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Erdos unit distance problem

Question (Erdés, 1946)

What is the maximum number of unit distances defined by n points in (R?, ||.||2)?
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Question (Erdés, 1946)

What is the maximum number of unit distances defined by n points in (R?, ||.||2)?

Let Uj.,(n) denote the answer.
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Erdos unit distance problem

Question (Erdés, 1946)

What is the maximum number of unit distances defined by n points in (R?, ||.||2)?

Let Uj.,(n) denote the answer.

Ui 11 (n) < 0(n*7?)

Spencer, Szemerédi, Trotter '84
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Erdos unit distance problem

Question (Erdés, 1946)

What is the maximum number of unit distances defined by n points in (R?, ||.||2)?

Let Uj.,(n) denote the answer.

I+ b 4/3
Q(n log log ) < UH||2(H) < O(n )
—_——
Erdée '46 Spencer, Szemerédi, Trotter '84
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Erdos unit distance problem

Question (Erdés, 1946)

What is the maximum number of unit distances defined by n points in (R?, ||.||2)?

Let Uj.,(n) denote the answer.

1
In 2D: Q (n1+'°g'°g") < Upe(n) < 0(n*)
—_——
Erdée '46 Spencer, Szemerédi, Trotter '84
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Erdos unit distance problem

Question (Erdés, 1946)

What is the maximum number of unit distances defined by n points in (R9,||.|2)?

Let Uj.|,(n) denote the answer.

1
In 2D: Q (n1+'°g'°g"> < U112 (n) < 0(n*?)
———
Erdds '46 Spencer, Szemerédi, Trotter '84
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Erdos unit distance problem

Question (Erdés, 1946)

What is the maximum number of unit distances defined by n points in (R9,||.|2)?

Let Uj.|,(n) denote the answer.

In2b: ¢ (”H@) < Ypge < O(n*?)

Erdds '46 Spencer, Szemerédi, Trotter '84

In 3D: Ujpio(n) < 0(n/%7¢)
N———

Zahl '19

Matija Buci¢ (IAS and Princeton) Unit and distinct distances in typical norms



Erdos unit distance problem

Question (Erdés, 1946)

What is the maximum number of unit distances defined by n points in (R9,||.|2)?

Let Uj.|,(n) denote the answer.

1
In 2D: Q (n1+'°g'°g"> < U112 (n) < 0(n*?)
Erdds '46 Spencer, Szemerédi, Trotter '84
. 4/340(1 3/2—
In 3D: nt/3+e) < U111, (n) < 0(n/%7¢)
—— | —
Erdés '60 Zahl '19
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Erdos unit distance problem

Question (Erdés, 1946)

What is the maximum number of unit distances defined by n points in (R9,||.|2)?

Let Uj.|,(n) denote the answer.

In 2D: Q (n e ) <
Erdés '46
In 3D: n*/3+e() <
———
Erdés '60

In 4 and more D:

Ui 11.(n) < O(n*?)

Spencer, Szemerédi, Trotter '84

Uij.11,(n) < 0(n*?79)

Zahl '19

U.i(n) = ©(n)
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General normed spaces

Question (Erdés, Ulam 1980)

What is the max number U \|(n) of unit distances defined by n points in (R?,]|.||)?
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General normed spaces

Question (Erdés, Ulam 1980)

What is the max number U \|(n) of unit distances defined by n points in (R?,]|.||)?

o Erdés 1980: Uy, (n) = (1+o(1))- 2 in R2.

Matija Buci¢ (IAS and Princeton) Unit and distinct distances in typical norms



General normed spaces

Question (Erdés, Ulam 1980)

What is the max number U \|(n) of unit distances defined by n points in (R?,]|.||)?

o Erdés 1980: Uy, (n) = (1+o(1))- 2 in R2.

@ Brass 1996: U |(n) = (1+o(1)) - %2 for any not strictly convex R? norm ||.||
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General normed spaces

Question (Erdés, Ulam 1980)

What is the max number U, (n) of unit distances defined by n points in (R?, |.]|)?

o Erdés 1980: Uy, (n) = (1 + o(1))- = in R2.

@ Brass 1996: U |(n) = (1 +o(1)) - "72 for any not strictly convex R? norm ||.||

has line segment in unit sphere
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General normed spaces

Question (Erdés, Ulam 1980)

What is the max number U, (n) of unit distances defined by n points in (R?, |.]|)?

o Erdés 1980: Uy, (n) = (1 + o(1))- = in R2.

@ Brass 1996: U |(n) = (1 +o(1)) - "72 for any not strictly convex R? norm ||.||

has line segment in unit sphere

@ Brass conjectured that (o, maximizes U} ||(n) among R? norms ||.||.
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General normed spaces

Question (Erdés, Ulam 1980)

What is the max number U, (n) of unit distances defined by n points in (R?, |.]|)?

o Erdés 1980: Uy, (n) = (1 + o(1))- = in R2.

@ Brass 1996: U |(n) = (1 +o(1)) - "72 for any not strictly convex R? norm ||.||

has line segment in unit sphere

@ Brass conjectured that (o, maximizes U} ||(n) among R? norms ||.||.
@ Swanepoel 2018: - U ||(n) < (14 o(1))- (1 —219)- ”32 for any R9-norm ||.||
- Tight for £, norm in RY
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General normed spaces

Question (Erdés, Ulam 1980)

What is the max number U, (n) of unit distances defined by n points in (R?, |.]|)?

Erdés 1980: Uy, (n) = (14 o(1))- % in R2.

Brass 1996: U} (n) = (14 o(1)) - "72 for any not strictly convex R? norm ||.||

has line segment in unit sphere

Brass conjectured that /o, maximizes U} ||(n) among R? norms ||.||.

Swanepoel 2018: - Uy /(n) < (1+0o(1))- (1 —2179) - ”; for any R9-norm ||.||
- Tight for £, norm in RY

Klee 1959: “Most” norms on R? are strictly convex.
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Maximization problem among strictly convex norms

Question (Erdés, Ulam 1980)

What is the max number U, (n) of unit distances defined by n points in (R?, |.||)?

@ Klee 1959: “Most" norms on RY are strictly convex.
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Maximization problem among strictly convex norms

Question (Erdés, Ulam 1980)

What is the max number U, (n) of unit distances defined by n points in (R?, |.||)?

@ Klee 1959: “Most" norms on RY are strictly convex.

@ Ujpj(n) < O(n*/?) for any strictly convex R? norm |||
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Maximization problem among strictly convex norms

Question (Erdés, Ulam 1980)

What is the max number U, (n) of unit distances defined by n points in (R?, |.||)?

@ Klee 1959: “Most" norms on RY are strictly convex.
@ Ujpj(n) < O(n*/?) for any strictly convex R? norm |||

@ Brass; Valtr; Solymosi, Szabé: 3 an R? norm with Ujj j(n) = ©(n*/3)
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Maximization problem among strictly convex norms

Question (Erdés, Ulam 1980)

What is the max number U, (n) of unit distances defined by n points in (R?, |.||)?

Klee 1959: “Most” norms on R? are strictly convex.

@ Ujpj(n) < O(n*/?) for any strictly convex R? norm |||

Brass; Valtr; Solymosi, Szabé: 3 an R? norm with U}, ||(n) = ©(n*/3)

@ Zahl: 3 an R3 norm with U} | /(n) = ©(n%?)
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Typical normed spaces

Question (Erdés, Ulam 1980)

What is the max number U, \|(n) of unit distances defined by n points in (R?,]|.||)?
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Typical normed spaces

Question (Erdés, Ulam 1980)

What is the max number U, \|(n) of unit distances defined by n points in (R?,]|.||)?

@ Folklore: for any norm Uy (n) > (3 — o(1))nlog, n.
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Typical normed spaces

Question (Erdés, Ulam 1980)

What is the max number U, \|(n) of unit distances defined by n points in (R?,]|.||)?

@ Folklore: for any norm Uy (n) > (3 — o(1))nlog, n.

@ Brass 1996: Is there an R?-norm for which Uj (n) = ©(nlog n)?
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Typical normed spaces

Question (Erdés, Ulam 1980)

What is the max number U, \|(n) of unit distances defined by n points in (R?,]|.||)?

@ Folklore: for any norm Uy (n) > (3 — o(1))nlog, n.
@ Brass 1996: Is there an R?-norm for which Uj (n) = ©(nlog n)?

@ Matousek 2011: For “most” R?-norms U (n) < O(nlog nloglog n).
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Typical normed spaces

Question (Erdés, Ulam 1980)

What is the max number U, \|(n) of unit distances defined by n points in (R?,]|.||)?

@ Folklore: for any norm Uy (n) > (3 — o(1))nlog, n.
@ Brass 1996: Is there an R?-norm for which Uj (n) = ©(nlog n)?
@ Matousek 2011: For “most” R?-norms U (n) < O(nlog nloglog n).

@ Brass-Moser-Pach 2006: For d > 3 show that V R?-norms Uy /(n) > nlogn
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Typical normed spaces

Question (Erdés, Ulam 1980)

What is the max number U, \|(n) of unit distances defined by n points in (R?,]|.||)?

@ Folklore: for any norm Uy (n) > (3 — o(1))nlog, n.
@ Brass 1996: Is there an R?-norm for which Uj (n) = ©(nlog n)?
@ Matousek 2011: For “most” R?-norms U (n) < O(nlog nloglog n).

@ Brass-Moser-Pach 2006: For d > 3 show that V R?-norms Uy /(n) > nlogn

For d > 4 is there an R9-norm s.t. Uy (n) = o(n?)?
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Typical normed spaces

Question (Erdés, Ulam 1980)

What is the max number U, \|(n) of unit distances defined by n points in (R?,]|.||)?

@ Folklore: for any norm Uy (n) > (3 — o(1))nlog, n.
@ Brass 1996: Is there an R?-norm for which Uj (n) = ©(nlog n)?
@ Matousek 2011: For “most” R?-norms U (n) < O(nlog nloglog n).

@ Brass-Moser-Pach 2006: For d > 3 show that V R?-norms Uy /(n) > nlogn

For d > 4 is there an R%-norm s.t. U (n) = o(n?)?

Theorem (Alon, B., Sauermann, 2023+)

For “most” R?-norms Uy (n) <

- lo
- n n
2 g2
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Typical normed spaces

Question (Erdés, Ulam 1980)

What is the max number U, \|(n) of unit distances defined by n points in (R?,]|.||)?

@ Folklore: for any norm Uy (n) > (3 — o(1))nlog, n.
@ Brass 1996: Is there an R?-norm for which Uj (n) = ©(nlog n)?
@ Matousek 2011: For “most” R?-norms U (n) < O(nlog nloglog n).

@ Brass-Moser-Pach 2006: For d > 3 show that V R?-norms Uy /(n) > nlogn

For d > 4 is there an R%-norm s.t. U (n) = o(n?)?

Theorem (Alon, B., Sauermann, 2023+)

d
For “most” R?-norms Uy (n) < 5" nlog, n
d—1-—o0(1)

For all  R9-norms Uy.y(n) > 5

- nlog, n
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Erdos distinct distances problem

Question (Erdés, 1946)

What is the min number of distinct distances defined by n points in (R?, ||.||2)?
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Erdos distinct distances problem

Question (Erdés, 1946)

What is the min number of distinct distances defined by n points in (R?, ||.||2)?

Let Dj.y,(n) denote the answer.
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Erdos distinct distances problem

Question (Erdés, 1946)

What is the min number of distinct distances defined by n points in (R?, ||.||2)?

Let Dj.y,(n) denote the answer.

n

In 2D: Dijji(n) < O(ﬁ)

Erdés '46
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Erdos distinct distances problem

Question (Erdés, 1946)

What is the min number of distinct distances defined by n points in (R?, ||.||2)?

Let Dj.y,(n) denote the answer.

IN

In 2D: Q( "> < Dypaln)

log n

° (o)

Guth, Katz '15 Erdés '46
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Erdos distinct distances problem

Question (Erdés, 1946)

What is the min number of distinct distances defined by n points in (R?, ||.||2)?

Let Dj.y,(n) denote the answer.

n n
In 2D: Q < D < O—
n (|0gn> < Dyp(n) < (\/@)
—_——
Guth, Katz '15 Erdds '46
In 3 and more D: Dy ,(n) < o(n*9)
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General normed spaces

Question (Swanepoel 1997)
What is the min # Dj).\|(n) of distinct distances defined by n points in (R, ]|.||)?

Matija Buci¢ (IAS and Princeton) Unit and distinct distances in typical norms



General normed spaces

Question (Swanepoel 1997)
What is the min # Dj).\|(n) of distinct distances defined by n points in (R, ]|.||)?

@ Dy j(n) < n—1forany |.[.
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General normed spaces

Question (Swanepoel 1997)
What is the min # Dj).\|(n) of distinct distances defined by n points in (R, ]|.||)?

@ Dy j(n) < n—1forany |.[.

@ Brass conjectured: Dy (n) < o(n) for all R%-norms ||.||
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General normed spaces

Question (Swanepoel 1997)
What is the min # Dj).\|(n) of distinct distances defined by n points in (R, ]|.||)?

@ Dy j(n) < n—1forany |.[.

@ Brass conjectured: Dy (n) < o(n) for all R%-norms ||.||

n—1

diog for most R¥-norms |||

@ Our result on unit distance problem = D) |(n) >
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General normed spaces

Question (Swanepoel 1997)
What is the min # Dj).\|(n) of distinct distances defined by n points in (R, ]|.||)?

@ Dy j(n) < n—1forany |.[.

@ Brass conjectured: Dy (n) < o(n) for all R%-norms ||.||

n—1

dlogn TOr most R¥-norms ||.||

@ Our result on unit distance problem = D) |(n) >

Theorem (Alon, B., Sauermann, 2023+)

For most R?-norms
D””(n) =n-—- o(n)
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Proof strategy

@ What makes a norm “special”?
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Proof strategy

@ What makes a norm “special”?
@ An R%norm is special if 3 non-parallel unit vectors uy, ..., uxg1 s.t. Vi

u; € Spang(uy, ..., ux)
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Proof strategy

@ What makes a norm “special”?
@ An R%norm is special if 3 non-parallel unit vectors uy, ..., uxg1 s.t. Vi

u; € Spang(uy, ..., ux)

o Step 1: Show the set of special norms is meagre
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Proof strategy

@ What makes a norm “special”?
@ An R%norm is special if 3 non-parallel unit vectors uy, ..., uxg1 s.t. Vi

u; € Spang(uy, ..., ux)

@ Step 1: Show the set of special norms is meagre

o Step 2: Show that non-special norms have Uy (n) < %nlog n.
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Concluding remarks and open problems
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Concluding remarks and open problems

@ What happens for typical norms in other classical problems?
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Concluding remarks and open problems

@ What happens for typical norms in other classical problems?

@ For example, Hadwiger-Nelson problem
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Concluding remarks and open problems

@ What happens for typical norms in other classical problems?

@ For example, Hadwiger-Nelson problem

Theorem (Alon, B., Sauermann)

Chromatic number of the unit distance graph of R? is 4 for most norms
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Concluding remarks and open problems

@ What happens for typical norms in other classical problems?

@ For example, Hadwiger-Nelson problem

Theorem (Alon, B., Sauermann)

Chromatic number of the unit distance graph of R? is 4 for most norms.

@ In RY we get an upper bound of 29.
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Concluding remarks and open problems

@ What happens for typical norms in other classical problems?

@ For example, Hadwiger-Nelson problem

Theorem (Alon, B., Sauermann)

Chromatic number of the unit distance graph of R? is 4 for most norms.

@ In RY we get an upper bound of 29.

Is x of the unit distance graph of RY subexponential for most norms? \
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Typical norms have small unit distance function

e An R%norm is special if 3 non-parallel unit vectors uy, ..., ugg4+1 s.t. Vi

u; € Spang(uy, ..., ux)
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Typical norms have small unit distance function

e An R%norm is special if 3 non-parallel unit vectors uy, ..., ugg4+1 s.t. Vi
u; € Spang(uy, ..., ux)

e Given n points in RY, suppose > %nlogn pairs are at unit distance.
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Typical norms have small unit distance function

e An R%norm is special if 3 non-parallel unit vectors uy, ..., ugg4+1 s.t. Vi
u; € Spang(uy, ..., ux)

e Given n points in RY, suppose > Znlog n pairs are at unit distance.
p > g

@ Define a graph with points as vertices and unit distance pairs as edges
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Typical norms have small unit distance function

e An R%norm is special if 3 non-parallel unit vectors uy, ..., ugg4+1 s.t. Vi
u; € Spang(uy, ..., ux)
e Given n points in RY, suppose > %nlogn pairs are at unit distance.

@ Define a graph with points as vertices and unit distance pairs as edges

o Let uy,...,u,, be the unit directions appearing as edges
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Typical norms have small unit distance function

@ An R9norm is special if 3 non-parallel unit vectors uy,
u; € SpanQ(ul, .., Ug)
e Given n points in R?, suppose > %nlogn pairs are at unit distance.

@ Define a graph with points as vertices and unit distance pairs as edges

oy Ukgy1 st Vi

@ Let uy,...,u, be the unit directions appearing as edges
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Typical norms have small unit distance function

e An R%norm is special if 3 non-parallel unit vectors uy, ..., ugg4+1 s.t. Vi
u; € Spang(uy, ..., ux)
e Given n points in RY, suppose > %nlogn pairs are at unit distance.

@ Define a graph with points as vertices and unit distance pairs as edges

o Let uy,...,u,, be the unit directions appearing as edges

@ Any k of the vectors u; span (over Q) at most kd of the vectors
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Typical norms have small unit distance function

e An R%norm is special if 3 non-parallel unit vectors uy, ..., ugg4+1 s.t. Vi
u; € Spang(uy, ..., ux)

e Given n points in RY, suppose > %nlogn pairs are at unit distance.

@ Define a graph with points as vertices and unit distance pairs as edges

o Let uy,...,u,, be the unit directions appearing as edges

@ Any k of the vectors u; span (over Q) at most kd of the vectors

@ Edmonds matroid decomposition thm = can partition the vectors
into d Q-independent sets
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Typical norms have small unit distance function

e An R%norm is special if 3 non-parallel unit vectors uy, ..., ugg4+1 s.t. Vi

u; € Spang(uy, ..., ux)

Given n points in RY, suppose > %nlogn pairs are at unit distance.

Define a graph with points as vertices and unit distance pairs as edges

@ Let uy,...,u,, be the unit directions appearing as edges

@ Any k of the vectors u; span (over Q) at most kd of the vectors

@ Edmonds matroid decomposition thm = can partition the vectors
into d Q-independent sets

@ There exist uj,...,u; which are: 1. Q-independent and

2. account for %—fraction of the edges
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Typical norms have small unit distance function

e An R norm is special if 3 non-parallel unit vectors ug, ..., Uxg,1 s.t. Vi
u; € Spang(uy, ..., ux)

Given n points in RY, suppose > Znlog n pairs are at unit distance.
p pp > g

Define a graph with points as vertices and unit distance pairs as edges

@ Let uy,...,u,, be the unit directions appearing as edges

@ Any k of the vectors u; span (over Q) at most kd of the vectors

@ Edmonds matroid decomposition thm = can partition the vectors
into d Q-independent sets

@ There exist uj, ..., u; which are: 1. Q-independent and
2. account for %—fraction of the edges
@ Relabel so that uy,...,u; are: 1. Q-independent and

2. account for %—fraction of the edges
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Typical norms have small unit distance function

e An R norm is special if 3 non-parallel unit vectors ug, ..., Uxg,1 s.t. Vi
u; € Spang(uy, ..., ux)

Given n points in RY, suppose > Znlog n pairs are at unit distance.
p pp > g

Define a graph with points as vertices and unit distance pairs as edges

@ Let uy,...,u,, be the unit directions appearing as edges

@ Any k of the vectors u; span (over Q) at most kd of the vectors

@ Edmonds matroid decomposition thm = can partition the vectors
into d Q-independent sets

@ There exist uj, ..., u; which are: 1. Q-independent and
2. account for %—fraction of the edges
@ Relabel so that uy,...,u; are: 1. Q-independent and

2. account for > %nlog n edges
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Typical norms have small unit distance function

@ Given n points in R? and Q-independent unit directions ug, ..., us s.t.

» there are > 1nlog n pairs at unit distance along these directions
snlognp g
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Typical norms have small unit distance function

@ Given n points in R? and Q-independent unit directions ug, ..., us s.t.

> there are > %nlogn pairs at unit distance along these directions
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Typical norms have small unit distance function

@ Given n points in R? and Q-independent unit directions ug, ..., us s.t.

> there are > %nlogn pairs at unit distance along these directions
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Typical norms have small unit distance function

@ Given n points in R? and Q-independent unit directions ug, ..., us s.t.

> there are > %nlogn pairs at unit distance along these directions

@ Define a graph G with points as vertices and such pairs as edges
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Typical norms have small unit distance function

@ Given n points in R? and Q-independent unit directions ug, ..., us s.t.
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@ Given n points in RY and Q-independent unit directions uy, ..., u; s.t.
> there are > %nlogn pairs at unit distance along these directions
@ Define a graph G with points as vertices and such pairs as edges

@ Can assume G is connected
o Can embed this graph into the grid graph Z!

» Fix a vertex v, and translate it to 0 € R¢
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@ Define a graph G with points as vertices and such pairs as edges

@ Can assume G is connected
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Typical norms have small unit distance function

@ Given n points in RY and Q-independent unit directions uy, ..., u; s.t.
> there are > %nlogn pairs at unit distance along these directions

@ Define a graph G with points as vertices and such pairs as edges

o Can assume G is connected
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Typical norms have small unit distance function

@ Given n points in RY and Q-independent unit directions uy, ..., u; s.t.
> there are > %nlogn pairs at unit distance along these directions

@ Define a graph G with points as vertices and such pairs as edges

o Can assume G is connected

o Can embed this graph into the grid graph Z*

» Fix a vertex vp and translate it to 0 € R

» For every vertex v 3 a vyv-path which gives v = aju; + ...+ a;u;,3; € Z
Embed v to (a1,...,a:) € Z*
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Typical norms have small unit distance function

@ Given n points in R? and Q-independent unit directions ug, ..., u; s.t.

> there are > %nlogn pairs at unit distance along these directions

@ Define a graph G with points as vertices and such pairs as edges
@ Can assume G is connected
o Can embed this graph into the grid graph Z*!

» Fix a vertex vy and translate it to 0 € R

» For every vertex v 3 a vyv-path which gives v = aju; + ... + a;us,3; € Z
Embed v to (a1,...,a:) € Z*

» Well-defined by Q-independence
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Typical norms have small unit distance function

@ Given n points in R? and Q-independent unit directions ug, ..., u; s.t.

> there are > %nlogn pairs at unit distance along these directions

@ Define a graph G with points as vertices and such pairs as edges
@ Can assume G is connected

o Can embed this graph into the grid graph Z*!

» Fix a vertex vy and translate it to 0 € R

» For every vertex v 3 a vyv-path which gives v = aju; + ... + a;us,3; € Z
Embed v to (a1,...,a:) € Z*

» Well-defined by Q-independence

» Any edge of G corresponds to u; so changes only one coordinate by one
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Typical norms have small unit distance function

@ Given n points in R? and Q-independent unit directions ug, ..., u; s.t.

> there are > %nlogn pairs at unit distance along these directions

@ Define a graph G with points as vertices and such pairs as edges

@ Can assume G is connected

e Can embed this graph into the grid graph Z!

» Fix a vertex vy and translate it to 0 € R?

» For every vertex v 3 a vyv-path which gives v = aju; + ... + a;us,3; € Z
Embed v to (a1,...,a;) € Z*

» Well-defined by Q-independence

» Any edge of G corresponds to u; so changes only one coordinate by one

@ Bollobas-Leader edge-isoperimetric inequality for the grid —
G can have at most %nlogn edges.
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Special norms are meagre

@ An R%norm is special if 3 non-parallel unit vectors uy, ..., U1 s.t. Vi
u; € Spang(uy, ..., uk)
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Special norms are meagre

@ An R%norm is special if 3 non-parallel unit vectors uy, ..., U1 s.t. Vi
u; € Spang(uy, ..., uk)

@ Fix the “dependencies”:
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@ An R%norm is special if 3 non-parallel unit vectors uy, ..., U1 s.t. Vi
u; € Spang(uy, ..., uk)

@ Fix the “dependencies’: - a (kd + 1) x k rational matrix A and
- a rational angle n > 0
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@ An R norm is special if 3 non-parallel unit vectors uy, ..., uxg4q S.t. Vi
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Special norms are meagre

@ An R9norm is special if 3 non-parallel unit vectors uy,

u; € Spang(uy, ..., uk)

<oy Uggy ST Vi

@ Fix the “dependencies’: - a (kd + 1) x k rational matrix A and

- a rational angle n > 0
@ An R%norm is (A, n)-special if 3 non-parallel unit vectors uy, ..., ukg+1 S.t.
»up =Y Aju;forall j=1,...,dk+1.
» Z(uj,u;) > n, holds for all distinct i and j

@ Goal: for any fixed A, 7 the set of (A, n)-special norms is nowhere dense
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Special norms are meagre

@ An R%norm is (A, n)-special if 3 non-parallel unit vectors uy, ..., uxg41 S.t.

> up =Y Aju;forall j=1,...,dk+1.
» Z(uj,u;) > n, holds for all distinct i and j

@ Goal: for any fixed A, 7 the set of (A, n)-special norms is nowhere dense

@ Fix a norm ||.|| with unit ball B
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Special norms are meagre

@ An R%norm is (A, n)-special if 3 non-parallel unit vectors uy, ..., uxg41 S.t.

> up =Y Aju;forall j=1,...,dk+1.
» Z(uj,u;) > n, holds for all distinct i and j

@ Goal: for any fixed A, 7 the set of (A, n)-special norms is nowhere dense
@ Fix a norm ||.|| with unit ball B

@ We need to find an open set close to ||.|| not containing any (A, n)-special norm
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Special norms are meagre

@ An R%norm is (A, n)-special if 3 non-parallel unit vectors uy, ..., uxg41 S.t.

> up =Y Aju;forall j=1,...,dk+1.
» Z(uj,u;) > n, holds for all distinct i and j

@ Fix a norm ||.|| with unit ball B
@ We need to find an open set close to ||.|| not containing any (A, n)-special norm

@ Approximate B by a convex 0-symmetric polytope with small facets

Matija Buci¢ (IAS and Princeton) Unit and distinct distances in typical norms



Special norms are meagre

@ An R%norm is (A, n)-special if 3 non-parallel unit vectors uy, ..., uxg41 S.t.
> up =Y Aju;forall j=1,...,dk+1.
» Z(uj,u;) > n, holds for all distinct i and j

@ Fix a norm ||.|| with unit ball B which is convex, 0-symetric polytope

@ We need to find an open set close to ||.|| not containing any (A, n)-special norm
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Special norms are meagre

@ An R%norm is (A, n)-special if 3 non-parallel unit vectors uy, ..., uxg41 S.t.
> u =YK A forall j=1,...,dk+ 1.
» Z(uj,u;) > n, holds for all distinct i and j
@ Fix a norm ||.|| with unit ball B which is convex, 0-symetric polytope
@ We need to find an open set close to ||.|| not containing any (A, n)-special norm

o If there are 2f facets for each x € [—¢, ] we define B(x) to be the polytope
obtained by translating i-th facet pair by x;
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Special norms are meagre

@ An R%norm is (A, n)-special if 3 non-parallel unit vectors uy, ..., uxg41 S.t.

> up =Y Aju;forall j=1,...,dk+1.
» Z(uj,u;) > n, holds for all distinct i and j

@ Fix a norm ||.|| with unit ball B which is convex, 0-symetric polytope
@ We need to find an open set close to ||.|| not containing any (A, n)-special norm

o If there are 2f facets for each x € [—¢, ] we define B(x) to be the polytope
obtained by translating i-th facet pair by x;

@ An (A,n)-special B(x) must have its bad uy, ..., ukg11 on different facets.
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Special norms are meagre

@ An R7-norm is (A, n)-special if 3 non-parallel unit vectors uy, ..., uxgi1 St

> up =Y Aju;forall j=1,...,dk+1.
» Z(uj,u;) > n, holds for all distinct i and j

@ Fix a norm ||.|| with unit ball B which is convex, 0-symetric polytope
@ We need to find an open set close to ||.|| not containing any (A, n)-special norm

@ If there are 2f facets for each x € [—¢,¢]" we define B(x) to be the polytope
obtained by translating i-th facet pair by x;

@ An (A, n)-special B(x) must have its bad uy, ..., uxs1 on different facets.

@ If we fix which facets they belong to, this allows us to express kd 4+ 1 of x;’s as
linear functions of dk variables given by the coordinates of uy, ..., u,

Matija Buci¢ (IAS and Princeton) Unit and distinct distances in typical norms



Special norms are meagre

@ An R7-norm is (A, n)-special if 3 non-parallel unit vectors uy, ..., uxgi1 S.t.

> up =Y Aju;forall j=1,...,dk+1.
» Z(uj,u;) > n, holds for all distinct i and j

@ Fix a norm ||.|| with unit ball B which is convex, 0-symetric polytope
@ We need to find an open set close to ||.|| not containing any (A, n)-special norm

o If there are 2f facets for each x € [—¢, ] we define B(x) to be the polytope
obtained by translating /-th facet pair by x;

@ All x for which B(x) is (A, n)-special lie on finite union of affine hyperplanes.
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Special norms are meagre

@ An R7-norm is (A, n)-special if 3 non-parallel unit vectors uy, ..., uxgi1 S.t.

> up =Y Aju;forall j=1,...,dk+1.
» Z(uj,u;) > n, holds for all distinct i and j

@ Fix a norm ||.|| with unit ball B which is convex, 0-symetric polytope
@ We need to find an open set close to ||.|| not containing any (A, n)-special norm

o If there are 2f facets for each x € [—¢, ] we define B(x) to be the polytope
obtained by translating /-th facet pair by x;

@ All x for which B(x) is (A, n)-special lie on finite union of affine hyperplanes.

@ There exists a subbox of [—¢, ]’ with no (A, n)-special B(x)
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Special norms are meagre

@ An R7-norm is (A, n)-special if 3 non-parallel unit vectors uy, ..., uxgi1 S.t.

> up =Y Aju;forall j=1,...,dk+1.
» Z(uj,u;) > n, holds for all distinct i and j

@ Fix a norm ||.|| with unit ball B which is convex, 0-symetric polytope
@ We need to find an open set close to ||.|| not containing any (A, n)-special norm

o If there are 2f facets for each x € [—¢, ] we define B(x) to be the polytope
obtained by translating /-th facet pair by x;

@ All x for which B(x) is (A, n)-special lie on finite union of affine hyperplanes.
@ There exists a subbox of [—¢,]f with no (A, n)-special B(x)

@ A tiny open ball around the centre of the subbox has no (A, n)-special norms
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