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Abstra
tWe prove that some new in�nite families of odd two dimensional i
osahedralrepresentations of the absolute Galois group Q are modular and hen
e satsifythe Artin 
onje
ture. We also give an a

ount of work of Ramakrishna onlifting mod l Galois representations to 
hara
teristi
 zero.



Introdu
tionThis paper is a sequel to [BDST℄. In that paper we proved the Artin 
onje
turefor 
ertain odd i
osahedral representations of Gal (Q a
=Q ) by proving that theywere modular. In this paper we will prove a variant of this result with di�erentlo
al hypotheses. Neither set of hypotheses is stri
tly weaker/stronger thanthe other. The key innovation in this paper is to work with the prime 5rather than the prime 2. To do this we have to prove Serre's 
onje
ture formany 
ontinuous representations � : Gal (Q a
=Q ) ! GL2(Fa
5 ) whi
h haveproje
tive image A5. (Note that su
h representations do not have 
y
lotomi
determinant.) The key to doing this is to 
ombine base 
hange arguments witha beautiful method of Ramakrishna (see [R℄, [K℄) and with an extension tototally real �elds of results of Wiles and of the author and Wiles ([W℄,[TW℄).(Su
h a generalisation 
an be found in [SW2℄, however we make no use of themain innovation of [SW2℄. There are two key ingredients in the result we douse. One is due independently to Diamond [Dia℄ and Fujiwara [F℄, the otheris due to Skinner and Wiles [SW1℄. Results along the lines of the one we usehave been previously announ
ed by Fujiwara.) We no longer have to makeappeal to the main results of [SBT℄ and [Di
℄, but we do still make essentialuse of [BT℄.More pre
isely an example of our main result is the following.Theorem A Let � : G Q ! GL2(C ) be an irredu
ible 
ontinuous representa-tion with det �(
) = �1 (where 
 denotes a 
omplex 
onjugation). Supposemoreover that if the proje
tive image of � is isomorphi
 to A5 then the proje
-tive image of the inertia group at 3 has odd order and the proje
tive image ofthe de
omposition group at 5 is unrami�ed of order 2. Then � is modular andits Artin L-fun
tion, L(�; s), is entire.This paper is organised as follows. In the �rst se
tion we prove a slightextension of one of the main results of [R℄. We emphasise that the method isentirely Ramakrishna's, we simply make some minor te
hni
al improvements.In the se
ond se
tion we apply this result to prove our main theorems.We would like to thank the referee for his/her useful suggestions.
NotationIf K is a perfe
t �eld we will let Ka
 denote its algebrai
 
losure and GKdenote its absolute Galois group Gal (Ka
=K). If moreover p is a prime numberdi�erent from the 
hara
teristi
 of K then we will let �p : GK ! Z�p denotethe p-adi
 
y
lotomi
 
hara
ter and !p the Tei
hmuller lift of �p mod p. If V1



is a Zp [GK ℄ module we will write V (n) for V 
Zl Zl(�np). If K is a lo
al �eldwe will let WK denote the Weil group of K. If K is a number �eld and x isa �nite pla
e of K we will write Gx for a de
omposition group above x, Ixfor the inertia subgroup of Gx and Frobx for an arithmeti
 Frobenius elementin Gx=Ix. We will also let OK denote the integers of K and k(x) denote theresidue �eld of OK at x. We will let 
 denote 
omplex 
onjugation on C .We will write �N for the group s
heme of N th roots of unity. We willwrite W (k) for the Witt ve
tors of k. We will write ad 0� for the tra
e zerosubmodule of the adjoint Hom (�; �) of �.Suppose that E=K is an ellipti
 
urve. If m is a positive integer primeto the 
hara
teristi
 of K we will write �E;m for the representation of GK onE[m℄(Ka
). If l is rational prime 
oprime to the 
hara
teristi
 of K, we willwrite TlE for the l-adi
 Tate module of E, VlE for TlE 
Z Q and �E;l for therepresentation of GK on VlE.Suppose that F is a totally real number �eld and that � is an algebrai

uspidal automorphi
 representation of GL2(A F ) with �eld of de�nition (or
oeÆ
ients) M � C . In some 
ases, in
luding the 
ases that �1 is regularand the 
ase �1 is weight (1; :::; 1), then it is known that M is a CM num-ber �eld and that for ea
h prime � of OM there is a 
ontinuous irredu
iblerepresentation ��;� : GF ! GL2(M�)
anoni
ally asso
iated to �. (See [Ta℄ for details.) We may always 
onjugate��;� so that it is valued in GL2(OM;�) and then redu
e it to get a 
ontinuousrepresentation GF ! GL2(OM=�). If for one su
h 
hoi
e of 
onjugate theresulting representation is irredu
ible then it is independent of the 
hoi
e of
onjugate and we will denote it ��;�.
1 Generalisation of a result of Ramakrishna.In this se
tion we give a slight generalisation of a result of Ramakrishna [R℄.We stress that both the result and the arguments we use are essentially his.In this se
tion we will let l denote an odd rational prime, � denote �l and! denote !l. We will also let k denote a �nite extension of F l and � : GQ !GL2(k) a 
ontinuous representation su
h that �(GQ ) is insoluble. De�ne apositive integer n as follows. If �jGl is absolutely redu
ible set n = 1. Otherwise
hoose 1 � n � l � 1 su
h that�jIl �  n+(l+1)m �  nl+(l+1)m(over ka
) where  is a fundamental 
hara
ter of level 2 (see [S℄).2



Let S denote a �nite set of rational primes whi
h 
ontains l and all primeswhere � is rami�ed. We will let GS denote the Galois group of the maximalextension of Q whi
h is unrami�ed outside S. Thus � fa
tors through GS. Bya deformation of � (resp. �jGv) we shall mean a 
omplete noetherian lo
al ring(R;m) with residue �eld k and a 
ontinuous representation � : GS ! GL2(R)(resp. � : Gv ! GL2(R)) su
h that (� mod m) = � and ��n det � has �niteorder prime to l. In the global 
ase we will write S-deformation if we wish toemphasise the 
hoi
e of set S.Now suppose that for ea
h v 2 S we are given a pair (Cv; Lv) where Cvis a 
olle
tion of deformations of �jGv and Lv is a subspa
e of H1(Gv; ad 0�)satisfying the following properties.P1. (k; �jGv) 2 Cv.P2. The set of deformations in Cv to a �xed lo
al ring (R;m) is 
losed under
onjugation by elements of 1 +M2(m).P3. If (R; �) 2 Cv and f : R! S is a morphism of 
omplete lo
al noetherianrings whi
h indu
es an isomorphism on residue �elds then (S; f Æ�) 2 Cv.P4. Suppose that (R1; �1) and (R2; �2) 2 Cv, that I1 (resp. I2) is an ideal ofR1 (resp. R2) and that � : R1=I1 �! R2=I2 is an isomorphism su
h that�(�1 mod I1) = �2 mod I2. Let R3 be the subring of R1 � R2 
onsistingof pairs with the same image in R1=I1 �! R2=I2. Then (R3; �1��2) 2 Cv.P5. If (R; �) is a deformation of �jGv and if fIig is a nested sequen
e of idealsin R with interse
tion (0) su
h that ea
h (R=Ii; �) 2 Cv then (R; �) 2 Cv.P6. Suppose (R;m) is a 
omplete noetherian lo
al ring with residue �eld kand suppose that I is an ideal of R with mI = (0). If (R=I; �) 2 Cvthen there is a deformation e� of �jGv to R su
h that (R; e�) 2 Cv and(e� mod I) = �.P7. Suppose that ((R;m); �1) and ((R;m); �2) are deformations of � with((R;m); �1) 2 Cv, and that I is an ideal of R with mI = (0) and (�1 modI) = (�2 mod I). Thus � 7! �2(�)�1(�)�1 � 1 de�nes an element ofH1(Gv; ad 0�)
kI whi
h we shall denote [�2��1℄. Then [�2��1℄ 2 Lv
kIif and only if (R; �2) 2 Cv.Let us next give some examples of su
h pairs (Cv; Lv).E1. Suppose that v 6= l and that l 6 j#�(Iv). Take Cv to be the 
lass oflifts � of �jGv whi
h fa
tor through Gv=(Iv \ ker �) and take Lv to beH1(Gv=Iv; (ad 0�)Iv). Note that 3



� H2(Gv=(Iv \ ker �); ad 0�) �= H2(Gv=Iv; (ad 0�)Iv) = (0),� H1(Gv=(Iv \ ker �); ad 0�) = Lv � H1(Gv; ad 0�)� and dimLv = dimH0(Gv; ad 0�).E2. Suppose that v = 2, l = 3 and that (ad 0�)(Gv) �= A4. Take Cv to be the
lass of lifts � of �jGv whi
h fa
tor through Gv=(Iv \ ker �) and take Lvto be H1(Gv=Iv; (ad 0�)Iv). Note that� (ad 0�)(Iv) �= C2 � C2,� H i(�(Iv); ad 0�) = (0) for all i � 0 (for i > 0 use the fa
t that36 j#�(Iv)),� H i(Gv=(Iv \ ker �); ad 0�) = (0) for all i � 0 (use the Ho
hs
hild-Serre spe
tral sequen
e),� H1(Gv=(Iv \ ker �); ad 0�) = (0) = Lv � H1(Gv; ad 0�)� and dimLv = dimH0(Gv; ad 0�) = 0.E3. Suppose that with respe
t to some basis e1; e2 of k2 the restri
tion �jGvhas the form � �� �0 � �and that either v 6� 1 mod l or lj#�(Gv). Take Cv to be the 
lass ofdeformations � of �jGv of the form (with respe
t to some basis)� �� �0 � �where � lifts � and take Lv to be the image ofH1(Gv;Hom (ke2; ke1)) �! H1(Gv; (ad 0�)):Under the assumption that either v 6� 1 mod l or lj#�(Gv) we see thatthe subgroup of g 2 GL2(R) withg� �� �0 � � g�1 = � �� �00 � �is just the subgroup of upper triangular elements in GL2(R). Let C(�)denote the set of g 2 GL2(R) su
h that
g�jGvg�1 = � �� �0 � �
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for some �. Our assumption implies that C(�) surje
ts onto C(� mod I)for any ideal I of R. From this remark properties P4, P5 and P7 followeasily. If I and R are as in the statement of property P6 thenH0(Gv; R_) �! H0(Gv; I_)is surje
tive, so thatH2(Gv; I(1)) �! H2(Gv; R(1))is inje
tive and H1(Gv; R(1)) �! H1(Gv; (R=I)(1))is surje
tive. Thus Cv has property P6.Note also thatdimLv= dimH1(Gv;Hom (ke2; ke1))� dimH0(Gv; (ad 0�)=Hom(ke2; ke1))+dimH0(Gv; ad 0�)� dimH0(Gv;Hom (ke2; ke1))= Ævl + 1 + dimH0(Gv;Hom (ke2; ke1))� 1 +H0(Gv; ad 0�)�H0(Gv;Hom (ke2; ke1))= Ævl + dimH0(Gv; ad 0�);where Ævl = 1 if v = l and 0 otherwise.E4. Suppose v = l and that with respe
t to some basis e1; e2 of k2 �jGl hasthe form � ��1 �0 �2 � :Suppose also that �1 6= �2 and that if ��1 = �2 then �Gl is wildlyrami�ed. Take Cl to 
onsist of all deformations of the form� ��1 �0 �2 � ;where �1 and �2 are tamely rami�ed and �2 lifts �2. Also take Ll to bethe image in H1(Gl; (ad 0�)) of the kernel of the natural mapH1(Gl;Hom (ke2; ke1)� ((Hom (ke1; ke1)� Hom(ke2; ke2)) \ ad 0�))#H1(Il; ((Hom (ke1; ke1)� Hom (ke2; ke2)) \ ad 0�)):
5



If I and R are as in the statement of property P6 thenH0(Gl; I_(�2=�1) = (0);so that H2(Gl; I(��1=�2)) = (0) andH1(Gl; R(��1=�2)) �! H1(Gl; (R=I)(��1=�2))is surje
tive. Thus Cl has property P6. One 
an also 
he
k that (see forinstan
e tables 2 and 3 in [R℄)dimLl = 1 + dimH0(Gl; ad 0�):
E5. Suppose that v = l and that for some 1 � n � l � 1 we have�jIl �  n+(l+1)m �  nl+(l+1)m

where  is a fundamental 
hara
ter of level 2. Take Cl to be the 
ol-le
tion of lifts � : Gl ! GL2(R) su
h that � 
 !�n is 
rystalline (inthe sense that it is the inverse limit of 
rystalline representations overArtinian quotients of R). A 
al
ulation using the theory of Fontaine andLafaille shows that Cl has property P6 and that there is a suitable Llwith dimLl = 1. (This 
al
ulation basi
ally goes ba
k to Ramakrishna'sthesis, see for instan
e the paragraph before proposition 2 of [R℄.)Re
all that the tra
e gives a perfe
t pairing ad 0� � ad 0� ! k. By Tatelo
al duality this indu
es a perfe
t pairingH1(Gv; ad 0�)�H1(Gv; (ad 0�)(1)) �! k:We will let L?v denote the annihilator of Lv under this pairing. We will letH1fLvg(GS; ad 0�) denote the preimage under the restri
tion map
H1(GS; ad 0�) �!Mv2S H1(Gv; ad 0�)

of Lv2S Lv. Similarly we will let H1fL?v g(GS; (ad 0�)(1)) denote the preimageunder the restri
tion mapH1(GS; (ad 0�)(1)) �!Mv2S H1(Gv; (ad 0�)(1))
ofLv2S L?v . Ramakrishna �rst observes the following lemma.6



Lemma 1.1 Keep the above notation and assumptions. IfH1fL?v g(GS; (ad 0�)(1)) = (0)then we 
an �nd an S-deformation (W (k); �) of � su
h that for all v 2 S therestri
tion (W (k); �jGv) 2 Cv.Proof: The Poitou-Tate exa
t sequen
e gives us an exa
t sequen
eH1(Gs; ad 0�) �! Lv2S H1(Gv; ad 0�)=Lv �! H1fL?v g(GS; (ad 0�)(1))_#Lv2S H2(Gv; ad 0�)  � H2(GS; ad 0�)(see for instan
e the proof of theorem 2.18 of [DDT℄). Thus we see thatH1(GS; ad 0�)!!Mv2S H1(Gv; ad 0�)=Lv
and H2(GS; ad 0�) ,!Mv2S H2(Gv; ad 0�):

Now we re
ursively look for S-deformations (W (k)=lm; �m) of � su
h thatfor all v 2 S we have (W (k)=lm; �mjGv) 2 Cv. For m = 1 there is noth-ing to prove. In general, for all v 2 S we 
an lift �m�1jGv to a 
ontinuoushomomorphism �v : Gv ! GL2(W (k)=lm). By inje
tivity of the restri
tionmap on H2's this means that we 
an lift �m�1 to a 
ontinuous homomorphism� : GS ! GL2(W (k)=lm). By surje
tivity of the map on H1's we may �nd a
lass � 2 H1(GS; ad 0�) mapping to([�jGv � �v℄)v2S 2Mv2S H1(Gv; ad 0�)=Lv:
Thus we may �nd a se
ond lifting �m of �m�1 to W (k)=lm su
h that for allv 2 S we have (W (k)=lm; �mjGv) 2 Cv. The lemma follows. 2In fa
t under these 
onditions essentially the same argument shows thatthe universal S-deformation of � of type Cv for all v 2 S is a power series ringover W (k) in dimH1fLvg(GS; ad 0�) variables.Ramakrishna's main innovation is the following result whi
h gives 
ondi-tions under whi
h the hypotheses of the last lemma 
an be a
hieved.
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Lemma 1.2 Let �, S, f(Cv; Lv)g be as above and suppose thatXv2S dimLv � Xv2S[f1g dimH0(Gv; ad 0�):
Then we 
an �nd a �nite set of rational primes T � S and data (Cv; Lv) forv 2 T � S satisfying the above 
onditions P1-P7 and su
h thatH1fL?v g(GT ; (ad 0�)(1)) = (0):Proof: Suppose �rst that l = 5 and ad 0�(GQ ) �= A5, be
ause in this 
asewe will require a little extra argument. Choose w 62 S su
h that w � 1 mod 5and ad 0�(Frobw) has order 5. Adding w to S with the pair (Cw; Lw) as inexample E3, we see that in this 
ase we may assume thatH1fLvg(GS; ad 0�) \H1(ad 0�(GQ ); ad 0�) = (0):(For if � lies in this interse
tion and is non-zero then � restri
ts to a non-zeroelement of H1(Gw=Iw; ad 0�), whileH1(Gw=Iw; ad 0�) \ Lw = (0):)Now return to the general 
ase. Suppose that0 6= � 2 H1fL?v g(GS; (ad 0�)(1)):We will show below that we 
an �nd a prime w 62 S and (Cw; Lw) satisfyingproperties P1-P7 and su
h that1. dimLw = dimH1(Gw=Iw; ad 0�),2. H1fLvg(GS; ad 0�)!! H1(Gw=Iw; ad 0�)3. and � does not map to zero in H1(Gw; (ad 0�)(1))=L?w.Suppose for a moment that we have done this. We have an inje
tionH1fL?v g(GS; (ad 0�)(1)) ,! H1fL?v g[fH1(Gw;(ad 0�)(1))g(GS[fwg; (ad 0�)(1))and a formula of Wiles (based on the global Euler 
hara
teristi
 formula, seefor instan
e theorem 2.18 of [DDT℄) tells us that#H1fL?v g[fH1(Gw;(ad 0�)(1))g(GS[fwg; (ad 0�)(1)) =#H1fL?v g(GS; (ad 0�)(1))#
oker (H1fLvg(GS; ad 0�)! H1(Gw=Iw; ad 0�)):
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Hen
e, by our assumption 2,H1fL?v g(GS; (ad 0�)(1)) = H1fL?v g[fH1(Gw;(ad 0�)(1))g(GS[fwg; (ad 0�)(1))and so we get a left exa
t sequen
e(0) �! H1fL?v g[fL?wg(GS[fwg; (ad 0�)(1)) �! H1fL?v g(GS; (ad 0�)(1))#H1(Gw; (ad 0�)(1))=L?w:From our assumption 3� 62 H1fL?v g[fL?wg(GS[fwg; (ad 0�)(1)) � H1fL?v g(GS; (ad 0�)(1)):Our assumption 1 tells us thatXv2S[fwgdimLv � Xv2S[fw;1gdimH0(Gv; ad 0�);
and the lemma will follow by arguing re
ursively.We now turn to the proof of the existen
e of a prime w 62 S and a pair(Cw; Lw) with the above properties. In fa
t it suÆ
es to show that if 0 6= � 2H1fL?v g(GS; (ad 0�)(1)) and 0 6=  2 H1fLvg(GS; ad 0�), then we 
an �nd a primew 62 S and (Cw; Lw) satisfying properties P1-P7 and su
h that� dimH1(Gw=Iw; ad 0�) = dimLw = 1,�  does not map to zero in H1(Gw=Iw; ad 0�)� and � does not map to zero in H1(Gw; (ad 0�)(1))=L?w.(To see this note that by the assumption of the lemma and by Wiles' formula(see for instan
e theorem 2.18 of [DDT℄) we havedimH1fLvg(GS; ad 0�) � dimH1fL?v g(GS; (ad 0�)(1));so that if H1fL?v g(GS; (ad 0�)(1)) 6= (0) then we 
an �nd0 6=  2 H1fLvg(GS; (ad 0�)(1)):)Let K=Q be the �eld generated by a primitive lth root of unity and by the�xed �eld of ker(ad 0�). Note that� H1(Gal (K=Q ); ad 0�) = (0), 9



� H1(Gal (K=Q ); (ad 0�)(1)) = (0)� and there is an element � 2 Gal (K=Q ) su
h that ad 0�(�) has an eigen-value �(�) 6� 1 mod l.(This is a straightforward exer
ise using the following fa
ts.� ad 0�(GQ ) �= A5, PSL2(F lr ) or PGL2(F lr ) for some r 2 Z>0.� If l is an odd prime, r 2 Z>0 and lr 6= 5 then H1(PSL2(F lr ); ad 0) = (0).� H1(PGL2(F5); ad 0) = (0).� In the 
ase l = 5 and ad 0�(GQ ) �= A5, we have seen that we may assumethat H1fLvg(GS; ad 0�) \H1(ad �(GQ ); ad �) = (0):)Let e� be a lift of � to GQ . Then �(e�) has two distin
t eigenevalues �; � 2 kwith �=� = �(�). Let e� and e� denote 
orresponding eigenve
tors. We get ade
ompositionad 0� = Hom (ke�; ke�)�((Hom (ke�; ke�)� Hom (ke�; ke�)) \ ad 0�)� Hom(ke�; ke�):Let � and  be 
ohomology 
lasses as above. We will use the same symbolsto denote some 
hoi
e of 
o
y
les representing these 
ohomology 
lasses. Therestri
tions of � and  are non-zero homomorphisms � : GK ! (ad 0�)(1)and  : GK ! ad 0�. Let K� and K denote the �xed �eld of their kernels.Be
ause ad 0� is absolutely irredu
ible and not isomorphi
 to its twist by � wesee that K and K� are disjoint over K. Moreover the images  (GK) and�(GK) are not 
ontained in any proper k-subspa
es of ad 0� and (ad 0�)(1),respe
tively. Thus we 
an �nd a � 2 Gal (K�K =K) su
h that�(�e�) = �(�) + �(e�) 62Hom(ke�; ke�)(1)� ((Hom (ke�; ke�)� Hom(ke�; ke�)) \ ad 0�)(1)and  (�e�) =  (�) +  (e�) 62 Hom(ke�; ke�)� Hom (ke�; ke�):Now 
hoose a prime w 62 S whi
h is unrami�ed in K�K =Q and su
h thatFrobw = �e�. Take Cw as in example E3 so that Lw = H1(Gw;Hom (ke�; ke�)).It follows easily that (w; Cw; Lw) has the desired properties. 2
10



Theorem 1.3 Let k be a �nite extension of F l and � : GQ ! GL2(k) a
ontinuous representation su
h that det �(
) = �1 and �(GQ ) is insoluble.Suppose �rst that �jGl � � ��1 �0 �2 �and that if ��1 = �2 then �jGl is wildly rami�ed. Then there is a 
ontinuousrepresentation � : GQ ! GL2(W (k)) su
h that� (� mod l) = �,
� �jGl � � ��1 �0 �2 � with �i a tamely rami�ed lift of �i for i = 1; 2
� and for some prime p 6= l we have �jGp � � �� �0 � � for some 
hara
ter�.Now suppose that for some 1 � n � l � 1 we have�jIl �  n+(l+1)m �  nl+(l+1)m

where  is a fundamental 
hara
ter of level 2, then there is a 
ontinuousrepresentation � : GQ ! GL2(W (k)) su
h that� (� mod l) = �,� (�
 !�m)jGl is 
rytsalline with Hodge-Tate numbers 0 and n
� and for some prime p 6= l we have �jGp � � �� �0 � � for some 
hara
ter�.

2 I
osahedral Galois representationsWe begin with some elementary lemmas on number �elds. They are presum-ably well known, but it is easier to prove them than �nd a referen
e. (Wethank J.-P.Serre for providing some helpful referen
es whi
h shorten our orig-inal proofs and for telling us that the next lemma is due to Chevalley [C℄.)Lemma 2.1 Let K be a number �eld (�nite extension of Q ) and S a �niteset of pla
es of K. We will let K�S denote the subgroup of K� 
onsisting ofelements whi
h are units at all �nite pla
es v 62 S and positive at all real
11



pla
es v 62 S. Then for any positive integer n we 
an �nd an open subgroupU �Qv 62S; v 6 j1O�K;v su
h that
K�S \ U � (K�S )n:Proof:We may suppose that S 
ontains all in�nite pla
es and that p�1 2K (as K� � K(p�1)�). We may also suppose that n is a prime power, sayn = pr. Thus if � denotes a primitive nth root of unity then Gal (K(�)=K) is
y
li
. Be
ause K�S is �nitely generated, it suÆ
es to prove that if a 2 K�and for all y 62 S we have a 2 (K�y )n then a 2 (K�)n. This is theorem 1 of
hapter 9 of [AT℄. 2

Lemma 2.2 Let K be a number �eld and S a �nite set of pla
es of K. Forea
h v 2 S let Lv be a �nite Galois extension of Kv. Then we 
an �nd a �nite,soluble, Galois extension M of K, su
h that for ea
h pla
e w of M above apla
e v 2 S we have Lv �= Mw as Kv-algebras.Proof:We need only �nd a �nite extension M=K su
h that M embeds ina soluble Galois extension of K and su
h that for ea
h pla
e w of M above apla
e v 2 S we have Lv �= Mw as Kv-algebras. (Then repla
eM by its normal
losure over K.) We may also suppose that S 
ontains all in�nite pla
es of K.Then, by a simple indu
tion argument, we may redu
e to the 
ase that ea
hLv=Kv is a 
y
li
 Galois extension. This 
ase follows easily from theorem 5 of
hapter 10 of [AT℄. 2
Lemma 2.3 Suppose that � : GQ ! GL2(Fa
5 ) is a 
ontinuous representationwhi
h satis�es the following 
onditions.� det �(
) = �1.� � has proje
tive image A5.� The proje
tive image of I3 has odd order.� The proje
tive image of G5 has order 2 and the 
orresponding map Q �5 !f�1g sends 5 to �1.Then there is a �nite, soluble, totally real extension F=Q and an ellipti
 
urveE=F satisfying the following 
onditions.� F � Q (p5) and p5 splits 
ompletely in F .
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� �E;5 is equivalent to a twist of �jGF by some 
hara
ter.� �E;3 : GF !! GL2(F3).� E has good ordinary redu
tion at 3 and potentially good ordinary redu
-tion at 5.� For all primes v of F above 3 we have �E;3jGFv � �1;v � �2;v with �1;v 6=�2;v.Proof: The obstru
tion to lifting the 
ontinuous homomorphismGQ(p5) ��! A5 �= PSL2(F5)to a 
ontinuous homomorphism GQ(p5) ! SL2(F5) lies inH2(GQ(p5); f�1g) ,!Mv H2(GQ(p5)v ; f�1g):
Also the lo
al 
omponent at (3) (resp. (p5)) is trivial as (3) (resp. (p5)) isinert (resp. rami�ed) over Q . Thus we 
an �nd a totally real, biquadrati
 �eldF1 � su
h that F1 
ontains Q (p5) and both (3) and (p5) split in F1,� and su
h that the image of this obstru
tion vanishes at all �nite pla
esof F1.As det �(
) = �1 the image of this obstru
tion is non-trivial at all in�nitepla
es of F1. Similarly the obstru
tion to lifting the mod 5 
y
lotomi
 
hara
terGQ(p5) �! f�1g � F�5to a 
hara
ter GQ(p5) ! �4 with square the mod 5 
y
lotomi
 
hara
ter liesin H2(GQ(p5); f�1g) ,!Mv H2(GQ(p5)v ; f�1g)and has trivial image at all �nite pla
es and non-trivial image at in�nity. Thusthe sum of the two obstru
tions vanishes in H2(GF1 ; f�1g) and so we 
an liftGF1 ��! A5 �= PSL2(F5)to a 
ontinuous representatione� : GF1 �! GL2(F5)13



with det e� = �5.Choose a �nite, soluble, totally real extension F2=F1 su
h that (p5) splits
ompletely in F2, su
h that e� is trivial on the de
omposition group of everyprime of F2 above 3, but su
h that the rami�
ation index of any prime above3 in F2 is odd. Finally let F be the Galois 
losure of F2=Q .Let Xe�=F be the twist of X5 de�ned in se
tion 1 of [SBT℄. By lemma 1.1of [SBT℄ we see that Xe� is isomorphi
 over F to a Zariski open subset of theproje
tive line. Also let Ye�=Xe� be the 
over de�ned in the proof of theorem1.2 of [SBT℄. Thus Ye� is geometri
ally irredu
ible and Ye�=Xe� has degree 24.Suppose that v is a prime of F above 3. Then �5(Frobv) � 1 mod 5 sothat the residue �eld of v 
ontains F81. Thus the ellipti
 
urve y2 = x3 +x2 � x � 1 de�nes an element of Xe�(Fv) with good ordinary redu
tion at vsu
h that GFv a
ts diagonally on its three torsion. The same will be true ofany point of Xe�(Fv) suÆ
iently 
lose to this one in the 3-adi
 topology. LetUv � Xe�(Fv) be a non-empty open set (for the 3-adi
 topology) 
onsisting ofpoints 
orresponding to ellipti
 
urves with good ordinary redu
tion su
h thatGFv a
ts diagonally on their three torsion.Suppose now that v is a prime of F above 5. We 
laim that we 
an �nda non-empty open subset (for the 5-adi
 topology) Uv � Xe�(Fv) 
onsistingof points 
orresponding to ellipti
 
urves with good ordinary redu
tion. ItsuÆ
es to �nd one su
h point (and then take Uv to be a suÆ
iently small openneighbourhood of that point). Note that up to twist by quadrati
 
hara
terse�jGFv � �Æ � �where Æ is a quadrati
 
hara
ter 
orresponding to a 
hara
ter of Q 5(p5)�takingp5 to �1, and � is a tamely rami�ed 
hara
ter of order 4 
orrespondingto a 
hara
ter of Q 5(p5)� taking p5 to 2. Moreover if Æ is rami�ed then wemay take � unrami�ed, while if Æ is unrami�ed the restri
tion of � to inertiaalso has order 4. In the �rst 
ase the ellipti
 
urve y2 = x3 + x provides apoint in Xe�(Fv). This ellipti
 
urve has CM by Z[p�1℄ over Fv and a suitablequarti
 twist provides a point on Xe�(Fv) in the se
ond 
ase.By Ekedahl's version of the Hilbert irredu
ibility theorem [E℄ we may �nda point P 2 Xe�(F ) whi
h lies in Uv for all vj15 and su
h that any point ofYe� above P 
uts out an extension of F of degree 24. Let E=F be the ellipti

urve 
orresponding to P . 2Theorem 2.4 Let � : GQ ! GL2(Fa
5 ) be a 
ontinuous representation whi
hsatis�ed the following 
onditions.� det �(
) = �1. 14



� � has proje
tive image A5.� The proje
tive image of I3 has odd order.� The proje
tive image of G5 has order 2 and the 
orresponding map Q �5 !f�1g sends 5 to a non-trivial element.Then � is modular.Proof: Choose F and E as in the previous lemma. By the Langlands-Tunnell theorem there is a 
uspidal automorphi
 representation �000 ofGL2(A F )and a pla
e � of the �eld of 
oeÆ
ients of �000 above 3 su
h that the following
onditions are satis�ed.� For ea
h in�nite pla
e v the 
omponent �000v is lowest dis
rete series.� ��000;� � �E;3.� For any pla
e v of F above 3 we have��000;�jGv � �1;v�3 � �2;v;where �1;v and �2;v are �nitely tamely rami�ed, and �1;v�3 6� �2;v mod �.(See [L℄ and [Tu℄, as well as [RT℄ for the method for arranging the 
onditionson �000v for v in�nite.)Applying theorem 5.1 of [SW2℄ to the 3-adi
 Tate module of E, we see thatthere is a 
uspidal automorphi
 representation �00 of GL2(A F ) satisfying thefollowing 
onditions.� For ea
h in�nite pla
e v the 
omponent �00v of �00 is lowest dis
rete series.� �00 has �eld of 
oeÆ
ients Q .� For every rational prime l, the representation ��00;l � �E;l.Twisting �00 we see that there is a 
uspidal automorphi
 representation �0 ofGL2(A F ) and a pla
e �0 of the �eld of 
oeÆ
ients of �0 above 5 su
h that thefollowing 
onditions are satis�ed.� For ea
h in�nite pla
e v the 
omponent �0v is lowest dis
rete series.� There is an embedding of the residue �eld of �0 in Fa
5 su
h that ��0;�0 � �.
15



� For any pla
e v of F above 5 we have��0;�0 jGv � � �1;v�5 �0 �2;v � ;where �1;v and �2;v are �nitely tamely rami�ed.Note that by our assumptions on �, �1;v�5 6� �2;v mod �0.We will next explain how to des
end (in a mod l sense) �0 to Q while main-taining ��0;�0 � �. We learned this argument from C.Khare (see [K℄).By theorem 1.3 we may 
hoose a 
ontinuous representation � : GQ !GL2(Q a
5 ) satisfying the following 
onditions.� � is a lift of �.� �jG5 � � �1�5 �0 �2 � where �1 and �2 are �nitely tamely rami�ed.The existen
e of �0 above and theorem 5.1 of [SW2℄ tell us that there is a
uspidal automorphi
 representation � of GL2(A F ) and a pla
e � of the �eldof 
oeÆ
ients of � above 5 su
h that the following 
onditions are satis�ed.� For ea
h in�nite pla
e v the 
omponent �v is lowest dis
rete series.� There is an embedding of the �-adi
 
ompletion of the �eld of 
oeÆ
ientsof � into Q a
5 su
h that ��;� � �jGF .Let F = F1 � F2 � ::: � Fn = Q with Fi=Fi+1 Galois and 
y
li
 of primedegree for all i. We will show by indu
tion on i that there is a 
uspidal auto-morphi
 representation �i of GL2(A Fi ) and a pla
e �i of the �eld of 
oeÆ
ientsof �i above 5 su
h that the following 
onditions are satis�ed.� For ea
h in�nite pla
e v the 
omponent �i;v is lowest dis
rete series.� There is an embedding of the �i-adi
 
ompletion of the �eld of 
oeÆ
ientsof �i into Q a
5 su
h that ��i;�i � �jGFi .We have treated the 
ase i = 1 above. Suppose we have treated the 
ase ofi. Let � be a generator of Gal (Fi=Fi+1). Then we see that ��i = �i and so,by Langlands base 
hange theorem [L℄, �i des
ends to a 
uspidal automorphi
representation �0i+1 of GL2(A Fi+1 ) with �0i+1;v lowest dis
rete series for ea
hin�nite pla
e v of F 0i+1. Then there is an embedding of the �eld of 
oeÆ
ientsof �0i+1 into Q a
5 , whi
h gives rise to a pla
e �0i+1, su
h that ��0i+1;�0i+1 jGFi � �jGFi .As �jGFi is irredu
ible we see that ��0i+1;�0i+1 is the twist of �jGFi+1 by a 
hara
terof Gal (Fi=Fi+1). Thus repla
ing �0i+1 by a twist the 
laim follows for i + 1.The 
ase i = n of the 
laim implies the theorem. 2
16



Corollary 2.5 Let � : G Q ! GL2(C ) be a 
ontinuous representation satisfy-ing the following 
onditions.� det �(
) = �1.� � has proje
tive image A5.� The proje
tive image of I3 has odd order.� The proje
tive image of G5 has order 2 and the 
orresponding map Q �5 !f�1g sends 5 to �1.Then � is modular.Proof: This follows from the previous theorem and the main theorem of[Buz℄. (In the 
ase that the proje
tive representation asso
iated to � is un-rami�ed at 5, one may appeal instead to the main theorem of [BT℄.) 2We will �nish by giving some 
on
rete examples where this 
orollary 
an beapplied. We list quinti
 polynomials whose splitting �elds are A5 extensionsof Q . In ea
h 
ase this A5 extension 
an be lifted to a Galois representation �satisfying the 
onditions of the above 
orollary. None of these examples satisfythe 
onditions of the main theorem of [BDST℄. They are all taken from thetables in [Buh℄. x5 + 2x4 + 6x3 + 8x2 + 10x+ 8x5 + 6x4 + x3 + 4x2 � 24x+ 32x5 � 2x3 + 2x2 + 5x+ 6x5 + 5x4 + 8x3 � 20x2 � 21x� 5:
Corrigendum to [Ta℄.I would like to thank Fred Diamond for pointing out an error in [Ta℄. Morepre
isely, with the de�nition of the inner produ
t given on page 271 of [Ta℄,the 
al
ulation of the adjoint of a He
ke operator is in general wrong. Thismay be 
orre
ted as follows.� Change the de�nition of hf; gi on page 271 to readhf; gi = X[x℄2X(U)[D� \ xUx�1 : F� \ U ℄�1hf(x); g(x)i(N�x)�:
� Make the 
orresponding 
hanges to the 
al
ulation on page 271 of theadjoint of [UxU 0℄. The �nal formula remains un
hanged.17



� At the start of line 4 on page 274 of [Ta℄ add the following senten
e.\Note that [D� \ tjulUu�1l t�1j : F� \ U ℄j[D� \ tjU0t�1j : F� \ U0℄ andso there are only �nitely many possibilities (independent of U � U0) for[D� \ tjulUu�1l t�1j : F� \ U ℄."
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