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1 NotationLet p denote an odd prime, letO denote the ring of integers of a �nite extensionK=Q p , let � denote its maximal ideal and let k = O=�.If L is a perfect �eld GL will denote its absolute Galois group and if thecharacteristic of L is not p then � : GL ! Z�p will denote the p-adic cyclotomiccharacter. If L is a number �eld and } a prime of its ring of integers thenG} will denote a decomposition group at } and I} the corresponding inertiagroup. We will denote by Frob } the arithmetic Frobenius element of G}=I}.If G is a group and M a G-module we will let MG and MG denote respec-tively the invariants and coinvariants of G on M . If � is a representation ofG into the automorphisms of some abelian group we shall let V� denote theunderlying G-module. If H is a normal subgroup of G then we shall let �Hand �H denote the representation of G=H on respectively V H� and V�;H .We shall also �x a continuous representation� : GQ �! GL2(k)with the following properties.� � is modular in the sense that it is a modp representation associated tosome modular newform of some weight and level.� The restriction of � to the group Gal (Q =Q (p(�1)(p�1)=2p)) is absolutelyirreducible.� If c denotes complex conjugation then det �(c) = �1.� The restriction of � to the decomposition group at p either has the form�  1 �0  2 �with  1 and  2 distinct characters and with  2 unrami�ed; or is inducedfrom a character � of the unrami�ed quadratic extension of Q p whoserestriction to the inertia group is the fundamental character of level 2,Ip !! F�p2 .� If l 6= p then{ either �jIl � � � 00 1 �, 2



{ or �jIl � � 1 �0 1 �,{ or �jGl is absolutely irreducible and in the case �jIl is absolutelyreducible we have l 6� �1 mod p.(This implies that �jGl is either unrami�ed or of type A, B or C as de�nedin chapter 1 of [W2]. On the other hand if �jGl is of type A, B or C thensome twist satis�es the condition above.)In the case that �jGp � �  1 �0  2 � we will �x the pair of characters  1;  2.Note that in some cases this may involve making a choice.We will let Q denote a �nite set of primes q with the properties� � is unrami�ed at q,� q � 1 mod p,� �(Frob q) has distinct eigenvalues, which we shall denote �q and �q.Much of our notation will involve a subscript Q to denote dependence on Q,whenever Q = ; we may simply drop it from the notation.For q 2 Q we shall let �q denote the Sylow p-subgroup of (Z=qZ)�. Weshall let �q denote a generator. We will write �Q for the product of the �qwith q 2 Q. We will let aQ denote the kernel of the map O[�Q] ! O whichsends every element of �Q to 1. Let �q denote the characterGQ �! Gal (Q(�q )=Q) �= (Z=qZ)�!! �q;and let �Q =Qq2Q �q.We will denote by NQ the product of the following quantities:� the conductor of �;� the primes in Q;� p, if � is not 
at (i.e. � does not arise from the action of Gp on theQ p -points of some �nite 
at group scheme over Zp) or if det �jIp 6= �.(We remark that if �jGp is 
at but det �jIp 6= � then �jGp arises from anetale group scheme over Zp. We also note that in [W2] the term 
at isnot used when the group scheme is ordinary.)We will let �Q denote the inverse image under �0(NQ) ! (Z=NQZ)� of theproduct of the following subgroups: 3



� the Sylow p-subgroup of (Z=MZ)�, where M denotes the conductor of�;� for each q 2 Q the unique maximal subgroup of (Z=qZ)� of order primeto p.Let T(�Q) denote the Z-subalgebra of the complex endomorphisms of thespace of weight 2 cusp forms on �Q which is generated by the Hecke operatorsTl and hli for l 6 jpNQ, by Uq for q 2 Q and by Up if pjNQ. Let m denote theideal of T(�Q)
ZO generated by �, by tr �(Frob l)�Tl and det �(Frob l)� lhlifor l 6 jpNQ, by Uq � �q for q 2 Q and by Up �  2(Frob p) if pjNQ. Note that ifQ 6= ; this de�nition only makes sense if O is su�ciently large that k containsthe eigenvalues of �(Frob q) for all q 2 Q. It is a deep result following fromthe work of many mathematicians that m is a proper ideal (see [D]), and somaximal. We let TQ denote the localisation of T(�Q) 
ZO at m. Note thatTQ is reduced because the operators Tl for l 6 jNQ act semi-simply on the spaceof cusp forms for �Q and the Uq for q 2 Q act semi-simply on all commoneigenspaces for the Tl for which the corresponding p-adic representation � iseither rami�ed at q or for which �(Frob q) has distinct eigenvalues. Thereis a natural map O[�Q] ! TQ, which sends x 2 �Q to hyi where y 2 Z,y � x mod q for all q 2 Q and y � 1 mod N;.It follows from the discussion after theorem 2.1 of [W2] or from the workof Carayol [C2] that there is a continuous representation�modQ : GQ �! GL2(TQ);such that if l 6 jNQp then �modQ is unrami�ed at l and we have tr �modQ (Frob l) = Tland det �modQ (Frob l) = lhli. In particular the reduction of �modQ modulo themaximal ideal of TQ is �. From [C1] we can deduce the following.� If q 2 Q then �modQ jGq = �1��2 where �1 is unrami�ed and �1(Frob q) =Uq, and where �2jIq = �qjIq .� If l 6= p and �jIl is non-trivial but unipotent then �modQ jIl is unipotent.� If l 62 Q [ fpg and either �jIl = � � 1 or �jGl is absolutely irreduciblethen �modQ (Il) �! �(Il).� det �modQ = �Q�� where � is a character of order prime to p.Moreover if �jGp is 
at and if det �jIp = � then p6 jNQ so �modQ jGp is 
at (i.e.the reduction modulo every ideal of �nite index is 
at). If �jGp is not 
at4



or if det �jIp 6= � then pjNQ, �jGp � �  1 �0  2 � and Up is a unit in TQ. Itfollows from theorem 2 of [W1] (or more directly in the case  1jIq 6= � fromproposition 12.9 of [G]) that �modQ jGp � � �1� �0 �2 �, where �2 is unrami�edand �1(Ip) has order prime to p. In the case that �1 is unrami�ed we knowfurther that �1 = �2 (see proposition 1.1 of [W2]) and that this character has�nite order. It will be convenient to introduce the twist �0Q = �modQ 
 ��1=2Q of�modQ . In particular we see that det �0Q is valued in O�.The main theorem of this paper is as follows. Recall that we may write Tfor T;.Theorem 1 The ring T is a complete intersection.We note that if O0 is the ring of integers of a �nite extension K 0=K thenthe ring constructed using O0 in place of O is just TQ 
O O0. Also T is acomplete intersection if and only if T
O O0 is (using for instance corollary 2.8on page 209 of [K2]). Thus we may and we shall assume that O is su�cientlylarge that the eigenvalues of every element of � are rational over k and thatthere is a homomorphism � : T !! O. In particular the de�nition of TQ makessense for all Q. There is an induced map �Q : TQ ! T ! O. The mapTQ ! T takes the operators Tl and hli to themselves and the operator Uq tothe unique root of U2 � TqU + qhqi in T above �q. We will let }Q denotethe kernel of �Q and will let �Q denote the ideal �Q(Ann TQ(}Q)). Then itis known that 1 > #}Q=}2Q � #O=�Q with equality if and only if TQ is acomplete intersection (see the appendix of [W2] or [L], we are using the factthat TQ is reduced).2 Generalisation of a Result of de ShalitIn this section we shall use the methods of de Shalit (see [dS]) to prove thefollowing theorem.Theorem 2 The ring TQ is a free O[�Q] module of O[�Q]-rank equal to theO-rank of T.By lemma 3 of [DT] we may choose a primeR with the following properties:� R 6 j6NQp;� R 6� 1 mod p; 5



� �(Frob R) has distinct eigenvalues �R and �R;� (1 +R)2 det �(Frob R) 6= R(tr �(Frob R))2.Let �Q� be de�ned in the same way as �Q but with (Z=qZ)� replacing itsmaximal subgroup of order prime to p in the de�nition for each q 2 Q. Let�0Q = �Q\�1(R) and let �0Q� = �Q� \�1(R). The purpose of introducing theauxiliary prime R is to make these groups act freely on the upper half complexplane. Let T0(�0Q) denote the Z-subalgebra of the complex endomorphism ringof the space of weight two modular (not necessarily cusp) forms generated bythe operators Tl and hli for l 6 jNQR and by Ul for ljNQR. Let m0Q denote themaximal ideal of T0(�0Q)
ZO generated by the following elements:� �;� Tl � tr �(Frob l) and lhli � det �(Frob l) for l 6 jNQRp;� Uq � �q for q 2 Q or q = R;� Ul � tr �Il(Frob l) if ljN; and l 6= p;� Up �  2(Frob p) if pjN;;� Tp � tr �Ip(Frob p) if p6 jN;.Let T0Q denote the localisation of T0(�0Q) 
ZO at m0Q. Let Y 0Q denote thequotient of the upper half complex plane by �0Q and let X 0Q denote its standardcompacti�cation. Complex conjugation c acts continuously on these Riemannsurfaces. We let H1(Y 0Q;O)� and H1(X 0Q;O)� denote the �1 eigenspaces ofc on H1(Y 0Q;O) and H1(X 0Q;O). All these de�nitions go over verbatim, butwith Q� replacing Q.Lemma 1 T0Q �= TQ and T0Q� �= T.This is a standard argument which we will only sketch. First observe thatbecause � is irreducible T0Q and T0Q� can be de�ned using the ring generatedby the Hecke operators on the spaces of weight two cusp forms S2(�0Q) andS2(�0Q�) (rather than spaces of all modular forms). The same arguments as inthe proof of proposition 2.15 of [W2] show that we can drop the Hecke operatorsTp if p6 jNQ and the Hecke operators Ul for l 6= p and ljN; from the de�nitionwithout changing the Hecke algebra. Next we will show that we need onlyconsider the algebras generated in the endomorphisms of S2(�Q)2 � S2(�0Q)and S2(�)2#Q+1 � S2(�0Q�). This follows from the following facts.6



� As R 6� 1 mod p and det � is unrami�ed at R, no component of T0Qnor of T0Q� can correspond to an eigenform with a non-trivial action of(Z=RZ)�.� As �R=�R 6= R�1 in k, no component of T0Q nor of T0Q� can correspond toan eigenform which is special at R (i.e. an eigenform which correspondsto a cuspidal automorphic representation of GL2(A ) whose componentat R is special).� As for each prime q 2 Q, �q=�q 6= q�1 in k, no component of T0Q� cancorrespond to an eigenform which is special at q.The ring generated by the Hecke operators Tl and hli for l 6 jpNQR, by Uq forq 2 Q [ fRg and by Up if pjNQ on S2(�Q)2 is isomorphic to T(�Q)[uR]=(u2R �TRuR +RhRi). In fact UR acts by the matrix� TR 1�RhRi 0 �on S2(�Q)2. Similarly the ring generated by the Hecke operators Tl and hli forl 6 jpNQR, by Uq for q 2 Q[fRg and by Up if pjNQ on S2(�)2#Q+1 is isomorphicto T(�)[uq : q 2 Q [ fRg]=(u2q � Tquq + qhqi : q 2 Q [ fRg). Tensoringwith O and localising at the appropriate maximal ideal we get the desiredisomorphism. We have to use the fact that u2R � TRuR + RhRi has two rootsin TQ with distinct reductions modulo the maximal ideal and the similar factsover T for u2q � Tquq + qhqi with q 2 Q [ fRg.Because � is irreducible we see that H1(Y 0Q;O)m0Q = H1(X 0Q;O)m0Q and thatH1(Y 0Q�;O)m0Q� = H1(X 0Q�;O)m0Q�. By corollary 1 of theorem 2.1 of [W2] wesee that H1(X 0Q;O)�m0Q are free rank one T0Q-modules and that H1(X 0Q�;O)�m0Q�are free rank one T0Q�-modules. Hence it will su�ce to prove the followingproposition.Proposition 1 H1(Y 0Q;O)� is a free O[�Q]-module, with O[�Q]-rank equalto the O-rank of H1(Y 0Q�;O)�.Because H1(Y 0Q�; K) = H1(Y 0Q; K)�Q we need only show that H1(Y 0Q;O)�is a free O[�Q]-module. Because R � 5, �0Q� acts freely on the upper halfcomplex plane and so may be identi�ed with the fundamental group of Y 0Q�.In particular we see that �0Q� is a free group. Similarly �0Q acts freely on theupper half complex plane and we get identi�cationsH1(Y 0Q;O) �= H1(�0Q;O) �= H1(�0Q�;O[�Q]);7



the latter arising from Shapiro's lemma. Under these identi�cations com-plex conjugation goes over to the involution induced by conjugation by � =� �1 00 1 � and trivial action on the coe�cients. (This follows because theaction of c on Y 0Q is induced by the map z 7! �z of the upper half complexplane to itself.)Because �0Q� is a free group, the cocycles Z1(�0Q�;O[�Q]) are a free O[�Q]-module. (If 
1; :::; 
a are free generators of �0Q� then we have an isomorphismZ1(�0Q�;O[�Q]) �! O[�Q]a 7! ( (
1); :::;  (
a)):)On the other hand � acts trivially on �Q and so the coboundaries are containedin Z1(�0Q�;O[�Q])+. Thus H1(Y 0Q;O)� �= Z1(�0Q�;O[�Q])� is a free O[�Q]-module, as desired.Before leaving this section we remark the following corollaries of theorem2.Corollary 1 If q 62 Q then TQ[fqg=(�q � 1) �! TQ. Moreover (�q � 1)TQ[fqgand (1 + �q + ::: + �#�q�1q )TQ[fqg are annihilators of each other in TQ[fqg.Corollary 2 If for some Q the ring TQ is a complete intersection then so isT. The proof is by showing that under the assumption that TQ[fqg is a com-plete intersection, so is TQ. The argument in section 2 of [K1] shows that ifa complete local noetherian ring S is a complete intersection, if f 2 S and ifHomS(S=(f); S) = HomS(S=(f);Ann S(f)) is a free S=(f) module then S=(f)is a complete intersection. We apply this result with S = TQ[fqg and f = �q�1.The �nal condition is met because the annihilator of �q � 1 in TQ[fqg is a freerank one TQ module by the last corollary.Corollary 3 �Q = �#�Q.We remind the reader that �Q is de�ned at the end of section one and that� = �;. The proof of the corollary is by showing that �Q[fqg = �Q#�q ifq 62 Q. Write Q0 = Q[fqg and let � denote the natural surjection TQ0 !! TQ.It su�ces to prove that in TQ0 we have the equation Ann}Q0 = (1 + �q +::: + �#�q�1q )��1(Ann TQ(}Q)). However ��1(Ann TQ(}Q)) is just the set ofelements t of TQ0 for which t}Q0 � (�q � 1)TQ0 . The inclusion Ann}Q0 �(1 + �q + ::: + �#�q�1q )��1(Ann TQ(}Q)) is now clear. Conversly if t 2 Ann}Q08



then t annihilates ker � and hence t = (1 + �q + ::: + �#�q�1q )s. Then we seethat s}Q0 � (�q � 1)TQ0 , i.e. that s 2 ��1(Ann TQ(}Q)). The other inclusionnow follows.Corollary 4 #(aQTQ=}QaQTQ)#(O=�) = #(O=�Q).To prove this corollary note that aQ=a2Q �=Lq2QO=#�q. Thus it followsfrom theorem 2 that aQTQ=a2QTQ �= TQ 
O[�Q] aQ=a2Q �=Lq2Q T=#�q and sowe deduce that aQTQ=}QaQTQ �= Lq2QO=#�q. This corollary now followsfrom the last one.3 Some AlgebraIn this section we shall establish certain criteria for rings to be complete inter-sections. We shall rely on the numerical criterion established in the appendixof [W2]. In that appendix there is a Gorenstein hypothesis which can bechecked in the cases where we will apply the results of this section. Howeverin order to state the results of this section in somewhat greater generality weshall reference the paper [L], where the Gorenstein hypothesis in the appendixof [W2] is removed, rather than the appendix of [W2] directly.Fix a �nite 
at reduced local O algebra T with a section � : T !! O.We will consider complete local noetherian O algebras R together with mapsR !! T . We will denote by JR the kernel of the map R !! T , by �R theinduced map R !! O, by }R the kernel of �R and by �R the image under �Rof the annihilator in R of }R. We will let 	R = (}2R \ JR)=}RJR.If S !! R!! T then }2S !! }2R, JS is the pre-image of JR and so 	S !! 	R.We have an exact sequence(0)! 	R ! JR=}RJR ! }R=}2R ! }T=}2T ! (0):From this we deduce the following facts.� #	R < 1. (To see this it su�ces to show that (	R)}R = (0). How-ever as T is reduced (JR)}R = (}R)}R and so the map (JR=}RJR)}R !(}R=}2R)}R is an isomorphism. The result follows.)� #	R#(}R=}2R) = #(}T =}2T )#(JR=}RJR).Lemma 2 Suppose we have the inequalities #(}T=}2T ) � #(O=�T )#	R and#(O=�T )#(JR=}RJR) � #(O=�R) < 1 and suppose R is a �nite 
at O-algebra. Then R is a complete intersection.9



To show this �rst note that we have the inequalities#(}R=}2R) = #(}T=}2T )#(JR=}RJR)=#	R� #(}T=}2T )#(O=�R)=(#	R#(O=�T ))� #(O=�R):Now applying the criterion of [L] we see that R is a complete intersection.Lemma 3 We have the inequality:#(O=�R) � #(JR=}RJR)#(O=�T ):As FittR(JR) � Ann R(JR) we see that FittO(JR=}RJR) � �RAnn R(JR).On the other hand it is easy to see thatAnn R(}R) � fs 2 Rjs}R � JRgAnn R(JR):Applying �R we see that �R � �TFittO(JR=}RJR);and the lemma follows.Lemma 4 If R is a complete intersection which is �nite and 
at over O and�R 6= (0) then #(}T =}2T ) � #(O=�T )#	R. If R is a power series ring thesame result is true without the assumptions that it is �nite over O and that�R 6= (0).For the �rst part we see that, as R is a complete intersection, #(}R=}2R) =#(O=�R) (see [L]). Thus we see that#	R#(O=�R) = #(}T =}2T )#(JR=}RJR) � #(}T =}2T )#(O=�R)=#(O=�T ):The �rst result follows. For the second result note that we can factor R!! Tas R !! R0 !! T with R0 a complete intersection which is �nite and 
atover O and for which }R0=}2R0 �! }T=}2T (by the proof of lemma 9 of [L]).Then #O=�R0 = #}R0=}2R0 < 1 and so #}T =}2T � #(O=�T )#	R0 . However	R !! 	R0 , so the result follows.We now return to the notation of the �rst section. We will let 	Q denote	TQ and JQ denote JTQ.Proposition 2 Suppose that for a series of sets Qn we have ideals In in TQnwith the following properties. 10



1. In is contained in m2TQn and TQn=In has �nite cardinality.2. In+1T � InT and Tn InT = (0).3. There is a surjective map of O-algebras TQn+1=In+1 !! TQn=In such thatthe diagram TQn+1=In+1 �! TQn=In# #T=In+1T �! T=InTcommutes. (Note that this map is not assumed to take a given Heckeoperator to itself.)4. lim TQn=In is a power series ring.Then for n su�ciently large TQn is a complete intersection, and hence T is acomplete intersection (by corollary 2 of theorem 2).Let P denote lim TQn=In. We get a natural map P !! T and can choosemaps P ! TQn compatible with the maps TQn !! T and TQn !! TQn=In.Because In � m2TQn we see that the map P ! TQn is surjective. We have asequence	P �!�! 	Qn �! ((JQn + In) \ (}2Qn + In))=(JQn}Qn + In):(Note that although the maps P ! TQn and 	P ! 	Qn are not compatible asn varies the composite map above is.) Moreover 	P = lim ((JQn+In)\(}2Qn+In))=(JQn}Qn+ In) (using the fact that TQn=In is �nite for all n) and so as 	Pis �nite we have that the map 	P ! ((JQn + In)\ (}2Qn + In))=(JQn}Qn + In)is injective for n su�ciently large. Thus for n su�ciently large 	P �! 	Qn.We deduce the inequality#(}=}2) � #(O=�)#	P = #(O=�)#	Qn ;where the �rst inequality follows from lemma 4. The proposition follows onapplying corollary 4 of theorem 2 and lemma 2.Corollary 1 Suppose that we have an integer r and a series of sets Qm withthe following properties:1. if q 2 Qm then q � 1 mod pm;2. � is unrami�ed at q and �(Frob q) has distinct eigenvalues;11



3. #Qm = r;4. TQm can be generated as an O-algebra by r elements.Then T is a complete intersection.To prove this corollary it is useful to have the following de�nition. By alevel n structure we shall mean a quadruple B = (A; �; �; 
), where� A is an O-algebra,� � : O[[T1; :::; Tr]]!! A,� � : O[[S1; :::; Sr]]=(pn; (S1 + 1)pn � 1; :::; (Sr + 1)pn � 1)! A makes A afree module over O[[S1; :::; Sr]]=(pn; (S1 + 1)pn � 1; :::; (Sr + 1)pn � 1),� and 
 : A=(S1; :::; Sr) �! T=pn.If B is a structure of level n and n0 � n then it induces a structure of level n0by reducing mod(pn0; (S1 + 1)pn0 � 1; :::; (Sr + 1)pn0 � 1).Let Am = TQm=(pm; �pmq � 1jq 2 Qm). This extends to a level m structurethat we will denote Bm. For n � m we will let Bm;n denote the level nstructure induced by Bm. There are only �nitely many isomorphism classes ofstructures of level n and so we may choose recursively integers m(n) with thefollowing two properties.1. Bm(n);n�1 �= Bm(n�1);n�1.2. Bm(n);n �= Bm;n for in�nitely many integers m.Let In denote the kernel of the map from TQm(n) to the ring underlying Bm(n);n.We claim that the pairs (Qm(n); In) for n � 2 satisfy the requirements ofproposition 2 (we use n � 2 to ensure that In � m2Qn). We need only checkthat lim Bm(n);n is a power series ring. On the one hand it is a �nite freeO[[S1; :::; Sr]]-module, and so has Krull dimension r+1. On the other hand itis a quotient of O[[T1; :::; Tr]] and so must in fact equal O[[T1; :::; Tr]].4 Galois CohomologyIt remains to �nd a sequence of sets Qm with the properties of corollary 1of proposition 2. We must recall some de�nitions in Galois cohomology. Wede�ne H1f (Q l ; ad0�). 12



1. If l 6= p then H1f (Q l ; ad0�) = H1(Fl ; (ad0�)Il) = ker (H1(Q l ; ad0�) !H1(Il; ad0�)).2. If �jGp is 
at and det �jIp = � then we will let H1f (Q p ; ad0�) denotethose elements in H1(Q p ; ad0�) � Ext1k[Gp](V�; V�) which correspond toextensions which can be realised as the Q p -points on the generic �bre ofa �nite 
at group scheme over Zp.3. If �jGp � �  1 �0  2 � with  1jIp 6= � then we let H1f (Q p ; ad0�) denotethe kernel of H1(Q p ; ad0�) ! H1(Ip; (ad0�)=Homk(V�=F; F )), where Fdenotes the line in V� where Gp acts by the character  1.4. Finally if �jGp � �  1 �0  2 � with  1jIp = � but � is not 
at thenwe will let H1f (Q p ; ad0�) denote the kernel of the map H1(Q p ; ad0�) !H1(Q p ; (ad0�)=Homk(V�=F; F )), where F denotes the line in V� whereGp acts by the character  1.We de�ne H1Q(Q ; ad0�) to be the inverse image underH1(Q ; ad0�) �!Yl 62QH1(Q l ; ad0�)of Ql 62QH1f (Q l ; ad0�).We also de�ne H1f (Q l ; ad0�(1)) to be the annihilator of H1f (Q l ; ad0�) underthe pairing of Tate local duality H1(Q l ; ad0�)�H1(Q l ; ad0�(1))! k. We thende�ne H1Q�(Q ; ad0�(1)) to be the inverse image underH1(Q ; ad0�(1)) �!Yl 62QH1(Q l ; ad0�(1))of Ql 62QH1f (Q l ; ad0�(1)).Lemma 5 dimkH1Q(Q ; ad0�) � dimkH1Q�(Q ; ad0�(1)) + #QTo see this we apply proposition 1.6 of [W2]. For l 62 Q and l 6= p wesee that hl = 1 because the index of H1f (Q l ; ad0�) in H1(Q l ; ad0�) is equal to#H1(Il; ad0�)GFl which in turn equals#((ad0�(�1))Il)GFl = #((ad0�(1))Il)GFl = #H0(Q l ; ad0�(1)):13



For q 2 Q we have that hq = #H0(Q q ; ad0�(1)) = #k. It remains to check thathph1 � 1. In the case that �jGp is not 
at or det �jIp 6= � this is proved in parts(iii) and (iv) of proposition 1.9 of [W2]. Thus suppose that �jGp is 
at anddet �jIp = �. We must show that dimkH1f (Q p ; ad0�) � 1 + dimkH0(Q p ; ad0�)(= 1 if �jGp is indecomposable and = 2 otherwise).Following [FL] letM denote the abelian category of k vector spacesM witha distinguished subspace M1 and a k-linear isomorphism � : M=M1 �M1 �!M . Then there are equivalences of categories between:� Mop;� �nite 
at group schemes A=Zp with an action of k;� k[Gp]-modules which are isomorphic as modules over Fp [Gp] to the Q ppoints of some �nite 
at group scheme over Zp.See section 9 of [FL] for details. The only point here is that an action of k onthe generic �bre of a �nite 
at group scheme over Zp extends uniquely to anaction on the whole scheme. Let M(�) denote the object ofM correspondingto �. Then dimkM(�) = 2 and dimkM(�)1 = 1 (since det �jIp = �). We getan embedding Ext1M(M(�);M(�)) ,! H1(Q p ; ad�). We will show that1. dimk Ext1M(M(�);M(�)) = 2 if �jGp is indecomposable and = 3 other-wise;2. the composite map Ext1M(M(�);M(�)) ,! H1(Q p ; ad�) tr! H1(Q p ; k) isnon-trivial, where tr denotes the map induced by the trace.The lemma will then follow.For the �rst point it is explained in lemma 4.4 of [R] how to calculateExt1M(M(�);M(�)). Let fe0; e1g be a basis of M(�) with e1 2 M(�)1. Let�(e0; 0) = �e0 + �e1 and �(0; e1) = 
e0 + �e1. Then Ext1M(M(�);M(�)) canbe identi�ed as a k-vector space with M2(k) modulo the subspace of matricesof the form� r 0s t �� � 
� � �� � � 
� � �� r 00 t � = � 0 (r � t)
s� + (t� r)� s
 � ;for any r; s; t 2 k. Thus dimk Ext1M(M(�);M(�)) = 2 if 
 6= 0 and = 3 if
 = 0. However 
 = 0 if and only ifM(�)1 is a subobject ofM(�) inM. Thisis true if and only if � has a one dimensional quotient on which inertia acts by� which itself is true if and only if �jGp is decomposable.14



For the second point consider the k[Gp]-module � 
 � where � is the un-rami�ed representation Frob p 7�! � 1 10 1 � :Then � 
 � is an extension of � by itself. Moreover its extension class mapsto the element of H1(Q p ; k) = Hom(Q�p ; k) which is trivial on Z�p and takesp 7! 2. Finally it is isomorphic to the action of Gp on the Q p points of a �nite
at group scheme over Zp, because this is true over an unrami�ed extension.Lemma 6 TQ can be generated as an O algebra by dimkH1Q(Q ; ad0�) ele-ments.Let mQ denote the maximal ideal of TQ. It will su�ce to show that thereis an embedding of k-vector spaces� : Homk(mQ=(m2Q; �); k) ,! H1Q(Q ; ad0�):We �rst de�ne � : Homk(mQ=(m2Q; �); k) �! H1(Q ; ad�):If � is a non-zero element of the left hand group we may extend it uniquely toa map of local O-algebras ~� : TQ !! k[�] where �2 = 0. Let �� = ~� � �0Q. Weget an exact sequence(0) �! V� �! V�� �! V� �! (0);and hence a class �(�) in Ext1k[GQ](�; �) �= H1(Q ; ad�). Because det �� is valuedin k � k[�] we see that �(�) actually lies H1(Q ; ad0�).We claim that resl�(�) lies in H1f (Q l ; ad0�) for l 62 Q. This computation isvery similar to some in [W2], but is not actually carried out there, so we givean argument here. First suppose that l 6= p and that either p6 j#�(Il) or �jGlis absolutely irreducible. In this case �0Q(Il) �! �(Il) and det �0QjIl has orderprime to l. Because either p6 j#�(Il) or p = 3 and ad�(Il) �= A4 we have thatH1(�(Il); ad0�) = (0) and so ��jIl �= �jIl
k k[�]. The result follows in this case.Secondly suppose that �jIl is unipotent and nontrivial. Then the same is truefor �0QjIl and then also for ��. However the Sylow p-subgroup of Il is pro-cyclicand so ��jIl must also be of the form � 
k k[�] and resl�(�) 2 H1(Il; ad0(�))must vanish. In the case l = p, � is 
at and det �jIp = � the claim is immediatefrom the de�nitions. In the case l = p and �jGp � �  1 �0  2 � with  1jIp 6= �15



use the fact that �0QjIp � � ~ 1 �0 1 � where ~ 1 denotes the Teichmuller liftingof  1jIp. Finally in the case l = p, �jGp � �  1 �0  2 � with  1jIp = � but �not 
at use the fact that �0QjGp � � �� �0 � �where � is an unrami�ed character of order prime to p.It remains to show that � is injective. Suppose it were not. Then we could�nd a non-zero � such that �� � � 
k k[�]. Thus tr �0Q is valued in O + ker ~�and in particular TQ is not generated as an O-algebra by tr �0Q. We will showthis is not the case. If q 2 Q and � 2 �q then we can �nd � 2 Gq such that(Uq�)2� (tr �0Q(�))(Uq�)+det �0Q(�) = 0. (� will in fact lie above Frob q.) Thispolynomial has distinct roots in k and so both its roots in TQ lie in the sub-O-algebra T generated by the image of tr �0Q. Thus for all � 2 �q, Uq� 2 T .Hence Uq 2 T , and as Uq is a unit, � 2 T . Moreover for all l 62 Q for which� is unrami�ed we see that Tl�Q(Frob l)�1=2 2 T and hence Tl 2 T . If pjNQthen Up�Q(Frob p)�1=2 is a root of the polynomialX2�(tr �0Q(�))X+det �0Q(�)for any element � of Gp which lies above Frob p. For some � over Frob p thispolynomial has two distinct roots in k and so Up 2 T . Thus T = TQ as werequired.Finally we turn to the proof of the main theorem. As in [W2] (after equa-tion (3.8)) we may �nd a set of primes Qm with the following properties:1. if q 2 Qm then q � 1 mod pm;2. if q 2 Qm then � is unrami�ed at q and �(Frob q) has distinct eigenvalues;3. H1;�(Q ; ad0�(1)) ,!Lq2QmH1(Fq ; ad0�(1)).As for each such q, H1(Fq ; ad0�) = k we see that by shrinking Qm we maysuppose that the latter map is an isomorphism. Then we have that #Qm =dimkH1;�(Q ; ad0�(1)). Also H1Q�m(Q ; ad0�(1)) is the kernel of the map in 3.above and so is trivial. Thus by lemma 5 we see that dimkH1Qm(Q ; ad0�) �#Qm and so TQm can be generated by #Qm = dimkH1;�(Q ; ad0�(1)) elements.The main theorem now follows from corollary 1.References[C1] H.Carayol, Sur les repr�esentations p-adiques associ�ees aux formes mod-ulaires de Hilbert, Ann. Sci. Ec. Norm. Super. 19 (1986) 409-468.16
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AppendixThe purpose of this appendix is to explain certain simpli�cations to the argu-ments of chapter 3 of [W2] and to section 3 of this paper. These simpli�cationswere found by G.Faltings and we would like to thank him for allowing us toinclude them here. We should make it clear that the arguments of this ap-pendix (just as those of chapter 3 of [W2] and section 3 of this paper) applyonly to proving conjecture 2.16 of [W2] for the minimal Hecke ring and mini-mal deformation problem. In order to prove theorem 3.3 of [W2] one needs toinvoke theorem 2.17 and the arguments of chapter 2 of [W2].We will keep the notation and assumptions of the main body of this paper.Let Q denote a �nite set of primes as described in section 1 of this paper. Bya deformation of � of type Q we shall mean a complete noetherian local O-algebra A with residue �eld k together with an equivalence class of continuousrepresentations � : GQ ! GL2(A) with the following properties:� � mod mA = �;� ��1 det � is a character of �nite order prime to p;� if l 62 Q [ fpg and �jIl is semi-simple then �(Il) �! �(Il);� if l 62 Q [ fpg and �jIl � � 1 �0 1 � then �jIl � � 1 �0 1 �;� if � is 
at and det �jIp = � then � is 
at;� if either � is not 
at or if det �jIp 6= � then �jGp � � �1 �0 �2 � where �2is unrami�ed and �2 mod mA =  2.As in chapter 1 of [W2] there is a universal lift �univQ : GQ ! GL2(RQ) of typeQ. Recall that the universal property is for lifts up to conjugation. Moreoverone checks (c.f. the second paragraph of the proof of lemma 6) that there is anatural isomorphismHomk(mRQ=(�;m2RQ); k) �= H1Q(Q ; ad0�):There is also a natural map RQ ! TQ so that �univQ pushes forward to aconjugate of �0Q.Recall that if Q = ; we shall often drop it from the notation. In thisappendix we shall reprove the following result.18



Theorem 3 R �! T and these rings are complete intersections.We note that if O0 is the ring of integers of a �nite extension K 0=K thenthe rings T0Q and R0Q constructed using O0 in place of O are just TQ 
O O0and RQ 
O O0. Also TQ is a complete intersection if and only if TQ 
O O0 is(using for instance corollary 2.8 on page 209 of [K2]). Thus we may and weshall assume that O is su�ciently large that the eigenvalues of every elementof �(GQ) are rational over k.We recall that in the penultimate paragraph of section 4 of this paper weshowed that TQ is generated as an O-algebra by tr �0Q(GQ). Thus we see thatthe map RQ ! TQ is a surjection.We will need the following result.Lemma 7 If q 2 Q then �univQ jGq � � �1 00 �2 � where �1jIq = �2j�1Iq and boththese characters factor through �q : Iq !! �q.It su�ces to check the �rst assertion. As � is unrami�ed at q, �univQ jGqfactors through Ẑ n Zp(1), where Ẑ is topologically generated by some liftf of Frob q, Zp(1) is topologically generated by some element � and wheref�f�1 = �q. As �(Frob q) has distinct eigenvalues it is easy to see that afterconjugation we may assume that �univQ (f) = � a 00 b � where a 6� b mod mRQ .We will show that �univQ (�) is a diagonal matrix with entries congruent to1 mod mRQ . We will in fact prove this mod mnRQ for all n by induction on n.For n = 1 there is nothing to prove. So suppose this is true modulo mnRQ withn > 0. Then �univQ (�) � � �1 00 �2 � (12 +N) mod mn+1RQ ;where each �i � 1 mod mRQ and where N � 0 mod mnRQ . We see that modmn+1RQ we have 1 + � a 00 b �N � a 00 b ��1� � �q�11 00 �q�12 � (1 +N)q� � �q�11 00 �q�12 � (1 + qN)� � �q�11 00 �q�12 � +N;19



and as a 6� b mod mRQ we deduce that N is diagonal modmn+1RQ as required.We can choose �2 so that �2(f) � �q mod mRQ . Then we can de�ne amap �q ! R�Q to be �2j2Iq . This makes RQ into an O[�Q]-algebra. Using thelast lemma and the universal properties of RQ and of R it is easy to see thatRQ=aQ �! R. It moreover follows from the discussion preceding theorem 1 ofthis paper that the map RQ !! TQ is a map of O[�Q]-algebras.The key observation is the following ring theoretic proposition. Theorem 3follows on applying it to the rings RQn and TQn for the sets Qn constructed insection 4 of this paper. Note that there is a map O[[S1; :::; Sr]]!! O[�Qn ] withkernel the ideal ((1+S1)#�q1 �1; :::; (1+Sr)#�qr �1), where Qn = fq1; :::; qrg.Note also that by the displayed isomorphism a couple of lines before theorem3 there exists a surjection of O-algebras O[[X1; :::; Xr]]!! RQn.Proposition 3 Suppose r is a non-negative integer and that we have a mapof O-algebras R!! T with T �nite and 
at over O. Suppose for each positiveinteger n we have a map of O-algebras Rn !! Tn and a commutative diagramof O-algebras O[[S1; :::; Sr]] ! Rn !! R# #Tn !! T;where1. there is a surjection of O-algebras O[[X1; :::; Xr]]!! Rn,2. (S1; :::; Sr)Rn � ker (Rn !! R),3. (S1; :::; Sr)Tn = ker (Tn !! T ),4. if bn denotes the kernel of O[[S1; :::; Sr]] ! Tn then bn � ((1 + S1)pn �1; :::; (1 + Sr)pn � 1) and Tn is a �nite free O[[S1; :::; Sr]]=bn-module.Then R �! T and these rings are complete intersections.Reducing mod� we see that it su�ces to prove this result with k replacingO everywhere. In this case we see that the last condition becomes bn �(Spn1 ; :::; Spnr ). Further we may replace R by its reduction modulo mRker (R!! T ), and so we may assume that R is �nite over k. We may replace Tnby Tn=(Spn1 ; :::; Spnr ) and so assume that bn = (Spn1 ; :::; Spnr ). Finally we mayreplace Rn by its image in R � Tn.
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Now de�ne an n-structure to be a pair of k-algebras B !! A together witha commutative diagram of k-algebras k[[S1; :::; Sr]]#k[[X1; :::; Xr]] !! B !! R# #A !! T;such that1. B ,! R � A,2. (S1; :::; Sr)B � ker (B !! R),3. (S1; :::; Sr)A = ker (A!! T ),4. A is a �nite free k[[S1; :::; Sr]]=(Spn1 ; :::; Spnr )-module.Note that #B � (#T )pnr#R and so we see that there are only �nitely manyisomorphism classes of n-structures. If S is an n-structure and if m � n thenwe may obtain an m-structure S(m) by replacing A by A=(Spm1 ; :::; Spmr ) and Bby its image in R� (A=(Spm1 ; :::; Spmr )).As explained above, it follows from the hypotheses of the proposition thatan n-structure Sn exists for each n. We next claim that we can �nd, for eachn, n-structures S 0n such that for m � n we have S 0m �= (S 0n)(m). To prove thisobserve that we can �nd recursively integers n(m) with the following properties� S(m)n(m) �= S(m)n for in�nitely many n� and for m > 1, S(m�1)n(m) �= S(m�1)n(m�1).Then set S 0m = S(m)n(m).Thus we obtain a commutative diagram::: R0n ::: R02 !! R01 !! R# # # #::: T 0n ::: T 02 !! T 01 !! Tof k[[X1; :::; Xr; S1; :::; Sr]]-algebras. Moreover we have that� k[[X1; :::; Xr]]!! R0n !! T 0n,� T 0n is a �nite free k[[S1; :::; Sr]]=(Spn1 ; :::; Spnr )-module,21



� R0n=(S1; :::; Sr)!! R and T 0n=(S1; :::; Sr) �! T .Let R01 denote the quotient of k[[X1; :::; Xr]] by the intersection of the idealsker (k[[X1; :::; Xr]] !! R0n) and let T 01 denote the quotient of k[[X1; :::; Xr]]by the intersection of the ideals ker (k[[X1; :::; Xr]] !! T 0n). Then we have acommutative diagram k[[S1; :::; Sr]]#k[[X1; :::; Xr]] !! R01 !! R# #T 01 !! T;such that� R01 !! T 01,� T 01 is a �nite free k[[S1; :::; Sr]]-module,� R01=(S1; :::; Sr)!! R and T 01=(S1; :::; Sr) �! T .We deduce that T 01 has Krull dimension r and hence we deduce that themap k[[X1; :::; Xr]] !! T 01 has trivial kernel. That is we have isomorphismsk[[X1; :::; Xr]] �! R01 �! T 01. Thus R �! T . As T has Krull dimension 0 andT �= k[[X1; :::; Xr]]=(S1; :::; Sr) we see that T is a complete intersection, andthe proposition is proved.
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