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Abstract

We prove that some new infinite families of odd two dimensional icosahedral
representations of the absolute Galois group Q are modular and hence satsify
the Artin conjecture. We also give an account of work of Ramakrishna on
lifting mod [ Galois representations to characteristic zero.



Introduction

This paper is a sequel to [BDST]. In that paper we proved the Artin conjecture
for certain odd icosahedral representations of Gal (Q*“/Q) by proving that they
were modular. In this paper we will prove a variant of this result with different
local hypotheses. Neither set of hypotheses is strictly weaker/stronger than
the other. The key innovation in this paper is to work with the prime 5
rather than the prime 2. To do this we have to prove Serre’s conjecture for
many continuous representations p : Gal (Q*/Q) — GLy(F2°) which have
projective image As. (Note that such representations do not have cyclotomic
determinant.) The key to doing this is to combine base change arguments with
a beautiful method of Ramakrishna (see [R], [K]) and with an extension to
totally real fields of results of Wiles and of the author and Wiles ([W],[TW]).
(Such a generalisation can be found in [SW2], however we make no use of the
main innovation of [SW2]. There are two key ingredients in the result we do
use. One is due independently to Diamond [Dia] and Fujiwara [F], the other
is due to Skinner and Wiles [SW1]. Results along the lines of the one we use
have been previously announced by Fujiwara.) We no longer have to make
appeal to the main results of [SBT] and [Dic|, but we do still make essential
use of [BT].
More precisely an example of our main result is the following.

Theorem A Let p : Gg — GLy(C) be an irreducible continuous representa-
tion with det p(c) = —1 (where ¢ denotes a complex conjugation). Suppose
moreover that if the projective image of p is isomorphic to As then the projec-
tive image of the inertia group at 3 has odd order and the projective image of
the decomposition group at 5 is unramified of order 2. Then p is modular and
its Artin L-function, L(p, s), is entire.

This paper is organised as follows. In the first section we prove a slight
extension of one of the main results of [R]. We emphasise that the method is
entirely Ramakrishna’s, we simply make some minor technical improvements.
In the second section we apply this result to prove our main theorems.

We would like to thank the referee for his/her useful suggestions.

Notation

If K is a perfect field we will let K“ denote its algebraic closure and G
denote its absolute Galois group Gal (K*°/K). If moreover p is a prime number
different from the characteristic of K then we will let €, : Gx — Z; denote
the p-adic cyclotomic character and w, the Teichmuller lift of €, mod p. If V'
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is a Z,[G ] module we will write V (n) for V ®z, Z;(e;). If K is a local field
we will let Wy denote the Weil group of K. If K is a number field and z is
a finite place of K we will write GG, for a decomposition group above z, I,
for the inertia subgroup of G, and Frob, for an arithmetic Frobenius element
in G,/I,. We will also let Ok denote the integers of K and k(x) denote the
residue field of Ok at x. We will let ¢ denote complex conjugation on C.

We will write uy for the group scheme of N roots of unity. We will
write W (k) for the Witt vectors of k. We will write ad°p for the trace zero
submodule of the adjoint Hom (p, p) of p.

Suppose that E/K is an elliptic curve. If m is a positive integer prime
to the characteristic of K we will write pj,, for the representation of G on
E[m](K¢9). If [ is rational prime coprime to the characteristic of K, we will
write T} F for the l-adic Tate module of E, V|F for T)F ®; Q and pg; for the
representation of G on V E.

Suppose that F' is a totally real number field and that 7 is an algebraic
cuspidal automorphic representation of GLy(Ar) with field of definition (or
coefficients) M C C. In some cases, including the cases that 7, is regular
and the case 7y, is weight (1,...,1), then it is known that M is a CM num-
ber field and that for each prime A of Oy there is a continuous irreducible

representation
Pr - GF — GLQ(M)\)

canonically associated to m. (See [Ta] for details.) We may always conjugate
pr. SO that it is valued in GLy(Op ) and then reduce it to get a continuous
representation Ggp — GLo(Opr/A). If for one such choice of conjugate the
resulting representation is irreducible then it is independent of the choice of
conjugate and we will denote it p, ,.

1 Generalisation of a result of Ramakrishna.

In this section we give a slight generalisation of a result of Ramakrishna [R].
We stress that both the result and the arguments we use are essentially his.

In this section we will let | denote an odd rational prime, € denote ¢, and
w denote w;. We will also let k denote a finite extension of F; and p : Gg —
GLy(k) a continuous representation such that p(Gg) is insoluble. Define a
positive integer n as follows. If p|¢, is absolutely reducible set n = 1. Otherwise
choose 1 < n <[ —1 such that

ﬁ‘ll ~ ¢n+(l+1)m D ¢nl+(l+1)m

(over k) where 1 is a fundamental character of level 2 (see [S]).
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Let S denote a finite set of rational primes which contains [ and all primes
where p is ramified. We will let Gg denote the Galois group of the maximal
extension of (Q which is unramified outside S. Thus p factors through Gg. By
a deformation of p (resp. p|g,) we shall mean a complete noetherian local ring
(R, m) with residue field k and a continuous representation p : Gg — G Ly(R)
(resp. p : G, — GLy(R)) such that (p mod m) = p and e ™det p has finite
order prime to [. In the global case we will write S-deformation if we wish to
emphasise the choice of set S.

Now suppose that for each v € S we are given a pair (C,, L,) where C,
is a collection of deformations of p|g, and L, is a subspace of H'(G,,adp)
satisfying the following properties.

P1. (k,ﬁ‘gv) € C,.

P2. The set of deformations in C, to a fixed local ring (R, m) is closed under
conjugation by elements of 1 + Ms(m).

P3. If (R,p) € C, and f : R — S is a morphism of complete local noetherian
rings which induces an isomorphism on residue fields then (S, fop) € C,.

P4. Suppose that (R, p1) and (R, p2) € C,, that I (resp. I3) is an ideal of
Ry (resp. R,) and that ¢ : Ry/I; = Ry/I is an isomorphism such that
¢(p1 mod I1) = ps mod I5. Let R3 be the subring of R; @ R, consisting
of pairs with the same image in R;/I; — Ry/I,. Then (R, p1 & p3) € C,.

P5. If (R, p) is a deformation of p|g, and if {I;} is a nested sequence of ideals
in R with intersection (0) such that each (R/I;, p) € C, then (R, p) € C,.

P6. Suppose (R, m) is a complete noetherian local ring with residue field k
and suppose that [ is an ideal of R with m/ = (0). If (R/I,p) € C,
then there is a deformation p of p|g, to R such that (R,p) € C, and
(pmod I) = p.

P7. Suppose that ((R,m),p1) and ((R,m),ps) are deformations of p with
((R,m), p1) € Cy, and that I is an ideal of R with mI = (0) and (p; mod
I) = (ppmod I). Thus o — py(0)pi(c)~! — 1 defines an element of
H'(G,,ad Oﬁ)®kf which we shall denote [ps—p;]|. Then [po—p1] € L, ®%1
if and only if (R, p2) € C,.

Let us next give some examples of such pairs (C,, L,).

E1l. Suppose that v # [ and that [ /#p(I,). Take C, to be the class of
lifts p of p|g, which factor through G,/(I, Nkerp) and take L, to be
H'Y(G,/I,,(ad°p)™). Note that



o H2(G./(I, Nkerp), ad®p) = H2(Go/1,, (ad°p)") = (0),
e HY(G,/(I, Nkerp),ad’p) = L, C H'(G,,ad"p)
e and dim L, = dim H°(G,,ad °p).

E2. Suppose that v = 2, [ = 3 and that (ad°5)(G,) = A4. Take C, to be the
class of lifts p of p|g, which factor through G,/(I, Nkerp) and take L,
to be H(G,/I,, (ad°p)™). Note that

o (adoﬁ)(Iv) = 02 X Cg,
e H'(p(I,),ad’p) = (0) for all i > 0 (for i > 0 use the fact that
3*#?(11’)),

e H{(G,/(I, Nkerp),ad’s) = (0) for all i > 0 (use the Hochschild-
Serre spectral sequence)
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e H'(G,/(I, Nkerp),ad’p) = (0) = L, C H'(G,,ad"p)
e and dim L, = dim H°(G,,ad °p) = 0.

E3. Suppose that with respect to some basis ey, e5 of k? the restriction p|g,

has the form
eX
0

and that either v # 1 mod ! or l|#p(G,). Take C, to be the class of
deformations p of p|g, of the form (with respect to some basis)

(53

where y lifts Y and take L, to be the image of

=l *

—~

Hl(Gv, Hom (key, key)) — Hl(Gv, (ad Oﬁ)).

Under the assumption that either v Z 1 mod [ or l|#p(G,) we see that
the subgroup of g € GLy(R) with

€EX % 1 [ ex ¥
! < 0 X ) o < 0 x )
is just the subgroup of upper triangular elements in GLy(R). Let C(p)
denote the set of g € GLy(R) such that

-1 _ EX *
9plG.9 —< 0 x>



EA4.

for some *. Our assumption implies that C'(p) surjects onto C(p mod I)
for any ideal I of R. From this remark properties P4, P5 and P7 follow
easily. If I and R are as in the statement of property P6 then

H(G,,R") — H°(G,,I")
is surjective, so that
H*(G,,1(1)) — H*(Gy, R(1))
is injective and
HY(G,, R(1)) — H'(Go, (R/I)(1))
is surjective. Thus C, has property P6.

Note also that
dim L,

= dim HY(G,, Hom (key, ke;)) — dim H(G,, (ad °p) /Hom (key, ke;))
+dim H°(G,, ad °p) — dim H°(G,,, Hom (key, ke;))

— G+ 1+ dim HY(G,, Hom (kea, ker)) — 1+ HO(G,,ad"p)
—H°(G,,Hom (kes, key))

= 0y +dim H°(G,, ad °p)

where d,; = 1 if v = [ and 0 otherwise.

Suppose v = | and that with respect to some basis ey, es of k? p|g, has
the form
€X; *
0 X,
Suppose also that ; # X, and that if €x;, = X, then pg, is wildly
ramified. Take C; to consist of all deformations of the form

€X1 *
0 X2 ’
where x; and x, are tamely ramified and x» lifts ,. Also take L; to be
the image in H'(Gy, (ad°p)) of the kernel of the natural map
H'(Gy,Hom (key, ke;) @ ((Hom (key, key) @ Hom (key, key)) Nad °p))

!
H' (I, ((Hom (ke;, ke, ) @ Hom (kes, kes)) N ad p)).
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If I and R are as in the statement of property P6 then

H(Gy, IV (x2/x1) = (0),

so that H*(Gy, I(ex1/x2)) = (0) and

H'(G), R(ex1/x2)) — H'(G), (R/I)(ex1/x2))

is surjective. Thus C; has property P6. One can also check that (see for
instance tables 2 and 3 in [R])

dim L; = 1+ dim H°(G},ad p).

E5. Suppose that v = [ and that for some 1 < n <[ — 1 we have

ﬁ‘ll -~ ¢n+(l+l)m D wnl+(l+l)m

where 1) is a fundamental character of level 2. Take C; to be the col-
lection of lifts p : G; — GLy(R) such that p ® w™" is crystalline (in
the sense that it is the inverse limit of crystalline representations over
Artinian quotients of R). A calculation using the theory of Fontaine and
Lafaille shows that C; has property P6 and that there is a suitable L,
with dim L; = 1. (This calculation basically goes back to Ramakrishna’s
thesis, see for instance the paragraph before proposition 2 of [R].)

Recall that the trace gives a perfect pairing ad °p x ad®s — k. By Tate
local duality this induces a perfect pairing

HY(G,,ad"p) x HY(G,, (ad"p)(1)) — k.

We will let L} denote the annihilator of L, under this pairing. We will let
H {1Lv}(G s,ad °p) denote the preimage under the restriction map
H'(Gs,ad’p) — EP H'(Gy, ad°p)

vES

of @,cg Ly Similarly we will let H%L%}(GS, (ad°p)(1)) denote the preimage
under the restriction map

H'(Gs. (ad%)(1)) — @D H'(Go. (ad"5)(1))

veES

of @, 5 L, . Ramakrishna first observes the following lemma.
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Lemma 1.1 Keep the above notation and assumptions. If

Hyp14(Gs, (ad"p)(1)) = (0)

then we can find an S-deformation (W (k),p) of p such that for allv € S the
restriction (W (k), pla,) € Cu.

Proof: The Poitou-Tate exact sequence gives us an exact sequence

H'Y(G,ad"%p) — g H'(Gy,ad"p)/L, — Hy 1 (Gs, (ad"p)(1))"
!

veS HQ(GvaadOﬁ) — H2(G5aad Uﬁ)
(see for instance the proof of theorem 2.18 of [DDT]). Thus we see that

H'(Gs,ad’p) =  H'(G,,ad"p)/L,

vES

and
H*(Gg,ad’p) —  H?*(G,,ad"p).
ves

Now we recursively look for S-deformations (W (k)/I™, p,,) of p such that
for all v € S we have (W(k)/I™, pmlg,) € C,. For m = 1 there is noth-
ing to prove. In general, for all v € S we can lift p,, 1|g, to a continuous
homomorphism p, : G, — GLy(W(k)/I™). By injectivity of the restriction
map on H?’s this means that we can lift p,,_; to a continuous homomorphism
p: Gs — GLy(W(k)/I™). By surjectivity of the map on H'’s we may find a
class ¢ € H'(Gg,ad°p) mapping to

(lple, = pol)ves € H'(G,,ad"p)/Ly,.
veS

Thus we may find a second lifting p,, of p,, 1 to W(k)/I™ such that for all
v € S we have (W (k)/I"™, pml|a,) € C,. The lemma follows. O

In fact under these conditions essentially the same argument shows that
the universal S-deformation of p of type C, for all v € S is a power series ring
over W (k) in dim H{lLv}(GS, ad °p) variables.

Ramakrishna’s main innovation is the following result which gives condi-

tions under which the hypotheses of the last lemma can be achieved.



Lemma 1.2 Let p, S, {(C,, L,)} be as above and suppose that

 dimL,> > dimH"(G,,ad"p).

veES veSU{oo}

Then we can find a finite set of rational primes T O S and data (C,, L,) for
v €T — 8§ satisfying the above conditions P1-P7 and such that

H,4,(Gr, (ad %) (1)) = (0).

Proof: Suppose first that | = 5 and ad Oﬁ(GQ) = Ajs, because in this case
we will require a little extra argument. Choose w ¢ S such that w =1 mod 5
and ad “p(Frob,,) has order 5. Adding w to S with the pair (C,, L,,) as in
example E3, we see that in this case we may assume that

H{;,1(Gs,ad’p) N H'(ad °p(Gy), ad °p) = (0).

(For if ¢ lies in this intersection and is non-zero then ¢ restricts to a non-zero
element of H'(G,,/I,,ad"p), while

HYGy/I,,adp) N L, = (0).)
Now return to the general case. Suppose that
0# ¢ € Hipiy(Gs, (ad"p)(1)).

We will show below that we can find a prime w ¢ S and (Cy, L,,) satisfying
properties P1-P7 and such that

1. dim L, = dim H'(G,,/I,, ad °p),
2. H{, ,(Gs,ad’p) = H'(Gy/I,,ad °p)
3. and ¢ does not map to zero in H' (G, (ad °p)(1))/L}.
Suppose for a moment that we have done this. We have an injection
H%LTJ;}(GSa (ad”p)(1)) — H{lLTJ)—}U{Hl(Gw,(adOﬁ)(l))}(GSU{W}’ (ad “p)(1))

and a formula of Wiles (based on the global Euler characteristic formula, see
for instance theorem 2.18 of [DDT]) tells us that

0—
#H{lL#}u{Hl(Gw,(%d%)(1))}(GSU{w}= (ad"p)(1) N .
#H{lLvi}(Gs,(ad p)(1))#coker (H{le}(GS,ad p) — HY(G,/I,,ad"p)).
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Hence, by our assumption 2,

Hiy(Gs, (adp) (1)) = Hypaym 6, aaopa (Gsugwy (ad *p) (1)

and so we get a left exact sequence

(Gsotuy (ad%P)(1) —  H,., (G, (ad"B)(1))

1l
H'(G, (ad"p)(1))/ Ly

0) — Hipyous

From our assumption 3

¢ & Hipyosy (Gsugwy, (ad°p)(1)) C Hypiy(Gs, (ad "p)(1)).

Our assumption 1 tells us that

dim L, > dim H°(G,, ad °p),

veSU{w} veSU{w,o0}

and the lemma will follow by arguing recursively.

We now turn to the proof of the existence of a prime w ¢ S and a pair
(Cw, Ly) with the above properties. In fact it suffices to show that if 0 # ¢ €
H{lL#}(GS, (ad?p)(1)) and 0 # 1) € H{ILU}(GS, ad °p), then we can find a prime
w ¢ S and (Cy, L,,) satisfying properties P1-P7 and such that

e dim HY(G/I,,ad’p) = dim L,, = 1,
e ¢ does not map to zero in H'(G,,/I,,ad’p)
e and ¢ does not map to zero in H'(G,,, (ad°p)(1))/L;.

(To see this note that by the assumption of the lemma and by Wiles’ formula
(see for instance theorem 2.18 of [DDT]) we have

dim Hy; ,(Gs,ad"p) > dim Hy, (G5, (ad °p)(1)),

so that if H{lL,H

(Gg, (ad°p)(1)) # (0) then we can find
0# v € Hiz 1(Gs, (ad"p)(1)).)

Let K/Q be the field generated by a primitive [ root of unity and by the
fixed field of ker(adp). Note that

e H'(Gal(K/Q),ad’p) = (0),



o H'(Gal(K/Q), (ad "p)(1)) = (0)

e and there is an element ¢ € Gal (K/Q) such that ad“p(c) has an eigen-
value €(o) Z 1 mod [.

(This is a straightforward exercise using the following facts.
e ad’p(Gg) = As, PSLy(Fr) or PG Ly(FF;r) for some r € Zsy.
e If [ is an odd prime, r € Z. and I" # 5 then H'(PSLy(F),ad®) = (0).
o H'(PGLy(Fs),ad’) = (0).

e In the case I = 5 and ad °5(Gg) = As, we have seen that we may assume
that
Hy,,(Gs,ad"p) N H' (ad p(Gg),adp) = (0).)

Let o be a lift of 0 to Gg. Then p(o) has two distinct eigenevalues o, 8 € k
with a/f = €(0). Let e, and eg denote corresponding eigenvectors. We get a
decomposition

ad’p = Hom (kes, ke,)®
((Hom (keg, keo) @ Hom (keg, keg)) Nad °p) @ Hom (ke,, keg).

Let ¢ and 1) be cohomology classes as above. We will use the same symbols
to denote some choice of cocycles representing these cohomology classes. The
restrictions of ¢ and v are non-zero homomorphisms ¢ : Gx — (ad®p)(1)
and ¢ : Gg — ad’p. Let K, and K, denote the fixed field of their kernels.
Because ad °p is absolutely irreducible and not isomorphic to its twist by € we
see that K, and K, are disjoint over K. Moreover the images ¢(Gg) and
#(Gk) are not contained in any proper k-subspaces of ad°s and (ad°p)(1),
respectively. Thus we can find a 7 € Gal (K4 K, /K) such that

¢(10) = ¢(7) + ¢(0) &
Hom (keg, ke, ) (1) @ ((Hom (keq, keo) ® Hom (keg, keg)) Nad °p)(1)

and
Y(ro) =Y(1) + ¢(0) ¢ Hom (keg, ke,) @ Hom (ke,, keg).

Now choose a prime w ¢ S which is unramified in K4/, /Q and such that
Frob,, = 70. Take C,, as in example E3 so that L, = H'(G,,, Hom (keg, ke,)).
It follows easily that (w,Cy, L,) has the desired properties. O
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Theorem 1.3 Let k be a finite extension of F; and p : Gg — GLy(k) a
continuous representation such that detp(c) = —1 and p(Ggq) is insoluble.
Suppose first that
_ €X1 *
10|Gl 0 y2

and that if €X; = Xy then plg, is wildly ramified. Then there is a continuous
representation p : Gg — GLy(W (k)) such that

e (pmodl) =p,

e plg, ~ 66(1 N with x; a tamely ramified lift of x; fori1=1,2
2
e and for some prime p # | we have p|g, ~ EO for some character

X-
Now suppose that for some 1 <n <[ —1 we have
ﬁ‘h -~ 77Zjn+(l+1)m D 77Zjnl+(l+1)m

where 1 is a fundamental character of level 2, then there is a continuous
representation p : Gg — GLy(W (k)) such that

e (pmodl) =p,
o (pR@w ™)|g, is crytsalline with Hodge-Tate numbers 0 and n

€X

0

e and for some prime p # | we have p|g, ~ for some character

X-

2 Icosa e ral alois representations

We begin with some elementary lemmas on number fields. They are presum-
ably well known, but it is easier to prove them than find a reference. (We
thank J.-P.Serre for providing some helpful references which shorten our orig-
inal proofs and for telling us that the next lemma is due to Chevalley [C].)

Lemma 2.1 Let K be a number field (finite extension of Q) and S a finite
set of places of K. We will let K denote the subgroup of K* consisting of
elements which are units at all finite places v & S and positive at all real
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places v & S. Then for any positive integer n we can find an open subgroup
UcC vag o foo Ok, such that

K;nUc (K;)"

Proof: We may suppose that S contains all infinite places and that /—1 €
K (as K* C K(v/—1)*). We may also suppose that n is a prime power, say
n = p". Thus if ¢ denotes a primitive n® root of unity then Gal (K (¢)/K) is
cyclic. Because K§ is finitely generated, it suffices to prove that if a € K*
and for all y ¢ S we have a € (K )" then a € (K*)". This is theorem 1 of
chapter 9 of [AT]. O

Lemma 2.2 Let K be a number field and S a finite set of places of K. For
each v € S let L, be a finite Galois extension of K,. Then we can find a finite,
soluble, Galois extension M of K, such that for each place w of M above a
place v € S we have L, = M,, as K,-algebras.

Proof: We need only find a finite extension M /K such that M embeds in
a soluble Galois extension of K and such that for each place w of M above a
place v € S we have L, = M, as K,-algebras. (Then replace M by its normal
closure over K.) We may also suppose that S contains all infinite places of K.
Then, by a simple induction argument, we may reduce to the case that each

L,/ K, is a cyclic Galois extension. This case follows easily from theorem 5 of
chapter 10 of [AT]. O

Lemma 2.3 Suppose that p: Gg — GL2(FE°) is a continuous representation
which satisfies the following conditions.

e detp(c) = —1.

e 0 has projective image As.

e The projective image of I3 has odd order.

e The projective image of G5 has order 2 and the corresponding map Q2 —
{£1} sends 5 to —1.

Then there is a finite, soluble, totally real extension F'/Q and an elliptic curve
E/F satisfying the following conditions.

e I'D Q(\/g) and /5 splits completely in F.
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® Dps is equivalent to a twist of pla, by some character.

ﬁE,S . GF —» GLQ(Fq)

E has good ordinary reduction at 3 and potentially good ordinary reduc-
tion at 5.

For all primes v of F' above 3 we have pg 3/ap, ~ X1,0 D X2, With X1, 7
X2,v-

Proof: The obstruction to lifting the continuous homomorphism
G —— As = PSLy(Fs)
to a continuous homomorphism G /5 — SL2(F5) lies in

H*(Gorys), {£1}) = H*(Gyys,, {£1}).

v

Also the local component at (3) (resp. (v/5)) is trivial as (3) (resp. (v/5)) is
inert (resp. ramified) over Q. Thus we can find a totally real, biquadratic field
Fy

e such that F} contains Q(v/5) and both (3) and (+/5) split in F},

e and such that the image of this obstruction vanishes at all finite places
of F] .

As detp(c) = —1 the image of this obstruction is non-trivial at all infinite
places of F}. Similarly the obstruction to lifting the mod 5 cyclotomic character

"co a character GQ( VE) ™ Ha with square the mod 5 cyclotomic character lies
in
H* Gy {+1}) = H*(Gyys),, {1£1})

and has trivial image at all finite places and non-trivial image at infinity. Thus
the sum of the two obstructions vanishes in H*(Gp,, {+1}) and so we can lift

G, —25 A5 = PSLy(F5)
to a continuous representation

ﬁ: GF1 — GLQ(]F5)
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with det p = e5.

Choose a finite, soluble, totally real extension F/F} such that (v/5) splits
completely in F3, such that p is trivial on the decomposition group of every
prime of Fy above 3, but such that the ramification index of any prime above
3 in Fy is odd. Finally let F' be the Galois closure of F5/Q.

Let X;/F be the twist of X5 defined in section 1 of [SBT]. By lemma 1.1
of [SBT] we see that X5 is isomorphic over F' to a Zariski open subset of the
projective line. Also let Y;/ X5 be the cover defined in the proof of theorem
1.2 of [SBT]. Thus Y7 is geometrically irreducible and Y;/X; has degree 24.

Suppose that v is a prime of F' above 3. Then e5(Frob,) = 1 mod 5 so
that the residue field of v contains Fg;. Thus the elliptic curve y? = 2% +
2* — z — 1 defines an element of X;(F,) with good ordinary reduction at v
such that Gy, acts diagonally on its three torsion. The same will be true of
any point of X;(F,) sufficiently close to this one in the 3-adic topology. Let
U, C X5(F,) be a non-empty open set (for the 3-adic topology) consisting of
points corresponding to elliptic curves with good ordinary reduction such that
G, acts diagonally on their three torsion.

Suppose now that v is a prime of F' above 5. We claim that we can find
a non-empty open subset (for the 5-adic topology) U, C X3(F,) consisting
of points corresponding to elliptic curves with good ordinary reduction. It
suffices to find one such point (and then take U, to be a sufficiently small open
neighbourhood of that point). Note that up to twist by quadratic characters

ﬁ|GFU ~ X5 DX

where § is a quadratic character corresponding to a character of Qs(1/5)*

taking v/5 to —1, and y is a tamely ramified character of order 4 corresponding
to a character of Qs(+/5)* taking v/5 to 2. Moreover if § is ramified then we
may take y unramified, while if § is unramified the restriction of x to inertia
also has order 4. In the first case the elliptic curve y> = 2% + z provides a
point in X5(F,). This elliptic curve has CM by Z[v/—1] over F, and a suitable
quartic twist provides a point on Xz(F,) in the second case.

By Ekedahl’s version of the Hilbert irreducibility theorem [E| we may find
a point P € X;(F) which lies in U, for all v|15 and such that any point of
Y5 above P cuts out an extension of F' of degree 24. Let E/F be the elliptic
curve corresponding to P. O

Theorem 2.4 Let p : Gg — GLy(FE) be a continuous representation which
satisfied the following conditions.

e detp(c) = —1.
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e 0 has projective image As.
e The projective image of I3 has odd order.

o The projective image of Gs has order 2 and the corresponding map Qi —
{£1} sends 5 to a non-trivial element.

Then p is modular.

Proof: Choose F' and E as in the previous lemma. By the Langlands-
Tunnell theorem there is a cuspidal automorphic representation 7’ of G Ly (Ap)
and a place p of the field of coefficients of 7" above 3 such that the following
conditions are satisfied.

e For each infinite place v the component 7’ is lowest discrete series.

® Dy ™~ PR3-
e For any place v of F' above 3 we have
P ul Gy ™~ X1,0€3 B X2,0,
where X1, and x2, are finitely tamely ramified, and x; ,€3 Z X2, mod p.

(See [L] and [Tu], as well as [RT] for the method for arranging the conditions

on ) for v infinite.)

Applying theorem 5.1 of [SW2] to the 3-adic Tate module of E, we see that
there is a cuspidal automorphic representation 7" of G Ly(Ar) satisfying the
following conditions.

e For each infinite place v the component 7!/ of 7" is lowest discrete series.
e 7" has field of coefficients Q.
e For every rational prime [, the representation p.»; ~ pg;.

Twisting 7" we see that there is a cuspidal automorphic representation 7’ of
GLy(Ar) and a place X' of the field of coefficients of 7’ above 5 such that the

following conditions are satisfied.
e For each infinite place v the component 7! is lowest discrete series.

e There is an embedding of the residue field of A" in Fg¢ such that p,, ,» ~ p.
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e For any place v of F' above 5 we have

PG, ~ Xiw€s ¥
', )
v 0 X2,v

where 1, and xo, are finitely tamely ramified.

Note that by our assumptions on p, x1,€5 #Z X2, mod X'

We will next explain how to descend (in a mod ! sense) 7’ to Q while main-
taining p. » ~ p. We learned this argument from C.Khare (see [K]).

By theorem 1.3 we may choose a continuous representation p : Go —
G Lo(Qf°) satisfying the following conditions.

e pis a lift of p.

X1€5 *

* Ao 0 xo
The existence of 7’ above and theorem 5.1 of [SW2] tell us that there is a
cuspidal automorphic representation 7 of GLy(Ar) and a place A of the field
of coefficients of m above 5 such that the following conditions are satisfied.

where x1 and Y, are finitely tamely ramified.

e For each infinite place v the component 7, is lowest discrete series.

e There is an embedding of the A-adic completion of the field of coefficients
of m into Qg° such that p,\ ~ pla,.

Let F = F, D Fy» D ... D F, = Q with F;/F;;; Galois and cyclic of prime
degree for all ;. We will show by induction on ¢ that there is a cuspidal auto-
morphic representation m; of GL2(Ap,) and a place \; of the field of coefficients
of m; above 5 such that the following conditions are satisfied.

e For each infinite place v the component T, , is lowest discrete series.

e There is an embedding of the A;-adic completion of the field of coefficients
of ; into Q§° such that pr, , ~ pla,, -

We have treated the case i« = 1 above. Suppose we have treated the case of
i. Let o be a generator of Gal (F;/F;;1). Then we see that 77 = m; and so,
by Langlands base change theorem [L], m; descends to a cuspidal automorphic
representation 7;,; of GLao(Ar,,,) with m,,  lowest discrete series for each
infinite place v of Fj, ;. Then there is an embedding of the field of coefficients
of 7;,, into Q5°, which gives rise to a place Aj,, such that prr . [ap, ~ plop,-
As pla,, is irreducible we see that pr; x is the twist of p|g,, by a character
of Gal (F;/F;11). Thus replacing 7/, , by a twist the claim follows for ¢ + 1.
The case © = n of the claim implies the theorem. O
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Corollary 2.5 Let p: Gg — GLy(C) be a continuous representation satisfy-
ing the following conditions.

e detp(c) = —1.
e p has projective image As.
e The projective image of I3 has odd order.

e The projective image of G5 has order 2 and the corresponding map Q2 —
{£1} sends 5 to —1.

Then p is modular.

Proof: This follows from the previous theorem and the main theorem of
[Buz|. (In the case that the projective representation associated to p is un-
ramified at 5, one may appeal instead to the main theorem of [BT].) O

We will finish by giving some concrete examples where this corollary can be
applied. We list quintic polynomials whose splitting fields are Aj extensions
of Q. In each case this A5 extension can be lifted to a Galois representation p
satisfying the conditions of the above corollary. None of these examples satisfy
the conditions of the main theorem of [BDST]. They are all taken from the
tables in [Buh)].

2% + 22* + 623 4 822 + 10z + 8
x® + 62t + 23 + 42% — 242 4 32
25 — 223 + 222 + 52 + 6

2 + 5t + 823 — 2022 — 21z — 5.

Corrigendum to [Ta].

I would like to thank Fred Diamond for pointing out an error in [Tal. More
precisely, with the definition of the inner product given on page 271 of [Ta,
the calculation of the adjoint of a Hecke operator is in general wrong. This
may be corrected as follows.

e Change the definition of (f, g) on page 271 to read

(fig) = [D*nzUz~": F*N U] {(f(2), g(x)) (Nvz)h.
[z]€X(U)

e Make the corresponding changes to the calculation on page 271 of the
adjoint of [UzU']. The final formula remains unchanged.
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e At the start of line 4 on page 274 of [Ta] add the following sentence.
“Note that [D* N tjulqult;1  F* N UJ|I[D*N tont;1 : F* N Up] and
so there are only finitely many possibilities (independent of U C Uy) for
[D* NtjuUu 't - F*NU”
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