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Erdős unit distance problem

Question (Erdős, 1946)

What is the maximum number of unit distances defined by n points in (R2, ∥.∥2)?

Let U∥.∥2
(n) denote the answer.

In 2D: Ω
(
n1+

1
log log n

)
≤︸ ︷︷ ︸

Erdős ’46

U||.||2(n) ≤ O(n4/3)︸ ︷︷ ︸
Spencer, Szemerédi, Trotter ’84

In 3D: n4/3+o(1) ≤︸ ︷︷ ︸
Erdős ’60

U||.||2(n) ≤ O(n3/2−ε)︸ ︷︷ ︸
Zahl ’19

In 4 and more D:

U||.||2(n) = Θ(n2)
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Erdős unit distance problem

Question (Erdős, 1946)
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What is the maximum number of unit distances defined by n points in (R2, ∥.∥2)?

Let U∥.∥2
(n) denote the answer.

In 2D:

Ω
(
n1+

1
log log n

)
≤︸ ︷︷ ︸
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General normed spaces

Question (Erdős, Ulam 1980)

What is the max number U||.||(n) of unit distances defined by n points in (Rd , ∥.∥)?

Erdős 1980: Uℓ1(n) = (1 + o(1)) · n2

4 in R2.

Brass 1996: U||.||(n) = (1 + o(1)) · n2

4 for any ||.||

Brass conjectured that ℓ∞ maximizes U||.||(n) among Rd norms ||.||.

Swanepoel 2018: - U||.||(n) ≤ (1 + o(1)) · (1− 21−d) · n2

2 for any Rd -norm ||.||

- Tight for ℓ∞ norm in Rd

Klee 1959: “Most” norms on Rd are strictly convex.
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Maximization problem among strictly convex norms

Question (Erdős, Ulam 1980)

What is the max number U||.||(n) of unit distances defined by n points in (Rd , ∥.∥)?

Klee 1959: “Most” norms on Rd are strictly convex.

U||.||(n) ≤ O(n4/3) for any strictly convex R2 norm ||.||

Brass; Valtr; Solymosi, Szabó: ∃ an R2 norm with U||.||(n) = Θ(n4/3)

Zahl: ∃ an R3 norm with U||.||(n) = Θ(n3/2)
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Question (Erdős, Ulam 1980)

What is the max number U||.||(n) of unit distances defined by n points in (Rd , ∥.∥)?

Klee 1959: “Most” norms on Rd are strictly convex.

U||.||(n) ≤ O(n4/3) for any strictly convex R2 norm ||.||
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Typical normed spaces

Question (Erdős, Ulam 1980)

What is the max number U||.||(n) of unit distances defined by n points in (Rd , ∥.∥)?

Folklore: for any norm U∥.∥(n) ≥ ( 12 − o(1))n log2 n.

Brass 1996: Is there an R2-norm for which U∥.∥(n) = Θ(n log n)?

Matoušek 2011: For “most” R2-norms U∥.∥(n) ≤ O(n log n log log n).

Brass-Moser-Pach 2006: For d ≥ 3 show that ∀ Rd -norms U∥.∥(n) ≫ n log n

Brass-Moser-Pach 2006: For d ≥ 4 is there an Rd -norm s.t. U∥.∥(n) = o(n2)?

Theorem (Alon, B., Sauermann, 2023+)

For “most” Rd -norms U∥.∥(n) ≤
d

2
· n log2 n

For all Rd -norms U∥.∥(n) ≥
d − 1− o(1)

2
· n log2 n
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Question (Erdős, Ulam 1980)

What is the max number U||.||(n) of unit distances defined by n points in (Rd , ∥.∥)?

Folklore: for any norm U∥.∥(n) ≥ ( 12 − o(1))n log2 n.

Brass 1996: Is there an R2-norm for which U∥.∥(n) = Θ(n log n)?
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Erdős distinct distances problem

Question (Erdős, 1946)

What is the min number of distinct distances defined by n points in (Rd , ∥.∥2)?

Let D∥.∥2
(n) denote the answer.

In 2D:

Ω

(
n

log n

)
≤︸ ︷︷ ︸

Guth, Katz ’15

D||.||2(n) ≤ O

(
n√
log n

)
︸ ︷︷ ︸

Erdős ’46

In 3 and more D: D||.||2(n) ≤ O(n2/d)︸ ︷︷ ︸
Erdős ’46

Matija Bucić (IAS and Princeton) Unit and distinct distances in typical norms
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Erdős ’46

In 3 and more D: D||.||2(n) ≤ O(n2/d)︸ ︷︷ ︸
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General normed spaces

Question (Swanepoel 1997)

What is the min # D||.||(n) of distinct distances defined by n points in (Rd , ∥.∥)?

D||.||(n) ≤ n − 1 for any ∥.∥.

Brass conjectured: D∥.∥(n) ≤ o(n) for all Rd -norms ∥.∥

Our result on unit distance problem ⇒ D||.||(n) ≥ n−1
d log n for most Rd -norms ∥.∥

Theorem (Alon, B., Sauermann, 2023+)

For most Rd -norms

D∥.∥(n) = n − o(n)
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Proof strategy

What makes a norm “special”?

An Rd -norm is special if ∃ non-parallel unit vectors u1, . . . ,ukd+1 s.t. ∀i

ui ∈ SpanQ(u1, . . . ,uk)

Step 1: Show the set of special norms is meagre

Step 2: Show that non-special norms have U∥.∥(n) ≤ d
2n log n.
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Concluding remarks and open problems

What happens for typical norms in other classical problems?

For example, Hadwiger-Nelson problem

Theorem (Alon, B., Sauermann)

Chromatic number of the unit distance graph of R2 is 4 for most norms.

In Rd we get an upper bound of 2d .

Question

Is χ of the unit distance graph of Rd subexponential for most norms?
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Matija Bucić (IAS and Princeton) Unit and distinct distances in typical norms



Concluding remarks and open problems

What happens for typical norms in other classical problems?

For example, Hadwiger-Nelson problem

Theorem (Alon, B., Sauermann)

Chromatic number of the unit distance graph of R2 is 4 for most norms.

In Rd we get an upper bound of 2d .

Question

Is χ of the unit distance graph of Rd subexponential for most norms?
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Typical norms have small unit distance function

An Rd -norm is special if ∃ non-parallel unit vectors u1, . . . ,ukd+1 s.t. ∀i

ui ∈ SpanQ(u1, . . . ,uk)

Given n points in Rd , suppose > d
2n log n pairs are at unit distance.

Define a graph with points as vertices and unit distance pairs as edges

Let u1, . . . ,um be the unit directions appearing as edges

Any k of the vectors ui span (over Q) at most kd of the vectors

Edmonds matroid decomposition thm ⇒ can partition the vectors
into d Q-independent sets

There exist ui1 , . . . ,uit which are: 1. Q-independent and
2. account for 1

d -fraction of the edges

Relabel so that u1, . . . ,ut are: 1. Q-independent and
2. account for edges
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Typical norms have small unit distance function

Given n points in Rd and Q-independent unit directions u1, . . . ,ut s.t.

▶ there are > 1
2n log n pairs at unit distance along these directions

Define a graph G with points as vertices and such pairs as edges

Can assume G is connected

Can embed this graph into the grid graph Zt

▶ Fix a vertex v0 and translate it to 0 ∈ Rd

▶ For every vertex v ∃ a v0v -path which gives v = a1u1 + . . .+ atut , ai ∈ Z

Embed v to (a1, . . . , at) ∈ Zt
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Define a graph G with points as vertices and such pairs as edges

Can assume G is connected

Can embed this graph into the grid graph Zt

▶ Fix a vertex v0 and translate it to 0 ∈ Rd

▶ For every vertex v ∃ a v0v -path which gives v = a1u1 + . . .+ atut , ai ∈ Z
Embed v to (a1, . . . , at) ∈ Zt
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▶ For every vertex v ∃ a v0v -path which gives v = a1u1 + . . .+ atut , ai ∈ Z
Embed v to (a1, . . . , at) ∈ Zt

▶ Well-defined by Q-independence

▶ Any edge of G corresponds to ±ui so changes only one coordinate by one

Bollobás-Leader edge-isoperimetric inequality for the grid =⇒
G can have at most 1

2n log n edges.
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Special norms are meagre

An Rd -norm is special if ∃ non-parallel unit vectors u1, . . . ,ukd+1 s.t. ∀i
ui ∈ SpanQ(u1, . . . ,uk)

Fix the “dependencies”:

- a (kd + 1)× k rational matrix A and

- a rational angle η > 0

An Rd -norm is (A, η)-special if ∃ non-parallel unit vectors u1, . . . ,ukd+1 s.t.

▶ uj =
∑k

i=1 Ajiui for all j = 1, . . . , dk + 1.

▶ ∠(ui ,uj) > η, holds for all distinct i and j

Goal: for any fixed A, η the set of (A, η)-special norms is nowhere dense

Fix a norm ∥.∥ with unit ball B

We need to find an open set close to ∥.∥ not containing any (A, η)-special norm

If there are 2f facets for each x ∈ [−ε, ε]f we define B(x) to be the polytope
obtained by translating i-th facet pair by xi

An (A, η)-special B(x) must have its bad u1, . . . ,ukd+1 on different facets.

If we fix which facets they belong to, this allows us to express kd + 1 of xi ’s as
linear functions of dk variables given by the coordinates of u1, . . . ,uk
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Matija Bucić (IAS and Princeton) Unit and distinct distances in typical norms



Special norms are meagre

An Rd -norm is (A, η)-special if ∃ non-parallel unit vectors u1, . . . ,ukd+1 s.t.

▶ uj =
∑k

i=1 Ajiui for all j = 1, . . . , dk + 1.

▶ ∠(ui ,uj) > η, holds for all distinct i and j

Fix a norm ∥.∥ with unit ball B which is convex, 0-symetric polytope

We need to find an open set close to ∥.∥ not containing any (A, η)-special norm

If there are 2f facets for each x ∈ [−ε, ε]f we define B(x) to be the polytope
obtained by translating i-th facet pair by xi

All x for which B(x) is (A, η)-special lie on finite union of affine hyperplanes.

There exists a subbox of [−ε, ε]f with no (A, η)-special B(x)

A tiny open ball around the centre of the subbox has no (A, η)-special norms
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