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Introduction

In the work of one of us (A.W.) on the conjecture that all elliptic curves defined
over Q are modular, the importance of knowing that certain Hecke algebras
are complete intersections was established. The purpose of this article is to
provide the missing ingredient in [W2] by establishing that the Hecke algebras
considered there are complete intersections. As is recorded in [W2], a method
going back to Mazur [M] allows one to show that these algebras are Gorenstein,
but this seems to be too weak for the purposes of that paper. The methods of
this paper are related to those of chapter 3 of [W2].
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1 Notation

Let p denote an odd prime, let O denote the ring of integers of a finite extension
K/Q,, let X denote its maximal ideal and let £ = O/A.

If L is a perfect field G, will denote its absolute Galois group and if the
characteristic of L is not p then € : G;, — Z,; will denote the p-adic cyclotomic
character. If L is a number field and g a prime of its ring of integers then
G, will denote a decomposition group at p and I, the corresponding inertia
group. We will denote by Frob , the arithmetic Frobenius element of G,/I,,.

If G is a group and M a G-module we will let M and Mg denote respec-
tively the invariants and coinvariants of G on M. If p is a representation of
G into the automorphisms of some abelian group we shall let V), denote the
underlying G-module. If H is a normal subgroup of G' then we shall let pf
and py denote the representation of G/H on respectively V;JH and V, g.

We shall also fix a continuous representation

p:Gg — GLy(k)
with the following properties.

e p is modular in the sense that it is a modp representation associated to
some modular newform of some weight and level.

e The restriction of 7 to the group Gal (Q/Q(y/(—1)®=1/2p)) is absolutely
irreducible.

e If ¢ denotes complex conjugation then det p(c) = —1.

e The restriction of p to the decomposition group at p either has the form

Y1 x

0 b
with ¢; and 1, distinct characters and with 1, unramified; or is induced
from a character x of the unramified quadratic extension of Q, whose

restriction to the inertia group is the fundamental character of level 2,
I, »F,.

e If [ # p then

O

— either ﬁ‘ll ~ <

0
1 Y
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— or plg, is absolutely irreducible and in the case p|;, is absolutely
reducible we have [ # —1 mod p.

(This implies that p|g, is either unramified or of type A, B or C as defined
in chapter 1 of [W2]. On the other hand if p|g, is of type A, B or C then
some twist satisfies the condition above.)

%1 ; ) we will fix the pair of characters v, 1.
2

Note that in some cases this may involve making a choice.
We will let () denote a finite set of primes ¢ with the properties

In the case that p|g, ~ <

e p is unramified at g,
e ¢ =1 modp,
e p(Frob,) has distinct eigenvalues, which we shall denote o, and £,.

Much of our notation will involve a subscript () to denote dependence on @,
whenever ) = () we may simply drop it from the notation.

For ¢ € @ we shall let A, denote the Sylow p-subgroup of (Z/qZ)*. We
shall let 9, denote a generator. We will write Ag for the product of the A,
with ¢ € Q. We will let ag denote the kernel of the map O[Agy] — O which
sends every element of Ay to 1. Let x, denote the character

Go — Gal (Q(¢,)/Q) = (Z/qZ)" — A,

and let xqo = [[,cq Xo-
We will denote by N the product of the following quantities:

e the conductor of p;
e the primes in );

e p, if 5 is not flat (i.e. » does not arise from the action of G, on the
Q,-points of some finite flat group scheme over Z,) or if detp|;, # e.
(We remark that if p|q, is flat but det p|;, # € then p|g, arises from an
etale group scheme over Z,. We also note that in [W2] the term flat is
not used when the group scheme is ordinary.)

We will let I'g denote the inverse image under I'g(Ng) — (Z/NgZ)* of the
product of the following subgroups:



e the Sylow p-subgroup of (Z/M7Z)*, where M denotes the conductor of
;

e for each ¢ € () the unique maximal subgroup of (Z/qZ)* of order prime
to p.

Let T(I'g) denote the Z-subalgebra of the complex endomorphisms of the
space of weight 2 cusp forms on I'g which is generated by the Hecke operators
T, and (l) for [ fpNg, by U, for ¢ € () and by U, if p|Ng. Let m denote the
ideal of T(I'g) ®7 O generated by A, by tr p(Frob;) — T} and det p(Frob,;) — (/)
for [ fpNg, by U, — a, for ¢ € Q and by U, — ¢»(Frob,) if p|Ng. Note that if
@ # () this definition only makes sense if O is sufficiently large that k contains
the eigenvalues of p(Frob,) for all ¢ € Q. It is a deep result following from
the work of many mathematicians that m is a proper ideal (see [D]), and so
maximal. We let T denote the localisation of T(I'g) ®, O at m. Note that
T is reduced because the operators T for | /Ng act semi-simply on the space
of cusp forms for I'g and the U, for ¢ € @) act semi-simply on all common
eigenspaces for the 7; for which the corresponding p-adic representation 7 is
either ramified at ¢ or for which 7(Frob,) has distinct eigenvalues. There
is a natural map O[Ag] — Tg, which sends z € Ay to (y) where y € Z,
y =2 mod q for all ¢ € @ and y = 1 mod Nj.

It follows from the discussion after theorem 2.1 of [W2] or from the work
of Carayol [C2] that there is a continuous representation

pgwd : Go — GLy(Tg);

such that if [ /Ngp then p3°? is unramified at [ and we have tr p;°*(Frob ) = T}
mod

and det p°*(Frob;) = [(l). In particular the reduction of p¢;°* modulo the
maximal ideal of Tg is p. From [C1] we can deduce the following.

e If g € Q then pg°g, = ¢1 ® dy where ¢y is unramified and ¢y (Frob ;) =
Ug, and where ¢s|;, = xql1,-

e If | # p and Py, is non-trivial but unipotent then p{;°*|;, is unipotent.

o If | ¢ QU {p} and either p|;, = x @ 1 or p|g, is absolutely irreducible
then p°* (1) = p(1).

mod

o det pi}”™ = xq€¢ where ¢ is a character of order prime to p.

mod

Moreover if p|q, is flat and if det p[;, = € then p[Ng so p*|q, is flat (i.e.
the reduction modulo every ideal of finite index is flat). If p|g, is not flat



or if det p[;, # € then p|Ng, pla, ~ ( %1 JQ > and U, is a unit in Tg. It

follows from theorem 2 of [W1] (or more directly in the case 9;[;, # € from

Xée * ), where Y5 is unramified
2

and xi(I,) has order prime to p. In the case that x; is unramified we know
further that y; = x2 (see proposition 1.1 of [W2]) and that this character has

proposition 12.9 of [G]) that pg*|q, ~ (

finite order. It will be convenient to introduce the twist pj; = pg"d ® Xélﬂ of
p°?. In particular we see that det pf, is valued in O*.

The main theorem of this paper is as follows. Recall that we may write T
for Ty.

Theorem 1 The ring T is a complete intersection.

We note that if O’ is the ring of integers of a finite extension K'/K then
the ring constructed using O in place of O is just Tg ®o O'. Also T is a
complete intersection if and only if T®» O’ is (using for instance corollary 2.8
on page 209 of [K2]). Thus we may and we shall assume that O is sufficiently
large that the eigenvalues of every element of p are rational over k£ and that
there is a homomorphism 7 : T — O. In particular the definition of T makes
sense for all (). There is an induced map 7o : Tg — T — O. The map
Tgo — T takes the operators 7; and (I) to themselves and the operator U, to
the unique root of U? — T,U 4 ¢{(gq) in T above «,. We will let pg denote
the kernel of mg and will let 7q denote the ideal mp(Ann,(pg)). Then it
is known that oo > #pQ/pz > #0/nq with equality if and only if Tq is a
complete intersection (see the appendix of [W2] or [L], we are using the fact
that Ty is reduced).

2 Generalisation of a Result of de Shalit

In this section we shall use the methods of de Shalit (see [dS]) to prove the
following theorem.

Theorem 2 The ring Tq is a free O[Ag] module of O[Ag]-rank equal to the
O-rank of T.

By lemma 3 of [DT] we may choose a prime R with the following properties:
e R /6Ngp;
e R # 1 mod p;



e p(Frob i) has distinct eigenvalues oy and [pg;
e (1+ R)*det p(Frob g) # R(trp(Frob g))>.

Let I'g_ be defined in the same way as I'g but with (Z/¢Z)* replacing its
maximal subgroup of order prime to p in the definition for each ¢ € ). Let
Iy =ToNI(R) and let I'y, =T NI (R). The purpose of introducing the
auxiliary prime R is to make these groups act freely on the upper half complex
plane. Let T’(F’Q) denote the Z-subalgebra of the complex endomorphism ring
of the space of weight two modular (not necessarily cusp) forms generated by
the operators 7} and () for [ f[NgR and by U; for I|[NgR. Let m{, denote the
maximal ideal of T'(I'{)) ®z O generated by the following elements:

o )\

e T, — trp(Frob,) and I{l) — det p(Frob,) for | fNgRp;
o U,—a,forqge @ orqg=R;

o U, — trpy(Froby) if I|Ny and [ # p;

e U, — ¢(Frob,) if p|Ny;

o T, —trp, (Frob,) if p /Np.

Let Tf, denote the localisation of T'(I'y)) ®z O at m{,. Let Y/, denote the
quotient of the upper half complex plane by F’Q and let X’Q denote its standard
compactification. Complex conjugation ¢ acts continuously on these Riemann
surfaces. We let H'(Y), O)F and H'(X(,, 0)* denote the £1 eigenspaces of
con H'(Y),0) and H'(X(,O). All these definitions go over verbatim, but
with Q— replacing Q.

Lemma 1 T’Q = Tgy and ']I"Qf ~ T,

This is a standard argument which we will only sketch. First observe that
because p is irreducible T’Q and ']I"Qf can be defined using the ring generated
by the Hecke operators on the spaces of weight two cusp forms SQ(F’Q) and
Sy(Ty ) (rather than spaces of all modular forms). The same arguments as in
the proof of proposition 2.15 of [W2] show that we can drop the Hecke operators
T, if p fNg and the Hecke operators U; for [ # p and I| Ny from the definition
without changing the Hecke algebra. Next we will show that we need only
consider the algebras generated in the endomorphisms of Sy(Ig)* C Sy(I'y)

and S,(I)2*°" ¢ Sy(Iy ). This follows from the following facts.
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e As R # 1modp and detp is unramified at R, no component of T,
nor of Ty, can correspond to an eigenform with a non-trivial action of

(Z/RZ)*.

e Asap/Br # Rt in k, no component of Tf nor of Ty, can correspond to
an eigenform which is special at R (i.e. an eigenform which corresponds
to a cuspidal automorphic representation of G'Ly(A) whose component
at R is special).

e As for each prime ¢ € Q, o,/8, # ¢*' in k, no component of T, can
correspond to an eigenform which is special at ¢.

The ring generated by the Hecke operators 7; and (I) for [ /pNgR, by U, for
q € QU {R} and by U, if p|Ng on Sy(T'g)? is isomorphic to T(T'g)[ur]/(u% —
Trup + R(R)). In fact Ug acts by the matrix

(aim 0)

on Sy(Tg)?. Similarly the ring generated by the Hecke operators T; and ([) for
l [pNgR, by U, for ¢ € QU{R} and by U, if p|Ng on SQ(F)Q#Q+1 is isomorphic
to T(M)[ug : ¢ € QU{R}]/(u; — Tquq +q{q) : ¢ € QU {R}). Tensoring
with O and localising at the appropriate maximal ideal we get the desired
isomorphism. We have to use the fact that u% — Trug + R{R) has two roots
in T¢ with distinct reductions modulo the maximal ideal and the similar facts
over T for u — Tyu, + q(g) with ¢ € Q U {R}.

Because p is irreducible we see that (Y}, O)w, = H'(X§, O)m, and that
H'(Y) O)mei = H'(Xg . O)mei. By corollary 1 of theorem 2.1 of [W2] we
see that H'(X{,, O):, are free rank one T,,-modules and that H'(X¢, @)

Q Q-

are free rank one Ty -modules. Hence it will suffice to prove the following
proposition.

Proposition 1 H'(Y)),0)~ is a free O[Ag]-module, with O[Aq]-rank equal
to the O-rank of H'(Y,, ,0)~.

Because H'(Y),_, K) = H'(Y{), K)*@ we need only show that H'(Y{), 0)~
is a free O[Ag]-module. Because R > 5, [y acts freely on the upper half
complex plane and so may be identified with the fundamental group of Y{, .
In particular we see that I';_ is a free group. Similarly I'y acts freely on the
upper half complex plane and we get identifications

H'(Y5,0) = H'(Ty, 0) = H'(Iy_, O[A)),
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the latter arising from Shapiro’s lemma. Under these identifications com-
plex conjugation goes over to the involution induced by conjugation by & =

( _01 (1) ) and trivial action on the coefficients. (This follows because the

action of ¢ on Y, is induced by the map z — —7% of the upper half complex
plane to itself.)

Because I'f, _ is a free group, the cocycles ZH(I'y, , O[Ag]) are a free O[Aq]-
module. (If v, ..., v, are free generators of [, then we have an isomorphism

Z' Ty, O[Aq]) = O[Ag)®
ZD = (77/}(’71)’577/}(’7(1)))

On the other hand & acts trivially on Ag and so the coboundaries are contained
in ZY(T, , O[Ag])™. Thus H'(Y),0)~ = ZY(T{, ,O[Aq])~ is a free O[Aq]-
module, as desired.

Before leaving this section we remark the following corollaries of theorem
2.

Corollary 1 If ¢ ¢ Q then Tgugp/(6, — 1) = Tg. Moreover (6, — 1)Tgugq)
and (1404 + ... + 6#Aq71)TQU{q} are annihilators of each other in Tguyq) -

Corollary 2 If for some QQ the ring T is a complete intersection then so is

T.

The proof is by showing that under the assumption that Ty, is a com-
plete intersection, so is Tg. The argument in section 2 of [K1| shows that if
a complete local noetherian ring S is a complete intersection, if f € S and if
Homg(S/(f),S) = Homg(S/(f), Ann g(f)) is a free S/(f) module then S/(f)
is a complete intersection. We apply this result with S = T4 and f = §,—1.
The final condition is met because the annihilator of 6, — 1 in Tguyg is a free
rank one Ty module by the last corollary.

Corollary 3 19 = n#Ag.

We remind the reader that 7 is defined at the end of section one and that
n = ng. The proof of the corollary is by showing that ngugy = ne#4, if
q ¢ Q. Write ' = QQ U{q} and let 6 denote the natural surjection Ty —» Tg.
It suffices to prove that in Ty we have the equation Anngpg = (1 + 6, +
e+ 6qu71)9’1(AnnTQ(pQ)). However §~'(Anny,(pg)) is just the set of
elements t of Ty for which tpgy C (d, — 1)Tg. The inclusion Ann pg D
(1404 + ... + (5#Aq71)9’1(Ann To(9¢)) is now clear. Conversly if £ € Ann pg

8



then ¢ annihilates ker § and hence t = (1 4+ 6, + ... + 57215, Then we see
that spg C (0 — 1)Tq, ie. that s € §~'(Annp,(pg)). The other inclusion
now follows.

Corollary 4 #(aqTq/pqagTq)#(0/n) = #(0/nq).

To prove this corollary note that aq/af) = @ o O/#A,. Thus it follows
from theorem 2 that agTq/afTg = Tq ®oja,) 0o/ah = B,eq T/#A, and so
we deduce that agTq/pgagTg = @, .o O/#A,. This corollary now follows
from the last one.

q€Q

3 Some Algebra

In this section we shall establish certain criteria for rings to be complete inter-
sections. We shall rely on the numerical criterion established in the appendix
of [W2]. In that appendix there is a Gorenstein hypothesis which can be
checked in the cases where we will apply the results of this section. However
in order to state the results of this section in somewhat greater generality we
shall reference the paper [L], where the Gorenstein hypothesis in the appendix
of [W2] is removed, rather than the appendix of [W2] directly.

Fix a finite flat reduced local O algebra T" with a section 7 : T — O.
We will consider complete local noetherian O algebras R together with maps
R — T. We will denote by .Jr the kernel of the map R — T, by mp the
induced map R — O, by pg the kernel of 7 and by 7z the image under 7p
of the annihilator in R of pp. We will let U = (p% N Jg)/9rJr-

If S — R —» T then p% —» %, Jg is the pre-image of Jg and so Ug —» Up.

We have an exact sequence

(0) = Tr = Jr/orJr = 0r/0R — pr/07 — (0).
From this we deduce the following facts.

o #VU, < oco. (To see this it suffices to show that (Vg),, = (0). How-
ever as T is reduced (Jg)p, = (9Pr)p, and so the map (Jr/prJr)p, —
(pr/9%)er 1s an isomorphism. The result follows.)

o #UpH(pr/9k) = #(pr/97)#(Jr/9rIR).

Lemma 2 Suppose we have the inequalities # (o1 /%) < #(O/nr)# ¥k and
#(O/np)#(Ir/prIr) < #(O/nr) < oc and suppose R is a finite flat O-

algebra. Then R is a complete intersection.
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To show this first note that we have the inequalities

#(pr/0%) #(or/o7)#(Jr/orIR) /| # YR
#(or/07)#(O/nr) | (#Yr#(O/nr))
#(O/TIR)-

Now applying the criterion of [L] we see that R is a complete intersection.

IAINA

Lemma 3 We have the inequality:

#(O/nr) < #(Jr/orIr)F#(O/nr).

As Fitt g(Jr) C Ann g(Jg) we see that Fitt o(Jr/prJr) C mrADN g(JR).
On the other hand it is easy to see that

Ann g(pr) D {s € R|spr C Jr}Ann g(Jg).
Applying 7 we see that

Nr O T]TFitt O(JR/@RJR);

and the lemma follows.

Lemma 4 If R is a complete intersection which is finite and flat over O and

nr # (0) then #(pr/p>) < #(O/nr)#Vk. If R is a power series ring the
same result is true without the assumptions that it is finite over O and that

nr 7 (0).

For the first part we see that, as R is a complete intersection, #(pr/p%) =
#(O/nr) (see [L]). Thus we see that

#Ur#(0/nr) = #(pr/07)#(Jr/orIR) > #(0r/07)#(O/nr) /#(O/n1).

The first result follows. For the second result note that we can factor R — T
as R — R' — T with R' a complete intersection which is finite and flat
over O and for which pgr/p% — @r/p> (by the proof of lemma 9 of [L]).
Then #0/nr = #or /pp < 0o and so #pr/pi < #(O0/1r)##V g . However
Vi —» We, so the result follows.

We now return to the notation of the first section. We will let ¥, denote
\IJTQ and Jg denote JTQ.

Proposition 2 Suppose that for a series of sets (), we have ideals I, in Tg,
with the following properties.
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1. 1,, 1s contained in m%Q and Tq, /I, has finite cardinality.
2. I,yyT C I,T and N, I,T = (0).

3. There is a surjective map of O-algebras Tq, ., [Ins1 — To, /I, such that
the diagram
TQn+1 /In+1 — TQn/In

! !
T/I, T — T/I,T

commutes. (Note that this map is not assumed to take a given Hecke
operator to itself.)

4. im, Tg, /1, is a power series ring.

Then for n sufficiently large Tq, is a complete intersection, and hence T is a
complete intersection (by corollary 2 of theorem 2).

Let P denote lim, Ty, /I,. We get a natural map P — T and can choose
maps P — T, compatible with the maps Tg, — T and Tg, —» Tg, /In.
Because [, C m%Qn we see that the map P — T, is surjective. We have a
sequence

Up —» Vo, — ((Jo, + 1) N (95, + In))/ (Jo.9q. + In)-

(Note that although the maps P — T, and ¥p — U are not compatible as
n varies the composite map above is.) Moreover Wp = lim((Jq, +1,,)N (95, +
I.))/(Jg.,9q, + In) (using the fact that Ty, /1, is finite for all n) and so as Up
is finite we have that the map Wp — ((Jo, + In) N (05, + 1n))/(Jo. 90, + In)
is injective for n sufficiently large. Thus for n sufficiently large ¥p = W .
We deduce the inequality

#(p/9%) < #(O/M#TVp = #(O/n)# V.,

where the first inequality follows from lemma 4. The proposition follows on
applying corollary 4 of theorem 2 and lemma 2.

Corollary 1 Suppose that we have an integer r and a series of sets QQ,, with
the following properties:

1. if g € Q,, then ¢ =1 mod p™;

2. p is unramified at q¢ and p(Frob,) has distinct eigenvalues;

11



3. #Qm =Ty
4. Tq,, can be generated as an O-algebra by r elements.

Then T s a complete intersection.

To prove this corollary it is useful to have the following definition. By a
level n structure we shall mean a quadruple B = (A, «, 3,), where

e Ais an O-algebra,
e a:0|T,..,T,]] - A,

e 3:0[S1,..., S]]/ (P, (S1 +1)P" —1,...,(S, +1)P" —1) — A makes A a
free module over O[[Sy, ..., S,]]/(p", (S; + 1)P" —1,..., (S, + 1)P" — 1),

e and v: A/(S4, ..., S,) = T/p".

If B is a structure of level n an(’i n' < n then it in(,iuces a structure of level n’
by reducing mod(p™, (S, +1)*" —1,..., (S, + 1)" —1).

Let A, = Tq,, /(P 07" — 1lqg € Q). This extends to a level m structure
that we will denote B,,. For n < m we will let B,,, denote the level n
structure induced by B,,. There are only finitely many isomorphism classes of
structures of level n and so we may choose recursively integers m(n) with the
following two properties.

L. Bm(n),nfl = m(n—1),n—1-
2. Bpn)n = By, for infinitely many integers m.

Let I,, denote the kernel of the map from TQm(n) to the ring underlying B, (n) .
We claim that the pairs (Qmm),I,) for n > 2 satisfy the requirements of
proposition 2 (we use n > 2 to ensure that I, C mg, ). We need only check
that lim_ B,,(,), is a power series ring. On the one hand it is a finite free
O[[S4, ..., S;]]-module, and so has Krull dimension r + 1. On the other hand it
is a quotient of O[[T1,...,T;]] and so must in fact equal O[T}, ..., T,]].

4 Galois Cohomology

It remains to find a sequence of sets @),, with the properties of corollary 1
of proposition 2. We must recall some definitions in Galois cohomology. We
define H}(Q,ad"p).

12



1. If | # p then H}(Q,ad’p) = H'(F,, (ad’p)") = ker (H'(Q,ad’p) —
Hl(IlaadOﬁ))'

2. If plg, is flat and detp|;, = € then we will let H}(Qp,adoﬁ) denote
those elements in H'(Q,,ad’p) C Ext,lc[Gp}(Vp, V5) which correspond to

extensions which can be realised as the Q,-points on the generic fibre of
a finite flat group scheme over Z,,.

3. If plg, ~ ( %1 JQ > with |, # € then we let H}(Qp,adoﬁ) denote

the kernel of H'(Q,,ad’p) — H'(I,, (ad’p)/Homy(V;/F, F)), where F
denotes the line in V; where G, acts by the character .

4. Finally if p|g, ~ < %1 ; ) with 4|7, = € but p is not flat then
2

we will let H}(Q,,ad’p) denote the kernel of the map H'(Q,,ad"p) —
HY(Q,, (ad’p)/Homy (V,/F, F)), where F denotes the line in V, where
G, acts by the character ;.

We define H},(Q, ad’p) to be the inverse image under

H'(Q,2d’p) — [[ H'(Q.ad’p)
I¢Q

of [Tjgq Hy(Q, ad"p).
We also define Hj(Q, ad”p(1)) to be the annihilator of Hy(Q, adp) under

the pairing of Tate local duality H'(Q;,ad"p) x H'(Q;,ad"s(1)) — k. We then
define H.(Q, ad’p(1)) to be the inverse image under

H'(Q ad’s(1)) — [[ H'(Q,ad"p(1))
1¢Q

of ngQ H} (Q, adoﬁ(l)).
Lemma 5 dim; H,)(Q,ad’p) < dim; H},.(Q,ad’p(1)) + #Q

To see this we apply proposition 1.6 of [W2]. For | ¢ @ and | # p we
see that 7 = 1 because the index of H}(Q, ad"p) in H'(Q,ad"p) is equal to
#H'(I),ad’5)“: which in turn equals

#((ad"p(=1))1) " = #((ad’p(1))") Gy, = #H"(Q, ad"p(1)).

13



For ¢ € Q we have that h, = #H°(Q,,ad’s(1)) = #k. It remains to check that
hpheo < 1. In the case that p|g, is not flat or det p|;, # € this is proved in parts
(iii) and (iv) of proposition 1.9 of [W2]. Thus suppose that |, is flat and
det p|7, = e. We must show that dimy H;(Q,, ad’p) < 1+ dimy, H°(Q,, ad’p)
(= 1if p|g, is indecomposable and = 2 otherwise).

Following [FL] let M denote the abelian category of k vector spaces M with
a distinguished subspace M' and a k-linear isomorphism ¢ : M/M' & M' =
M. Then there are equivalences of categories between:

o MP:
e finite flat group schemes A/Z, with an action of k;

e k[G,]-modules which are isomorphic as modules over F,[G,] to the Q,
points of some finite flat group scheme over Z,,.

See section 9 of [FL] for details. The only point here is that an action of k£ on
the generic fibre of a finite flat group scheme over Z, extends uniquely to an
action on the whole scheme. Let M (p) denote the object of M corresponding
to p. Then dim; M(p) = 2 and dim; M(p)' =1 (since detp|;,, = €). We get
an embedding Ext}, (M (p), M (p)) — H'(Q,,adp). We will show that

1. dimy, Ext),(M(p), M(p)) = 2 if p|g, is indecomposable and = 3 other-
wise;

2. the composite map Extly,(M(5), M(p)) — H'(Q,,adp) = H'(Q,, k) is
non-trivial, where tr denotes the map induced by the trace.

The lemma will then follow.

For the first point it is explained in lemma 4.4 of [R] how to calculate
Ext}, (M (p), M (p)). Let {eg,e1} be a basis of M(p) with e, € M(p)'. Let
¢(eo,0) = aeg + Be; and ¢(0,e,) = veg + de;. Then Exth (M (p), M(p)) can
be identified as a k-vector space with Ms(k) modulo the subspace of matrices
of the form

) 3) (53 (0 7) = Caandns “2077):

for any r,s,¢ € k. Thus dimy, Ext} (M (p), M(p)) = 2 if v # 0 and = 3 if
v = 0. However v = 0 if and only if M (p)' is a subobject of M (p) in M. This
is true if and only if p has a one dimensional quotient on which inertia acts by
¢ which itself is true if and only if 5|, is decomposable.
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For the second point consider the k[G,]-module p ® 7 where 7 is the un-

ramified representation
11
Frob, — < 01 ) .

Then p ® 7 is an extension of p by itself. Moreover its extension class maps
to the element of H'(Q,, k) = Hom(Qj, k) which is trivial on Z) and takes
p +— 2. Finally it is isomorphic to the action of G, on the Q, points of a finite

flat group scheme over Z,, because this is true over an unramified extension.

Lemma 6 T can be generated as an O algebra by dimy Hé(@, ad’p) ele-
ments.

Let mg denote the maximal ideal of T¢. It will suffice to show that there
is an embedding of k-vector spaces

% : Homy(mg/(m§), A), k) — H},(Q, ad"p).
We first define
K« Homy(mg/(my, A), k) — H'(Q, adp).

If 6 is a non-zero element of the left hand group we may extend it uniquely to
a map of local O-algebras 6 : T —» k[e] where ¢ = 0. Let py = 6 o pf;. We
get an exact sequence

(0) == Vo == Vpy —> V5 — (0),

and hence a class x(6) in Ext}ﬁ[GQ} (p,p) = H'(Q,adp). Because det py is valued
in k C k[e] we see that x(0) actually lies H'(Q, ad’p).

We claim that res;«(0) lies in H}(Q;, ad’p) for [ ¢ Q. This computation is
very similar to some in [W2], but is not actually carried out there, so we give
an argument here. First suppose that [ # p and that either p /#p(1;) or p|g,
is absolutely irreducible. In this case pf(1;) = p(I;) and det pj|;, has order
prime to [. Because either p /#p([;) or p = 3 and adp([;) = A, we have that
H'(p(I,),ad"p) = (0) and so py|;, = p|;, @k kle]. The result follows in this case.
Secondly suppose that p|;, is unipotent and nontrivial. Then the same is true
for pfy|1, and then also for pg. However the Sylow p-subgroup of I; is pro-cyclic
and so py|;, must also be of the form p ®y, k[e] and resx(0) € H'(I;,ad"(p))
must vanish. In the case [ = p, p is flat and det p|;, = € the claim is immediate

A ) with s, # ¢

from the definitions. In the case | = p and p|q, ~ ( 0
2

15



use the fact that pf |y, ~ < %1 I ) where 9, denotes the Teichmuller lifting

%1 JQ ) with ¢];, = € but p

, e *
pQGPN<0 6)

where 0 is an unramified character of order prime to p.

It remains to show that k is injective. Suppose it were not. Then we could
find a non-zero ¢ such that py ~ p ®; kle]. Thus tr pj, is valued in O + ker 0
and in particular Tq is not generated as an O-algebra by tr pj;. We will show
this is not the case. If ¢ € @ and 6 € A, then we can find 0 € G, such that
(U6)? = (tr piy () (Uy6) +det pfy(0) = 0. (o will in fact lie above Frob ,.) This
polynomial has distinct roots in k£ and so both its roots in T lie in the sub-
O-algebra T' generated by the image of tr p,. Thus for all 6 € A, U6 € T.
Hence U, € T, and as U, is a unit, 6 € 1. Moreover for all | ¢ ) for which
p is unramified we see that Tjxo(Frob;)~"/? € T and hence T} € T. If p|Ng
then U, xq(Frob,) /% is a root of the polynomial X*— (tr pl,(c)) X +det pf, (o)
for any element o of G, which lies above Frob,. For some o over Frob, this
polynomial has two distinct roots in £ and so U, € T. Thus T' = T as we
required.

Finally we turn to the proof of the main theorem. As in [W2] (after equa-
tion (3.8)) we may find a set of primes @), with the following properties:

of 1|7, Finally in the case | = p, p|g, ~ <
not flat use the fact that

1. if ¢ € Q,, then ¢ = 1 mod p™;
2. if ¢ € @, then pis unramified at ¢ and p(Frob ;) has distinct eigenvalues;

3. HL(Qad’5(1)) > B, H'(F,.ad’5(1))
As for each such ¢, H'(F,,ad’p) = k we see that by shrinking Q,, we may
suppose that the latter map is an isomorphism. Then we have that #@),, =
dimy, Hy. (Q,ad"p(1)). Also Hf,. (Q ad”p(1)) is the kernel of the map in 3.
above and so is trivial. Thus by lemma 5 we see that dim, Hém((@, ad’p) <

#Q,, and so Ty, can be generated by #Q,, = dim; H;.(Q, ad’p(1)) elements.
The main theorem now follows from corollary 1.
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Appendix

The purpose of this appendix is to explain certain simplifications to the argu-
ments of chapter 3 of [W2] and to section 3 of this paper. These simplifications
were found by G.Faltings and we would like to thank him for allowing us to
include them here. We should make it clear that the arguments of this ap-
pendix (just as those of chapter 3 of [W2] and section 3 of this paper) apply
only to proving conjecture 2.16 of [W2] for the minimal Hecke ring and mini-
mal deformation problem. In order to prove theorem 3.3 of [W2] one needs to
invoke theorem 2.17 and the arguments of chapter 2 of [W2].

We will keep the notation and assumptions of the main body of this paper.
Let @ denote a finite set of primes as described in section 1 of this paper. By
a deformation of p of type @ we shall mean a complete noetherian local O-
algebra A with residue field k together with an equivalence class of continuous
representations p : Gg — G Lo(A) with the following properties:

e pmod my = p;
e ¢ 'det pis a character of finite order prime to p;

o if | ¢ QU {p} and pl, is semi-simple then p(1;) = o(1});

. _ 1 =* 1 %
olfngU{p}andp[lrv(O 1>thenp[l~ 0 1);
e if p is flat and det p|;, = € then p is flat;

e if either p is not flat or if det p|;, # € then p|q, ~ < b ¥ ) where ¢,

is unramified and ¢, mod my = 1)».

As in chapter 1 of [W2] there is a universal lift pj""” : Gg — G Ly (Rg) of type
. Recall that the universal property is for lifts up to conjugation. Moreover
one checks (c.f. the second paragraph of the proof of lemma 6) that there is a
natural isomorphism

Homk(mRQ/()‘a m%{@)a k) = Hé(@: adoﬁ)'
There is also a natural map Ry — T¢ so that p}f?m” pushes forward to a
conjugate of pfy.
Recall that if Q = () we shall often drop it from the notation. In this
appendix we shall reprove the following result.
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Theorem 3 R = T and these rings are complete intersections.

We note that if @ is the ring of integers of a finite extension K'/K then
the rings Tp, and Ry, constructed using O' in place of O are just Tg ®o O’
and Rg ®o O'. Also Ty is a complete intersection if and only if Tg ®p O’ is
(using for instance corollary 2.8 on page 209 of [K2]). Thus we may and we
shall assume that O is sufficiently large that the eigenvalues of every element
of p(Gg) are rational over k.

We recall that in the penultimate paragraph of section 4 of this paper we
showed that T is generated as an O-algebra by tr p’Q(GQ). Thus we see that
the map Rg — Tg is a surjection.

We will need the following result.

Lemma 7 Ifq € Q then p’é”i”\gq ~ < 0(5)1 (]? ) where ¢, = bl and both
2 q

these characters factor through x, : I, = A,.

It suffices to check the first assertion. As p is unramified at ¢, pzé"“’\gq

factors through 7 x Z,(1), where 7 is topologically generated by some lift
f of Frob,, Z,(1) is topologically generated by some element o and where
fof~' = 0% As p(Frob,) has distinct eigenvalues it is easy to see that after

conjugation we may assume that pg"l”(f) = g 2 ) where a # b mod mpg, .

We will show that pg"i”(a) is a diagonal matrix with entries congruent to
1 mod mp,. We will in fact prove this mod mp,  for all n by induction on n.

For n = 1 there is nothing to prove. So suppose this is true modulo M, with
n > 0. Then

UNLY — % 0 n
pg" (o) = < 01 1 ) (1 + N) mod mR“;l,

where each p; = 1 mod mp, and where N = 0 mod m’}{Q. We see that mod

n+1
a 0 a 0 "
(50 ) (6h)

mj, - we have
) (14 N)9

Il
7N
=
o ﬂ"‘j
i

=

ﬁ o

o~

11l
VN
=
-9
o
N—
_I_



and as a #Z b mod mp, we deduce that N is diagonal modm}l{g1 as required.

We can choose ¢, so that ¢,(f) = B, mod mg,. Then we can define a
map A, — R to be ¢[7 . This makes Rg into an O[Ag]-algebra. Using the
last lemma and the universal properties of Ry and of R it is easy to see that
Rg/ag = R. Tt moreover follows from the discussion preceding theorem 1 of
this paper that the map Ry —» T is a map of O[A]-algebras.

The key observation is the following ring theoretic proposition. Theorem 3
follows on applying it to the rings R¢, and T, for the sets (), constructed in
section 4 of this paper. Note that there is a map O[[Sy, ..., S;]] = O[Ag, ] with
kernel the ideal ((1+4 S;)#2a —1, ..., (1+S,)#%= —1), where Q,, = {q1, ..., ¢, }.
Note also that by the displayed isomorphism a couple of lines before theorem
3 there exists a surjection of O-algebras O[[X;, ..., X,|] = Rq,.

Proposition 3 Suppose r is a non-negative integer and that we have a map
of O-algebras R — T with T finite and flat over O. Suppose for each positive
integer n we have a map of O-algebras R, —» T, and a commutative diagram

of O-algebras
o[si,...,S]] - R, — R

) !
T, — T,

where
1. there is a surjection of O-algebras O[[ Xy, ..., X;|] = R,
2. (S1,..,5,)R, C ker (R, = R),
3. (S1,....5)T,, =ker (T,, » T),

4. if b, denotes the kernel of O[[Sy, ..., S,]] — T, then b, C ((1 + S;)" —
L., (14 S)P" = 1) and T, is a finite free O[Sy, ..., Sy]]/bn-module.

Then R = T and these rings are complete intersections.

Reducing mod A we see that it suffices to prove this result with £ replacing
O everywhere. In this case we see that the last condition becomes b, C
(SP",...,SP"). Further we may replace R by its reduction modulo mgker (R —
— T), and so we may assume that R is finite over k. We may replace T,
by T,/(S?",...,57") and so assume that b, = (S?", ..., SP"). Finally we may
replace R, by its image in R & T,,.
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Now define an n-structure to be a pair of k-algebras B — A together with
a commutative diagram of k-algebras

k[[S1, ..., Sr]]

i
>
=
+

o — g
+
=

+
N

such that
1. B> R® A,
2. (S1,....5,)B C ker (B — R),
3. (S1,...,S,)A=ker (A —>»1T),
4. A is a finite free k[[S), ..., S,]]/(S?", ..., S”")-module.

Note that #B < (#T)?" #R and so we see that there are only finitely many
isomorphism classes of n-structures. If § is an n-structure and if m < n then
we may obtain an m-structure S by replacing A by A/(Sfm, ., SP") and B
by its image in R @ (A/(SY", ..., SP™)).

As explained above, it follows from the hypotheses of the proposition that
an n-structure §,, exists for each n. We next claim that we can find, for each
n, n-structures &, such that for m < n we have S/, = (S")(™). To prove this
observe that we can find recursively integers n(m) with the following properties

. ST(LTn)l) ~ S for infinitely many n

(m—-1) ~y o(m—1)
e and for m > 1, Sn(m) = Sn(mfl).

Then set S/, = 87(;(7;)1).
Thus we obtain a commutative diagram

R, .. R, -» R, —» R
) ! ) )
7 ... T, —» T — T

of k[[ X4, ..., X, S1, ..., Sy]]-algebras. Moreover we have that
o k[[X1,...X,]] » R, > T},
e 7! is a finite free k[[Sy, ..., S,]]/(S?", ..., SP")-module,

T

21



o BLJ(S1nS,) 5 R and T/(S1, ... ;) 5 T.

Let R._ denote the quotient of k[[X, ..., X,|] by the intersection of the ideals
ker (k[[X1,..., X;]] = R]) and let T denote the quotient of k[[Xq,..., X,]]
by the intersection of the ideals ker (k[[ X1, ..., X,]] = 7). Then we have a
commutative diagram

k[[‘sl:-";STH
4
k[[Xla"-aXrH —» R:)o - R
! }
1% — T,
such that
e R —»T.,

e T is a finite free k[[Sy, ..., S;]]-module,
o R_/(S1,....,S;) = Rand T. /(Si....,S,) > T.

We deduce that 7 has Krull dimension r and hence we deduce that the
map k[[X,..., X,]] = T, has trivial kernel. That is we have isomorphisms
k[[Xi,...X,]] &> R, = T . Thus R = T. As T has Krull dimension 0 and
T = k[[Xy, ..., X, ]]/(S1, .., Sr) we see that T' is a complete intersection, and
the proposition is proved.
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