
automorphic representation π of GLn(AF+) of weight ı∗a and type {ıρv}v∈S
and with πl unramified such that r ∼= rl,ı(π).
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Theorem 5.4 Let F+ be a totally real field. Let n ∈ Z≥1 and let l > n be a
prime which is unramified in F+. Let

r : Gal (F
+
/F+) −→ GLn(Ql)

be a continuous irreducible representation with the following properties. Let r
denote the semisimplification of the reduction of r.

1. r∨ ∼= rεn−1χ for some character χ : Gal (F
+
/F+) −→ Q

×
l with χ(cv)

independent of v|∞. (Here cv denotes a complex conjugation at v.)
2. r ramifies at only finitely many primes.
3. For all places v|l of F+, r|

Gal (F
+
v /F

+
v )

is crystalline.

4. There is an element a ∈ (Zn)Hom (F+,Ql) such that
– for all τ ∈ Hom (F+,Ql) we have

l − 1− n+ aτ,n ≥ aτ,1 ≥ ... ≥ aτ,n;

– for all τ ∈ Hom (F+,Ql) above a prime v|l of F+,

dimQl
gr i(r ⊗τ,F+

v
BDR)Gal (F

+
v /F

+
v ) = 0

unless i = aτ,j + n− j for some j = 1, ..., n in which case

dimQl
gr i(r ⊗τ,F+

v
BDR)Gal (F

+
v /F

+
v ) = 1.

5. There is a non-empty finite set S = S1

∐
S2 of places of F+ not

dividing l and for each v ∈ S a square integrable representation ρv of
GLn(F+

v ) over Ql such that

r|ss
Gal (F

+
v /F

+
v )

= rl(ρv)
∨(1− n)ss.

If ρv = Spmv(ρ
′
v) then set

r̃v = rl((ρ
′
v)
∨| |(n/mv−1)(1−mv)/2).

Note that r|
Gal (F

+
v /F

+
v )

has a unique filtration Fil jv such that

gr jvr|Gal (F v/Fv)
∼= r̃vε

j

for j = 0, ...,mv − 1 and equals (0) otherwise.
For v ∈ S1 we assume that mv = n.
For v ∈ S2 we assume that r̃v has irreducible reduction rv. Then the re-

striction r|
Gal (F

+
v /F

+
v )

inherits a filtration Fil
j

v with

gr jvr|Gal (F
+
v /F

+
v )
∼= rvε

j

for j = 0, ...,mv − 1. We also suppose that for v ∈ S2 and for j = 1, ...,mv

we have
rv 6∼= rvε

i.
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6. (F
+

)ker ad r does not contain F+(ζl).

7. The image r(Gal (F
+
/F+(ζl))) is big (as defined just before theorem

5.2).
8. r is irreducible and automorphic of weight a and type {ρv}v∈S with

S 6= ∅.
Then r is automorphic of weight a and type {ρv}v∈S and level prime to

l.

Proof: Choose an imaginary CM field F with maximal totally real sub-
field F+ such that

– all primes above l split in F/F+,
– all primes in S split in F/F+, and

– F is linearly disjoint from (F
+

)ker r(ζl) over F+.

Choose an algebraic character

ψ : Gal (F
+
/F ) −→ Q

×
l

such that

– χ|
Gal (F

+
/F )

= ψψc,

– ψ is crystalline above l, and
– for each τ : F+ ↪→ Ql there exists an extension τ̃ : F ↪→ Ql such that

gr −aτ,n(Ql(ψ)⊗eτ ,Fv(eτ) BDR)Gal (F v(eτ)/Fv(eτ)) 6= (0),

where v(τ̃) is the place of F above l determined by τ̃ .

(This is possible by lemma 4.1.5 of [CHT].) Now apply theorem 5.2 to to the
twist r|

Gal (F
+
/F )
ψ and the current theorem follows by lemma 4.3.3 of [CHT].

�

As the conditions of this theorem are a bit complicated we give a spe-
cial case as a corollary.

Corollary 5.5 Let n ∈ Z≥1 be even and let l > max{3, n} be a prime. Let
S be a finite non-empty set of primes such that if q ∈ S then q 6= l and
qi 6≡ 1 mod l for i = 1, ..., n. Let

r : Gal (Q/Q) −→ GSpn(Zl)

be a continuous irreducible representation with the following properties.

1. r ramifies at only finitely many primes.
2. r|Gal (Ql/Ql)

is crystalline, and dimQl
gr i(r⊗Ql

BDR)Gal (Ql/Ql) = 0 un-

less i ∈ {0, 1, ..., n− 1}, in which case it has dimension 1.
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3. If q ∈ S then r|ssGQq
is unramified and r|ssGQq

(Frobq) has eigenvalues

{αqi : i = 0, 1, ..., n− 1} for some α.
4. The image of r mod l contains Spn(Fl).
5. r mod l is automorphic of weight 0 and type {Sp n(1)}q∈S.

Then r is automorphic of weight 0 and type {Sp n(1)}{q} and level prime
to l.

Proof: Let r = r mod l. As PSpn(Fl) is simple, the maximal abelian
quotient of ad r(GQ) is

r(GQ)/(r(GQ) ∩ F×l )Spn(Fl) ⊂ PGSpn(Fl)/PSpn(Fl)
∼−→ (F×l )/(F×l )2.

Thus Q
ker ad r

does not contain Q(ζl).
The corollary now follows from lemma 2.5.5 of [CHT] and theorem 5.4

of this paper. �

As in section 5.6 of [CHT], we would like to apply theorems 5.2 and
5.4 in situations where one knows that r is automorphic. One such case is
where r : Gal (F/F ) → GLn(k) is induced from a (suitable) character over
some cyclic extension. However it will be useful to have such a theorem
when ρv is Steinberg for v ∈ S. Because the lift of r which we know to
be automorphic is an automorphic induction it can not be Steinberg at any
finite place (although it can be cuspidal at a finite place). Thus we have a
problem in applying theorems 5.2 or 5.4 directly. We shall get round this by
applying proposition 2.7.4 of [CHT] to construct a second lift r1 of r which
is Steinberg at v ∈ S, but which is also cuspidal at some other finite places
S ′. We first show that r1 is automorphic using the places in S ′. The result
is that we succeed in ‘raising the level’ for the automorphicity of r. We can
then apply theorem 5.2 or 5.4 a second time. A further complication arises
because we want to treat r which do not look as if they could have a lift
which is cuspidal at any finite place. We will do so under an assumption
that r extends to a representation of Gal (Q/Q) which looks as if it could
have a lift which is cuspidal at some finite place.

More precisely we will consider the following situation.

– M/Q is a Galois imaginary CM field of degree n with Gal (M/Q)
cyclic generated by an element τ .

– l > 1 + (n− 1)((n+ 2)n/2− (n− 2)n/2)/2n−1 (e.g. l > 8((n+ 2)/4)1+n/2)
is a prime which splits completely in M and is ≡ 1 mod n.

– p is a rational prime which is inert and unramified in M .
– q 6= l is a rational prime, which splits completely in M and which

satisfies qi 6≡ 1 mod l for i = 1, ..., n− 1.
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– θ : Gal (Q/M) −→ F
×
l is a continuous character such that

– θθ
c

= ε1−n;
– there exists a prime w|l of M such that for i = 0, ...., n/2 − 1 we

have θ|Iτiw = ε−i;

– if v1, ..., vn are the primes of M above q then {θ(Frobvi)} equals

{αqq−j : j = 0, ..., n− 1} for some αq ∈ F
×
l ;

– θ|Gal (Mp/Mp) 6= θ
τ j |Gal (Mp/Mp) for j = 1, ..., n− 1.

Let S(θ) denote the set of rational primes above which M or θ is ramified.
– E/Q is an imaginary quadratic field linearly disjoint from the Galois

closure of M
ker θ

(ζl)/Q in which every element of S(θ)∪{l, q, p} splits; and
such that the class number of E is not divisible by l.

A referee asked the good question: are there any examples where all
these conditions are met? The answer is ‘yes’. One example is given in the
proof of theorem 3.1 of [HSBT].

Theorem 5.6 Keep the notation and assumptions listed above. Let F/F0 be
a Galois extension of imaginary CM fields with F linearly disjoint from the

normal closure of M
ker θ

(ζl) over Q. Assume that l is unramified in F and
that there is a prime vp,0 of F0 split above p. Let

r : Gal (F/F ) −→ GLn(Ql)

be a continuous irreducible representation with the following properties. Let r
denote the semisimplification of the reduction of r.

1. r ∼= Ind
Gal (F/F )

Gal (F/FM)
θ|Gal (F/FM).

2. rc ∼= r∨ε1−n.
3. r ramifies at only finitely many primes.
4. For all places v|l of F , r|Gal (F v/Fv) is crystalline.

5. For all τ ∈ Hom (F,Ql) above a prime v|l of F ,

dimQl
gr i(r ⊗τ,Fv BDR)Gal (F v/Fv) = 1

for i = 0, ..., n− 1 and = 0 otherwise.
6. There is a place vq of F above q such that r|ss

Gal (F vq/Fvq )
is unrami-

fied and r|ss
Gal (F vq/Fvq )

(Frobvq) has eigenvalues {α(#k(vq))
j : j = 0, ..., n−1}

for some α ∈ Q
×
l .

Then r is automorphic over F of weight 0 and type {Sp n(1)}{vq} and
level prime to l.
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Proof: We repeat, almost verbatim, the proof of theorem 5.6.1 of [CHT].
Replacing F by EF if necessary we may suppose that F ⊃ E (see

lemma 4.2.2 of [CHT]).
Choose a continuous character

θ : Gal (M/M) −→ O×
Ql

such that

– θ lifts θ;
– θ−1 = εn−1θc;
– for i = 0, ..., n/2− 1 we have θ|IM

σiw
= ε−i; and

– l 6 |#θ(Iv) for all places v|p of M .

(See lemma 4.1.6 of [CHT].) We can extend θ|Gal (E/EM) to a continuous ho-
momorphism

θ : Gal (E/(EM)+) −→ G1(OQl
)

with ν ◦ θ = ε1−n. We will let θ also denote the reduction

θ : Gal (E/(EM)+) −→ G1(Fl)

of θ. Consider the pairs Gal (E/(EM)+) ⊃ Gal (E/(EM)) and Gal (E/Q) ⊃
Gal (E/E). Set

r0 = Ind
Gal (E/Q),ε1−n

Gal (E/(EM)+)
θ : Gal (E/Q) −→ Gn(OQl

).

Note also that

r0|Gal (E/E) = ((Ind
Gal (E/Q)

Gal (E/M)
θ)|Gal (E/E), ε

1−n).

By proposition 2.7.4 of [CHT] there is a continuous homomorphism

r1 : Gal (E/Q) −→ Gn(OQl
)

with the following properties.

– r1 lifts Ind
Gal (E/Q),ε1−n

Gal (E/(EM)+)
θ.

– ν ◦ r1 = ε1−n.
– For all places w|l of E, r1|Gal (Ew/Ew) is crystalline.

– For all τ ∈ Hom (E,Ql) corresponding to prime w|l,

dimQl
gr i(r1 ⊗τ,Ew BDR)Gal (Ew/Ew) = 1

for i = 0, ..., n− 1 and = 0 otherwise.
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– r1|ssGal (Evq/Evq )
is unramified and r|ss

Gal (Evq/Evq )
(Frobvq |E) has eigenvalues

{αq−j : j = 0, ..., n− 1} for some α ∈ Q
×
l .

– r1|Gal (Evp/Evp ) is an unramified twist of Ind
Gal (Qp/Qp)

Gal (Qp/Mp)
θ|Gal (Qp/Mp).

Let vp be a prime of F above vp,0 and let F1 ⊂ F denote the fixed
field of the decomposition group of vp in Gal (F/F0). Thus vp|F1 is split over
p and F/F1 is soluble.

The restriction r0|Gal (E/F1) is automorphic of weight 0, level prime to l

and type {ρp}{vp|F1
}, for a suitable cuspidal representation ρp (by theorem 4.2

of [AC]). Applying lemma 2.7.5 of [CHT] and theorem 5.2 above we deduce
that r1|Gal (F/F1) is automorphic of weight 0 and type {ρp}{vp|F1

} and level

prime to l. It follows from corollary VII.1.11 of [HT] that r1|Gal (F/F1) is also

automorphic of weight 0 and type {Sp n(1)}{vq |F1
} and level prime to l. (The

only tempered representations π of GLn(F1,vq |F1
) for which rl(π)∨(1 − n)ss

unramified and rl(π)∨(1 − n)ss(Frobvq |F1
) has eigenvalues of the form {αq−j :

j = 0, ..., n− 1} are unramified twists of Sp n(1).) From theorem 4.2 of [AC]
we deduce that r1|Gal (F/F ) is automorphic of weight 0 and type {Sp n(1)}{vq}
and level prime to l. (The base change must be cuspidal as it is square
integrable at one place.)

Finally we again apply theorem 5.2 to deduce that r is automorphic
of weight 0 and type {ρp}{vp} and level prime to l. The verification that
r(GF+(ζl)) is big is exactly as above. �

We also have a version for totally real fields.

Theorem 5.7 Keep the notation and assumptions listed before theorem 5.6.
Let F+/F+

0 be a Galois extension of totally real fields with F+ linearly dis-

joint from the Galois closure of E(ζl)M
ker θ

over Q. Suppose that that l is
unramified in F+ and that there is a prime vp,0 of F+

0 split over p. Let

r : Gal (F+/F+) −→ GLn(Ql)

be a continuous representation such that

– r ∼= (Ind
Gal (Q/Q)

Gal (Q/M)
θ)|Gal (Q/F+);

– r∨ ∼= rεn−1;
– r is unramified at all but finitely many primes;
– For all places v|l of F+, r|

Gal (F
+
v /F

+
v )

is crystalline.

– For all τ ∈ Hom (F+,Ql) above a prime v|l of F+,

dimQl
gr i(r ⊗τ,F+

v
BDR)Gal (F

+
v /F

+
v ) = 1

for i = 0, ..., n− 1 and = 0 otherwise.
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– There is a place vq|q of F+ such that r|ss
Gal (F

+
vq
/F+
vq )

is unramified

and r|ss
Gal (F

+
vq
/F+
vq )

(Frobvq) has eigenvalues {α(#k(vq))
j : j = 0, ..., n− 1} for

some α ∈ Q
×
l .

Then r is automorphic over F+ of weight 0 and type {Sp n(1)}{vq} and
level prime to l.

Proof: Apply theorem 5.6 to F = F+E and use lemma 4.3.3 of [CHT].
�

6. Applications

The proofs of the following results are given in [HSBT]. When [HSBT]
was first submitted that paper relied on the conditional theorems proved in
chapter 5 of [CHT], and so the main theorems of [HSBT] were themselves
conditional. The proofs of these theorems became unconditional when the
present paper was written. For the convenience of the reader we have rewrit-
ten [HSBT] so that its results are now stated unconditionally and reference
is made to this paper. However, as the proofs of those results were finally
completed in this paper, we restate them here.

Let n ∈ Z>1 be an even integer. If K is a field of characteristic not
dividing n+ 1 and if t ∈ K is not an (n+ 1)th root of unity then Yt/K will
denote the (n− 1)-dimensional smooth projective variety:

(Xn+1
0 +Xn+1

1 + ...+Xn+1
n ) = (n+ 1)tX0X1...Xn.

It carries an action of

H ′ = ker(µn+1
n+1

Q
−→ µn+1)

by

(ζ0, ..., ζn) : (X0 : ... : Xn) 7−→ (ζ0X0 : ... : ζnXn).

(Note that the diagonal copy of µn+1 acts trivially.) If l 6 |(n + 1) is a prime
set

Vn,l = Hn−1(Yt ×K,Ql)
H′

and

Vn[l] = Hn−1(Yt ×K,Fl)
H′ .

These are GK-modules of dimension n. (See for instance [HSBT].)
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Theorem 6.1 Suppose that F is a totally real field and that n is an even
positive integer. Suppose also that l is a sufficiently large (depending only on
n) rational prime which is unramified in F . Let vq be a prime of F above a
rational prime q 6 |l(n+ 1).

Suppose also that

r : Gal (F/F ) −→ GSpn(Zl)

is a continuous representation with the following properties.

1. r has multiplier ε1−nl .
2. r ramifies at only finitely many primes.
3. Let r denote the semisimplification of the reduction of r. Then the

image rGal (F/F (ζl)) is big.

4. F
ker ad r

does not contain F (ζl).
5. If w|l is a prime of F then r|Gal (Fw/Fw) is crystalline and for τ :

Fw ↪→ Ql we have

dimQl
gr j(ri ⊗τ,Fw BDR) = 1

for j = 0, ..., ni− 1 and = 0 otherwise. Moreover there is a point tw ∈ OFnr
w

with w(tn+1
w − 1) = 0 such that

r|IFw ∼= Vn[l]tw .

6. r|ss
Gal (F vq/Fvq )

is unramified and r|ss
Gal (F vq/Fvq )

(Frobvq) has eigenvalues

of the form α, α#k(vq), ..., α(#k(vq))
n−1.

Then there is a totally real Galois extension F ′′/F and a place wq of
F ′′ above vq such that each r|Gal (F/F ′′) is automorphic of weight 0 and type

{Sp n(1)}{wq}.

(See theorem 3.3 of [HSBT].)

Theorem 6.2 Let F and L be totally real fields. Let A/F be an abelian
variety of dimension [L : Q] and suppose that i : L ↪→ End 0(A/F ). Let N be
a finite set of even positive integers. Fix an embedding L ↪→ R. Suppose that
A has multiplicative reduction at some prime vq of F .

There is a Galois totally real field F ′/F such that for any n ∈ N and
any intermediate field F ′ ⊃ F ′′ ⊃ F with F ′/F ′′ soluble, Symm n−1A is auto-
morphic over F ′′.

(See theorem 4.1 of [HSBT].)
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Theorem 6.3 Let F and L be totally real fields. Let A/F be an abelian
variety of dimension [L : Q] and suppose that i : L ↪→ End 0(A/F ). Fix an
embedding L ↪→ R. Suppose that A has multiplicative reduction at some prime
vq of F .

Then for all m ∈ Z≥1 the function L(Symmm(A, i), s) has meromor-
phic continuation to the whole complex plane, satisfies the expected functional
equation and is holomorphic and non-zero in Re s ≥ 1 +m/2.

(See theorem 4.2 of [HSBT].)

Theorem 6.4 Let F be a totally real field. Let E/F be an elliptic curve with
multiplicative reduction at some prime vq of F . The numbers

(1 + Nv −#E(k(v)))/2
√

Nv

as v ranged over the primes of F are equidistributed in [−1, 1] with respect
to the measure (2/π)

√
1− t2 dt.

(See theorem 4.3 of [HSBT].)
Finally let us consider the L-functions of the motives Vt for t ∈ Q. More

precisely for each pair of rational primes l and p there is a Weil-Deligne rep-
resentation WD(Vl,t|Gal (Qp/Qp)) of WQp associated to the Gal (Qp/Qp)-module

Vl,t (see for instance [TY]). Moreover for all but finitely many p there is a
Weil-Deligne representation WDp(Vt) of WQp over Q such that for each prime

l 6= p and each embedding Q ↪→ Ql the Weil-Deligne representation WDp(Vt)
is equivalent to the Frobenius semi-simplification WD(Vl,t|Gal (Qp/Qp))

F-ss. We

will let S(Vt) denote the finite set of primes p for which no such representa-
tion WDp(Vt) exists. It is expected that S(Vt) = ∅. If indeed S(Vt) = ∅, then
we set L(Vt, s) equal to

2n/2(2π)n(n−2)/8(2π)−ns/2Γ (s)Γ (s− 1)...Γ (s+ 1− n/2)
∏
p

L(WDp(Vt), s)

and
ε(Vt, s) = i−n/2

∏
p

ε(WDp(Vt), ψp, νp, s),

where νp is the additive Haar measure on Qp defined by νp(Zp) = 1, and
ψp : Qp → C is the continuous homomorphism defined by

ψp(x+ y) = e−2πix

for x ∈ Z[1/p] and y ∈ Zp. The function ε(Vt, s) is entire. The product
defining L(Vt, s) converges absolutely uniformly in compact subsets of Re s >
1 +m/2 and hence gives a holomorphic function in Re s > 1 +m/2.
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Theorem 6.5 Suppose that t ∈ Q − Z[1/(n + 1)]. Then S(Vt) = ∅ and the
function L(Vt, s) has meromorphic continuation to the whole complex plane
and satisfies the functional equation

L(Vt, s) = ε(Vt, s)L(Vt, n− s).

(See theorem 4.4 of [HSBT].)
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