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AbstratWe prove that some new in�nite families of odd two dimensional iosahedralrepresentations of the absolute Galois group Q are modular and hene satsifythe Artin onjeture. We also give an aount of work of Ramakrishna onlifting mod l Galois representations to harateristi zero.



IntrodutionThis paper is a sequel to [BDST℄. In that paper we proved the Artin onjeturefor ertain odd iosahedral representations of Gal (Q a=Q ) by proving that theywere modular. In this paper we will prove a variant of this result with di�erentloal hypotheses. Neither set of hypotheses is stritly weaker/stronger thanthe other. The key innovation in this paper is to work with the prime 5rather than the prime 2. To do this we have to prove Serre's onjeture formany ontinuous representations � : Gal (Q a=Q ) ! GL2(Fa5 ) whih haveprojetive image A5. (Note that suh representations do not have ylotomideterminant.) The key to doing this is to ombine base hange arguments witha beautiful method of Ramakrishna (see [R℄, [K℄) and with an extension tototally real �elds of results of Wiles and of the author and Wiles ([W℄,[TW℄).(Suh a generalisation an be found in [SW2℄, however we make no use of themain innovation of [SW2℄. There are two key ingredients in the result we douse. One is due independently to Diamond [Dia℄ and Fujiwara [F℄, the otheris due to Skinner and Wiles [SW1℄. Results along the lines of the one we usehave been previously announed by Fujiwara.) We no longer have to makeappeal to the main results of [SBT℄ and [Di℄, but we do still make essentialuse of [BT℄.More preisely an example of our main result is the following.Theorem A Let � : G Q ! GL2(C ) be an irreduible ontinuous representa-tion with det �() = �1 (where  denotes a omplex onjugation). Supposemoreover that if the projetive image of � is isomorphi to A5 then the proje-tive image of the inertia group at 3 has odd order and the projetive image ofthe deomposition group at 5 is unrami�ed of order 2. Then � is modular andits Artin L-funtion, L(�; s), is entire.This paper is organised as follows. In the �rst setion we prove a slightextension of one of the main results of [R℄. We emphasise that the method isentirely Ramakrishna's, we simply make some minor tehnial improvements.In the seond setion we apply this result to prove our main theorems.We would like to thank the referee for his/her useful suggestions.
NotationIf K is a perfet �eld we will let Ka denote its algebrai losure and GKdenote its absolute Galois group Gal (Ka=K). If moreover p is a prime numberdi�erent from the harateristi of K then we will let �p : GK ! Z�p denotethe p-adi ylotomi harater and !p the Teihmuller lift of �p mod p. If V1



is a Zp [GK ℄ module we will write V (n) for V 
Zl Zl(�np). If K is a loal �eldwe will let WK denote the Weil group of K. If K is a number �eld and x isa �nite plae of K we will write Gx for a deomposition group above x, Ixfor the inertia subgroup of Gx and Frobx for an arithmeti Frobenius elementin Gx=Ix. We will also let OK denote the integers of K and k(x) denote theresidue �eld of OK at x. We will let  denote omplex onjugation on C .We will write �N for the group sheme of N th roots of unity. We willwrite W (k) for the Witt vetors of k. We will write ad 0� for the trae zerosubmodule of the adjoint Hom (�; �) of �.Suppose that E=K is an ellipti urve. If m is a positive integer primeto the harateristi of K we will write �E;m for the representation of GK onE[m℄(Ka). If l is rational prime oprime to the harateristi of K, we willwrite TlE for the l-adi Tate module of E, VlE for TlE 
Z Q and �E;l for therepresentation of GK on VlE.Suppose that F is a totally real number �eld and that � is an algebraiuspidal automorphi representation of GL2(A F ) with �eld of de�nition (oroeÆients) M � C . In some ases, inluding the ases that �1 is regularand the ase �1 is weight (1; :::; 1), then it is known that M is a CM num-ber �eld and that for eah prime � of OM there is a ontinuous irreduiblerepresentation ��;� : GF ! GL2(M�)anonially assoiated to �. (See [Ta℄ for details.) We may always onjugate��;� so that it is valued in GL2(OM;�) and then redue it to get a ontinuousrepresentation GF ! GL2(OM=�). If for one suh hoie of onjugate theresulting representation is irreduible then it is independent of the hoie ofonjugate and we will denote it ��;�.
1 Generalisation of a result of Ramakrishna.In this setion we give a slight generalisation of a result of Ramakrishna [R℄.We stress that both the result and the arguments we use are essentially his.In this setion we will let l denote an odd rational prime, � denote �l and! denote !l. We will also let k denote a �nite extension of F l and � : GQ !GL2(k) a ontinuous representation suh that �(GQ ) is insoluble. De�ne apositive integer n as follows. If �jGl is absolutely reduible set n = 1. Otherwisehoose 1 � n � l � 1 suh that�jIl �  n+(l+1)m �  nl+(l+1)m(over ka) where  is a fundamental harater of level 2 (see [S℄).2



Let S denote a �nite set of rational primes whih ontains l and all primeswhere � is rami�ed. We will let GS denote the Galois group of the maximalextension of Q whih is unrami�ed outside S. Thus � fators through GS. Bya deformation of � (resp. �jGv) we shall mean a omplete noetherian loal ring(R;m) with residue �eld k and a ontinuous representation � : GS ! GL2(R)(resp. � : Gv ! GL2(R)) suh that (� mod m) = � and ��n det � has �niteorder prime to l. In the global ase we will write S-deformation if we wish toemphasise the hoie of set S.Now suppose that for eah v 2 S we are given a pair (Cv; Lv) where Cvis a olletion of deformations of �jGv and Lv is a subspae of H1(Gv; ad 0�)satisfying the following properties.P1. (k; �jGv) 2 Cv.P2. The set of deformations in Cv to a �xed loal ring (R;m) is losed underonjugation by elements of 1 +M2(m).P3. If (R; �) 2 Cv and f : R! S is a morphism of omplete loal noetherianrings whih indues an isomorphism on residue �elds then (S; f Æ�) 2 Cv.P4. Suppose that (R1; �1) and (R2; �2) 2 Cv, that I1 (resp. I2) is an ideal ofR1 (resp. R2) and that � : R1=I1 �! R2=I2 is an isomorphism suh that�(�1 mod I1) = �2 mod I2. Let R3 be the subring of R1 � R2 onsistingof pairs with the same image in R1=I1 �! R2=I2. Then (R3; �1��2) 2 Cv.P5. If (R; �) is a deformation of �jGv and if fIig is a nested sequene of idealsin R with intersetion (0) suh that eah (R=Ii; �) 2 Cv then (R; �) 2 Cv.P6. Suppose (R;m) is a omplete noetherian loal ring with residue �eld kand suppose that I is an ideal of R with mI = (0). If (R=I; �) 2 Cvthen there is a deformation e� of �jGv to R suh that (R; e�) 2 Cv and(e� mod I) = �.P7. Suppose that ((R;m); �1) and ((R;m); �2) are deformations of � with((R;m); �1) 2 Cv, and that I is an ideal of R with mI = (0) and (�1 modI) = (�2 mod I). Thus � 7! �2(�)�1(�)�1 � 1 de�nes an element ofH1(Gv; ad 0�)
kI whih we shall denote [�2��1℄. Then [�2��1℄ 2 Lv
kIif and only if (R; �2) 2 Cv.Let us next give some examples of suh pairs (Cv; Lv).E1. Suppose that v 6= l and that l 6 j#�(Iv). Take Cv to be the lass oflifts � of �jGv whih fator through Gv=(Iv \ ker �) and take Lv to beH1(Gv=Iv; (ad 0�)Iv). Note that 3



� H2(Gv=(Iv \ ker �); ad 0�) �= H2(Gv=Iv; (ad 0�)Iv) = (0),� H1(Gv=(Iv \ ker �); ad 0�) = Lv � H1(Gv; ad 0�)� and dimLv = dimH0(Gv; ad 0�).E2. Suppose that v = 2, l = 3 and that (ad 0�)(Gv) �= A4. Take Cv to be thelass of lifts � of �jGv whih fator through Gv=(Iv \ ker �) and take Lvto be H1(Gv=Iv; (ad 0�)Iv). Note that� (ad 0�)(Iv) �= C2 � C2,� H i(�(Iv); ad 0�) = (0) for all i � 0 (for i > 0 use the fat that36 j#�(Iv)),� H i(Gv=(Iv \ ker �); ad 0�) = (0) for all i � 0 (use the Hohshild-Serre spetral sequene),� H1(Gv=(Iv \ ker �); ad 0�) = (0) = Lv � H1(Gv; ad 0�)� and dimLv = dimH0(Gv; ad 0�) = 0.E3. Suppose that with respet to some basis e1; e2 of k2 the restrition �jGvhas the form � �� �0 � �and that either v 6� 1 mod l or lj#�(Gv). Take Cv to be the lass ofdeformations � of �jGv of the form (with respet to some basis)� �� �0 � �where � lifts � and take Lv to be the image ofH1(Gv;Hom (ke2; ke1)) �! H1(Gv; (ad 0�)):Under the assumption that either v 6� 1 mod l or lj#�(Gv) we see thatthe subgroup of g 2 GL2(R) withg� �� �0 � � g�1 = � �� �00 � �is just the subgroup of upper triangular elements in GL2(R). Let C(�)denote the set of g 2 GL2(R) suh that
g�jGvg�1 = � �� �0 � �
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for some �. Our assumption implies that C(�) surjets onto C(� mod I)for any ideal I of R. From this remark properties P4, P5 and P7 followeasily. If I and R are as in the statement of property P6 thenH0(Gv; R_) �! H0(Gv; I_)is surjetive, so thatH2(Gv; I(1)) �! H2(Gv; R(1))is injetive and H1(Gv; R(1)) �! H1(Gv; (R=I)(1))is surjetive. Thus Cv has property P6.Note also thatdimLv= dimH1(Gv;Hom (ke2; ke1))� dimH0(Gv; (ad 0�)=Hom(ke2; ke1))+dimH0(Gv; ad 0�)� dimH0(Gv;Hom (ke2; ke1))= Ævl + 1 + dimH0(Gv;Hom (ke2; ke1))� 1 +H0(Gv; ad 0�)�H0(Gv;Hom (ke2; ke1))= Ævl + dimH0(Gv; ad 0�);where Ævl = 1 if v = l and 0 otherwise.E4. Suppose v = l and that with respet to some basis e1; e2 of k2 �jGl hasthe form � ��1 �0 �2 � :Suppose also that �1 6= �2 and that if ��1 = �2 then �Gl is wildlyrami�ed. Take Cl to onsist of all deformations of the form� ��1 �0 �2 � ;where �1 and �2 are tamely rami�ed and �2 lifts �2. Also take Ll to bethe image in H1(Gl; (ad 0�)) of the kernel of the natural mapH1(Gl;Hom (ke2; ke1)� ((Hom (ke1; ke1)� Hom(ke2; ke2)) \ ad 0�))#H1(Il; ((Hom (ke1; ke1)� Hom (ke2; ke2)) \ ad 0�)):
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If I and R are as in the statement of property P6 thenH0(Gl; I_(�2=�1) = (0);so that H2(Gl; I(��1=�2)) = (0) andH1(Gl; R(��1=�2)) �! H1(Gl; (R=I)(��1=�2))is surjetive. Thus Cl has property P6. One an also hek that (see forinstane tables 2 and 3 in [R℄)dimLl = 1 + dimH0(Gl; ad 0�):
E5. Suppose that v = l and that for some 1 � n � l � 1 we have�jIl �  n+(l+1)m �  nl+(l+1)m

where  is a fundamental harater of level 2. Take Cl to be the ol-letion of lifts � : Gl ! GL2(R) suh that � 
 !�n is rystalline (inthe sense that it is the inverse limit of rystalline representations overArtinian quotients of R). A alulation using the theory of Fontaine andLafaille shows that Cl has property P6 and that there is a suitable Llwith dimLl = 1. (This alulation basially goes bak to Ramakrishna'sthesis, see for instane the paragraph before proposition 2 of [R℄.)Reall that the trae gives a perfet pairing ad 0� � ad 0� ! k. By Tateloal duality this indues a perfet pairingH1(Gv; ad 0�)�H1(Gv; (ad 0�)(1)) �! k:We will let L?v denote the annihilator of Lv under this pairing. We will letH1fLvg(GS; ad 0�) denote the preimage under the restrition map
H1(GS; ad 0�) �!Mv2S H1(Gv; ad 0�)

of Lv2S Lv. Similarly we will let H1fL?v g(GS; (ad 0�)(1)) denote the preimageunder the restrition mapH1(GS; (ad 0�)(1)) �!Mv2S H1(Gv; (ad 0�)(1))
ofLv2S L?v . Ramakrishna �rst observes the following lemma.6



Lemma 1.1 Keep the above notation and assumptions. IfH1fL?v g(GS; (ad 0�)(1)) = (0)then we an �nd an S-deformation (W (k); �) of � suh that for all v 2 S therestrition (W (k); �jGv) 2 Cv.Proof: The Poitou-Tate exat sequene gives us an exat sequeneH1(Gs; ad 0�) �! Lv2S H1(Gv; ad 0�)=Lv �! H1fL?v g(GS; (ad 0�)(1))_#Lv2S H2(Gv; ad 0�)  � H2(GS; ad 0�)(see for instane the proof of theorem 2.18 of [DDT℄). Thus we see thatH1(GS; ad 0�)!!Mv2S H1(Gv; ad 0�)=Lv
and H2(GS; ad 0�) ,!Mv2S H2(Gv; ad 0�):

Now we reursively look for S-deformations (W (k)=lm; �m) of � suh thatfor all v 2 S we have (W (k)=lm; �mjGv) 2 Cv. For m = 1 there is noth-ing to prove. In general, for all v 2 S we an lift �m�1jGv to a ontinuoushomomorphism �v : Gv ! GL2(W (k)=lm). By injetivity of the restritionmap on H2's this means that we an lift �m�1 to a ontinuous homomorphism� : GS ! GL2(W (k)=lm). By surjetivity of the map on H1's we may �nd alass � 2 H1(GS; ad 0�) mapping to([�jGv � �v℄)v2S 2Mv2S H1(Gv; ad 0�)=Lv:
Thus we may �nd a seond lifting �m of �m�1 to W (k)=lm suh that for allv 2 S we have (W (k)=lm; �mjGv) 2 Cv. The lemma follows. 2In fat under these onditions essentially the same argument shows thatthe universal S-deformation of � of type Cv for all v 2 S is a power series ringover W (k) in dimH1fLvg(GS; ad 0�) variables.Ramakrishna's main innovation is the following result whih gives ondi-tions under whih the hypotheses of the last lemma an be ahieved.
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Lemma 1.2 Let �, S, f(Cv; Lv)g be as above and suppose thatXv2S dimLv � Xv2S[f1g dimH0(Gv; ad 0�):
Then we an �nd a �nite set of rational primes T � S and data (Cv; Lv) forv 2 T � S satisfying the above onditions P1-P7 and suh thatH1fL?v g(GT ; (ad 0�)(1)) = (0):Proof: Suppose �rst that l = 5 and ad 0�(GQ ) �= A5, beause in this asewe will require a little extra argument. Choose w 62 S suh that w � 1 mod 5and ad 0�(Frobw) has order 5. Adding w to S with the pair (Cw; Lw) as inexample E3, we see that in this ase we may assume thatH1fLvg(GS; ad 0�) \H1(ad 0�(GQ ); ad 0�) = (0):(For if � lies in this intersetion and is non-zero then � restrits to a non-zeroelement of H1(Gw=Iw; ad 0�), whileH1(Gw=Iw; ad 0�) \ Lw = (0):)Now return to the general ase. Suppose that0 6= � 2 H1fL?v g(GS; (ad 0�)(1)):We will show below that we an �nd a prime w 62 S and (Cw; Lw) satisfyingproperties P1-P7 and suh that1. dimLw = dimH1(Gw=Iw; ad 0�),2. H1fLvg(GS; ad 0�)!! H1(Gw=Iw; ad 0�)3. and � does not map to zero in H1(Gw; (ad 0�)(1))=L?w.Suppose for a moment that we have done this. We have an injetionH1fL?v g(GS; (ad 0�)(1)) ,! H1fL?v g[fH1(Gw;(ad 0�)(1))g(GS[fwg; (ad 0�)(1))and a formula of Wiles (based on the global Euler harateristi formula, seefor instane theorem 2.18 of [DDT℄) tells us that#H1fL?v g[fH1(Gw;(ad 0�)(1))g(GS[fwg; (ad 0�)(1)) =#H1fL?v g(GS; (ad 0�)(1))#oker (H1fLvg(GS; ad 0�)! H1(Gw=Iw; ad 0�)):
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Hene, by our assumption 2,H1fL?v g(GS; (ad 0�)(1)) = H1fL?v g[fH1(Gw;(ad 0�)(1))g(GS[fwg; (ad 0�)(1))and so we get a left exat sequene(0) �! H1fL?v g[fL?wg(GS[fwg; (ad 0�)(1)) �! H1fL?v g(GS; (ad 0�)(1))#H1(Gw; (ad 0�)(1))=L?w:From our assumption 3� 62 H1fL?v g[fL?wg(GS[fwg; (ad 0�)(1)) � H1fL?v g(GS; (ad 0�)(1)):Our assumption 1 tells us thatXv2S[fwgdimLv � Xv2S[fw;1gdimH0(Gv; ad 0�);
and the lemma will follow by arguing reursively.We now turn to the proof of the existene of a prime w 62 S and a pair(Cw; Lw) with the above properties. In fat it suÆes to show that if 0 6= � 2H1fL?v g(GS; (ad 0�)(1)) and 0 6=  2 H1fLvg(GS; ad 0�), then we an �nd a primew 62 S and (Cw; Lw) satisfying properties P1-P7 and suh that� dimH1(Gw=Iw; ad 0�) = dimLw = 1,�  does not map to zero in H1(Gw=Iw; ad 0�)� and � does not map to zero in H1(Gw; (ad 0�)(1))=L?w.(To see this note that by the assumption of the lemma and by Wiles' formula(see for instane theorem 2.18 of [DDT℄) we havedimH1fLvg(GS; ad 0�) � dimH1fL?v g(GS; (ad 0�)(1));so that if H1fL?v g(GS; (ad 0�)(1)) 6= (0) then we an �nd0 6=  2 H1fLvg(GS; (ad 0�)(1)):)Let K=Q be the �eld generated by a primitive lth root of unity and by the�xed �eld of ker(ad 0�). Note that� H1(Gal (K=Q ); ad 0�) = (0), 9



� H1(Gal (K=Q ); (ad 0�)(1)) = (0)� and there is an element � 2 Gal (K=Q ) suh that ad 0�(�) has an eigen-value �(�) 6� 1 mod l.(This is a straightforward exerise using the following fats.� ad 0�(GQ ) �= A5, PSL2(F lr ) or PGL2(F lr ) for some r 2 Z>0.� If l is an odd prime, r 2 Z>0 and lr 6= 5 then H1(PSL2(F lr ); ad 0) = (0).� H1(PGL2(F5); ad 0) = (0).� In the ase l = 5 and ad 0�(GQ ) �= A5, we have seen that we may assumethat H1fLvg(GS; ad 0�) \H1(ad �(GQ ); ad �) = (0):)Let e� be a lift of � to GQ . Then �(e�) has two distint eigenevalues �; � 2 kwith �=� = �(�). Let e� and e� denote orresponding eigenvetors. We get adeompositionad 0� = Hom (ke�; ke�)�((Hom (ke�; ke�)� Hom (ke�; ke�)) \ ad 0�)� Hom(ke�; ke�):Let � and  be ohomology lasses as above. We will use the same symbolsto denote some hoie of oyles representing these ohomology lasses. Therestritions of � and  are non-zero homomorphisms � : GK ! (ad 0�)(1)and  : GK ! ad 0�. Let K� and K denote the �xed �eld of their kernels.Beause ad 0� is absolutely irreduible and not isomorphi to its twist by � wesee that K and K� are disjoint over K. Moreover the images  (GK) and�(GK) are not ontained in any proper k-subspaes of ad 0� and (ad 0�)(1),respetively. Thus we an �nd a � 2 Gal (K�K =K) suh that�(�e�) = �(�) + �(e�) 62Hom(ke�; ke�)(1)� ((Hom (ke�; ke�)� Hom(ke�; ke�)) \ ad 0�)(1)and  (�e�) =  (�) +  (e�) 62 Hom(ke�; ke�)� Hom (ke�; ke�):Now hoose a prime w 62 S whih is unrami�ed in K�K =Q and suh thatFrobw = �e�. Take Cw as in example E3 so that Lw = H1(Gw;Hom (ke�; ke�)).It follows easily that (w; Cw; Lw) has the desired properties. 2
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Theorem 1.3 Let k be a �nite extension of F l and � : GQ ! GL2(k) aontinuous representation suh that det �() = �1 and �(GQ ) is insoluble.Suppose �rst that �jGl � � ��1 �0 �2 �and that if ��1 = �2 then �jGl is wildly rami�ed. Then there is a ontinuousrepresentation � : GQ ! GL2(W (k)) suh that� (� mod l) = �,
� �jGl � � ��1 �0 �2 � with �i a tamely rami�ed lift of �i for i = 1; 2
� and for some prime p 6= l we have �jGp � � �� �0 � � for some harater�.Now suppose that for some 1 � n � l � 1 we have�jIl �  n+(l+1)m �  nl+(l+1)m

where  is a fundamental harater of level 2, then there is a ontinuousrepresentation � : GQ ! GL2(W (k)) suh that� (� mod l) = �,� (�
 !�m)jGl is rytsalline with Hodge-Tate numbers 0 and n
� and for some prime p 6= l we have �jGp � � �� �0 � � for some harater�.

2 Iosahedral Galois representationsWe begin with some elementary lemmas on number �elds. They are presum-ably well known, but it is easier to prove them than �nd a referene. (Wethank J.-P.Serre for providing some helpful referenes whih shorten our orig-inal proofs and for telling us that the next lemma is due to Chevalley [C℄.)Lemma 2.1 Let K be a number �eld (�nite extension of Q ) and S a �niteset of plaes of K. We will let K�S denote the subgroup of K� onsisting ofelements whih are units at all �nite plaes v 62 S and positive at all real
11



plaes v 62 S. Then for any positive integer n we an �nd an open subgroupU �Qv 62S; v 6 j1O�K;v suh that
K�S \ U � (K�S )n:Proof:We may suppose that S ontains all in�nite plaes and that p�1 2K (as K� � K(p�1)�). We may also suppose that n is a prime power, sayn = pr. Thus if � denotes a primitive nth root of unity then Gal (K(�)=K) isyli. Beause K�S is �nitely generated, it suÆes to prove that if a 2 K�and for all y 62 S we have a 2 (K�y )n then a 2 (K�)n. This is theorem 1 ofhapter 9 of [AT℄. 2

Lemma 2.2 Let K be a number �eld and S a �nite set of plaes of K. Foreah v 2 S let Lv be a �nite Galois extension of Kv. Then we an �nd a �nite,soluble, Galois extension M of K, suh that for eah plae w of M above aplae v 2 S we have Lv �= Mw as Kv-algebras.Proof:We need only �nd a �nite extension M=K suh that M embeds ina soluble Galois extension of K and suh that for eah plae w of M above aplae v 2 S we have Lv �= Mw as Kv-algebras. (Then replaeM by its normallosure over K.) We may also suppose that S ontains all in�nite plaes of K.Then, by a simple indution argument, we may redue to the ase that eahLv=Kv is a yli Galois extension. This ase follows easily from theorem 5 ofhapter 10 of [AT℄. 2
Lemma 2.3 Suppose that � : GQ ! GL2(Fa5 ) is a ontinuous representationwhih satis�es the following onditions.� det �() = �1.� � has projetive image A5.� The projetive image of I3 has odd order.� The projetive image of G5 has order 2 and the orresponding map Q �5 !f�1g sends 5 to �1.Then there is a �nite, soluble, totally real extension F=Q and an ellipti urveE=F satisfying the following onditions.� F � Q (p5) and p5 splits ompletely in F .
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� �E;5 is equivalent to a twist of �jGF by some harater.� �E;3 : GF !! GL2(F3).� E has good ordinary redution at 3 and potentially good ordinary redu-tion at 5.� For all primes v of F above 3 we have �E;3jGFv � �1;v � �2;v with �1;v 6=�2;v.Proof: The obstrution to lifting the ontinuous homomorphismGQ(p5) ��! A5 �= PSL2(F5)to a ontinuous homomorphism GQ(p5) ! SL2(F5) lies inH2(GQ(p5); f�1g) ,!Mv H2(GQ(p5)v ; f�1g):
Also the loal omponent at (3) (resp. (p5)) is trivial as (3) (resp. (p5)) isinert (resp. rami�ed) over Q . Thus we an �nd a totally real, biquadrati �eldF1 � suh that F1 ontains Q (p5) and both (3) and (p5) split in F1,� and suh that the image of this obstrution vanishes at all �nite plaesof F1.As det �() = �1 the image of this obstrution is non-trivial at all in�niteplaes of F1. Similarly the obstrution to lifting the mod 5 ylotomi haraterGQ(p5) �! f�1g � F�5to a harater GQ(p5) ! �4 with square the mod 5 ylotomi harater liesin H2(GQ(p5); f�1g) ,!Mv H2(GQ(p5)v ; f�1g)and has trivial image at all �nite plaes and non-trivial image at in�nity. Thusthe sum of the two obstrutions vanishes in H2(GF1 ; f�1g) and so we an liftGF1 ��! A5 �= PSL2(F5)to a ontinuous representatione� : GF1 �! GL2(F5)13



with det e� = �5.Choose a �nite, soluble, totally real extension F2=F1 suh that (p5) splitsompletely in F2, suh that e� is trivial on the deomposition group of everyprime of F2 above 3, but suh that the rami�ation index of any prime above3 in F2 is odd. Finally let F be the Galois losure of F2=Q .Let Xe�=F be the twist of X5 de�ned in setion 1 of [SBT℄. By lemma 1.1of [SBT℄ we see that Xe� is isomorphi over F to a Zariski open subset of theprojetive line. Also let Ye�=Xe� be the over de�ned in the proof of theorem1.2 of [SBT℄. Thus Ye� is geometrially irreduible and Ye�=Xe� has degree 24.Suppose that v is a prime of F above 3. Then �5(Frobv) � 1 mod 5 sothat the residue �eld of v ontains F81. Thus the ellipti urve y2 = x3 +x2 � x � 1 de�nes an element of Xe�(Fv) with good ordinary redution at vsuh that GFv ats diagonally on its three torsion. The same will be true ofany point of Xe�(Fv) suÆiently lose to this one in the 3-adi topology. LetUv � Xe�(Fv) be a non-empty open set (for the 3-adi topology) onsisting ofpoints orresponding to ellipti urves with good ordinary redution suh thatGFv ats diagonally on their three torsion.Suppose now that v is a prime of F above 5. We laim that we an �nda non-empty open subset (for the 5-adi topology) Uv � Xe�(Fv) onsistingof points orresponding to ellipti urves with good ordinary redution. ItsuÆes to �nd one suh point (and then take Uv to be a suÆiently small openneighbourhood of that point). Note that up to twist by quadrati haraterse�jGFv � �Æ � �where Æ is a quadrati harater orresponding to a harater of Q 5(p5)�takingp5 to �1, and � is a tamely rami�ed harater of order 4 orrespondingto a harater of Q 5(p5)� taking p5 to 2. Moreover if Æ is rami�ed then wemay take � unrami�ed, while if Æ is unrami�ed the restrition of � to inertiaalso has order 4. In the �rst ase the ellipti urve y2 = x3 + x provides apoint in Xe�(Fv). This ellipti urve has CM by Z[p�1℄ over Fv and a suitablequarti twist provides a point on Xe�(Fv) in the seond ase.By Ekedahl's version of the Hilbert irreduibility theorem [E℄ we may �nda point P 2 Xe�(F ) whih lies in Uv for all vj15 and suh that any point ofYe� above P uts out an extension of F of degree 24. Let E=F be the elliptiurve orresponding to P . 2Theorem 2.4 Let � : GQ ! GL2(Fa5 ) be a ontinuous representation whihsatis�ed the following onditions.� det �() = �1. 14



� � has projetive image A5.� The projetive image of I3 has odd order.� The projetive image of G5 has order 2 and the orresponding map Q �5 !f�1g sends 5 to a non-trivial element.Then � is modular.Proof: Choose F and E as in the previous lemma. By the Langlands-Tunnell theorem there is a uspidal automorphi representation �000 ofGL2(A F )and a plae � of the �eld of oeÆients of �000 above 3 suh that the followingonditions are satis�ed.� For eah in�nite plae v the omponent �000v is lowest disrete series.� ��000;� � �E;3.� For any plae v of F above 3 we have��000;�jGv � �1;v�3 � �2;v;where �1;v and �2;v are �nitely tamely rami�ed, and �1;v�3 6� �2;v mod �.(See [L℄ and [Tu℄, as well as [RT℄ for the method for arranging the onditionson �000v for v in�nite.)Applying theorem 5.1 of [SW2℄ to the 3-adi Tate module of E, we see thatthere is a uspidal automorphi representation �00 of GL2(A F ) satisfying thefollowing onditions.� For eah in�nite plae v the omponent �00v of �00 is lowest disrete series.� �00 has �eld of oeÆients Q .� For every rational prime l, the representation ��00;l � �E;l.Twisting �00 we see that there is a uspidal automorphi representation �0 ofGL2(A F ) and a plae �0 of the �eld of oeÆients of �0 above 5 suh that thefollowing onditions are satis�ed.� For eah in�nite plae v the omponent �0v is lowest disrete series.� There is an embedding of the residue �eld of �0 in Fa5 suh that ��0;�0 � �.
15



� For any plae v of F above 5 we have��0;�0 jGv � � �1;v�5 �0 �2;v � ;where �1;v and �2;v are �nitely tamely rami�ed.Note that by our assumptions on �, �1;v�5 6� �2;v mod �0.We will next explain how to desend (in a mod l sense) �0 to Q while main-taining ��0;�0 � �. We learned this argument from C.Khare (see [K℄).By theorem 1.3 we may hoose a ontinuous representation � : GQ !GL2(Q a5 ) satisfying the following onditions.� � is a lift of �.� �jG5 � � �1�5 �0 �2 � where �1 and �2 are �nitely tamely rami�ed.The existene of �0 above and theorem 5.1 of [SW2℄ tell us that there is auspidal automorphi representation � of GL2(A F ) and a plae � of the �eldof oeÆients of � above 5 suh that the following onditions are satis�ed.� For eah in�nite plae v the omponent �v is lowest disrete series.� There is an embedding of the �-adi ompletion of the �eld of oeÆientsof � into Q a5 suh that ��;� � �jGF .Let F = F1 � F2 � ::: � Fn = Q with Fi=Fi+1 Galois and yli of primedegree for all i. We will show by indution on i that there is a uspidal auto-morphi representation �i of GL2(A Fi ) and a plae �i of the �eld of oeÆientsof �i above 5 suh that the following onditions are satis�ed.� For eah in�nite plae v the omponent �i;v is lowest disrete series.� There is an embedding of the �i-adi ompletion of the �eld of oeÆientsof �i into Q a5 suh that ��i;�i � �jGFi .We have treated the ase i = 1 above. Suppose we have treated the ase ofi. Let � be a generator of Gal (Fi=Fi+1). Then we see that ��i = �i and so,by Langlands base hange theorem [L℄, �i desends to a uspidal automorphirepresentation �0i+1 of GL2(A Fi+1 ) with �0i+1;v lowest disrete series for eahin�nite plae v of F 0i+1. Then there is an embedding of the �eld of oeÆientsof �0i+1 into Q a5 , whih gives rise to a plae �0i+1, suh that ��0i+1;�0i+1 jGFi � �jGFi .As �jGFi is irreduible we see that ��0i+1;�0i+1 is the twist of �jGFi+1 by a haraterof Gal (Fi=Fi+1). Thus replaing �0i+1 by a twist the laim follows for i + 1.The ase i = n of the laim implies the theorem. 2
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Corollary 2.5 Let � : G Q ! GL2(C ) be a ontinuous representation satisfy-ing the following onditions.� det �() = �1.� � has projetive image A5.� The projetive image of I3 has odd order.� The projetive image of G5 has order 2 and the orresponding map Q �5 !f�1g sends 5 to �1.Then � is modular.Proof: This follows from the previous theorem and the main theorem of[Buz℄. (In the ase that the projetive representation assoiated to � is un-rami�ed at 5, one may appeal instead to the main theorem of [BT℄.) 2We will �nish by giving some onrete examples where this orollary an beapplied. We list quinti polynomials whose splitting �elds are A5 extensionsof Q . In eah ase this A5 extension an be lifted to a Galois representation �satisfying the onditions of the above orollary. None of these examples satisfythe onditions of the main theorem of [BDST℄. They are all taken from thetables in [Buh℄. x5 + 2x4 + 6x3 + 8x2 + 10x+ 8x5 + 6x4 + x3 + 4x2 � 24x+ 32x5 � 2x3 + 2x2 + 5x+ 6x5 + 5x4 + 8x3 � 20x2 � 21x� 5:
Corrigendum to [Ta℄.I would like to thank Fred Diamond for pointing out an error in [Ta℄. Morepreisely, with the de�nition of the inner produt given on page 271 of [Ta℄,the alulation of the adjoint of a Heke operator is in general wrong. Thismay be orreted as follows.� Change the de�nition of hf; gi on page 271 to readhf; gi = X[x℄2X(U)[D� \ xUx�1 : F� \ U ℄�1hf(x); g(x)i(N�x)�:
� Make the orresponding hanges to the alulation on page 271 of theadjoint of [UxU 0℄. The �nal formula remains unhanged.17



� At the start of line 4 on page 274 of [Ta℄ add the following sentene.\Note that [D� \ tjulUu�1l t�1j : F� \ U ℄j[D� \ tjU0t�1j : F� \ U0℄ andso there are only �nitely many possibilities (independent of U � U0) for[D� \ tjulUu�1l t�1j : F� \ U ℄."
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