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Expander graphs

Expander graphs: “robustly well-connected graphs”

Definition (Expansion)

An n-vertex graph G is a λ-expander if for all U ⊆ V (G ) s.t. |U| ≤ n
2λ we have:

|N(U)| > λ|U|.

G

U N(U)
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Sublinear expansion

Definition (Sublinear expansion)

An n-vertex graph G is a sublinear expander if ∀U ⊆ V (G ) s.t. |U| ≤ n
2 we have:

|N(U)| > 1

log2 n
· |U|

G

U N(U)

Komlós and Szemerédi: Can find a sublinear expander of almost the same
average degree in any graph.
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Robust sublinear expansion

Definition (Robust sublinear expansion)

An n-vertex graph G is a robust sublinear expander if ∀U ⊆ V (G ) : |U| ≤ n
2

1◦ : |N(U)| > log2 n · |U| or

2◦ : N(U) has >
|U|

log2 n
vtcs with ≥ log4 n neighbours in U.

G1◦

U N(U)

G2◦

U N(U)
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Graph decomposition problems

General graph decomposition question:

Can we decompose a graph into few graphs with some “nice” properties?

Walecki 1883: K2n+1 can be decomposed into n cycles.

Can we decompose any graph into cycles?

No if ∃ an odd degree vertex.

Veblen 1912: Any graph with all degrees even decomposes into cycles.
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Erdős-Gallai Conjecture

Conjecture (Erdős-Gallai 1960s)

Every n-vertex graph can be decomposed into O(n) cycles and edges.

Tight if true.

▶ Erdős 1983: one needs at least (3/2− o(1))n cycles and edges.

Lovász 1968: True for paths in place of cycles

Matija Bucić (IAS and Princeton) Robust sublinear expanders Tel Aviv, July 2023
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▶ Erdős 1983: one needs at least (3/2− o(1))n cycles and edges.

Lovász 1968: True for paths in place of cycles
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Erdős-Gallai Conjecture: related work

Conjecture (Erdős-Gallai 1960s)

Every n-vertex graph can be decomposed into O(n) cycles and edges.

Tight if true.

▶ Erdős 1983: one needs at least (3/2− o(1))n cycles and edges.

Lovász 1968: True for paths in place of cycles
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What do we know?

Conjecture (Erdős-Gallai 1960s)

Every n-vertex graph can be decomposed into O(n) cycles and edges.

Proved for graphs with linear minimum degree.

Proved for random graphs.

Folklore: O(n log n) cycles and edges always suffice.

Conlon, Fox and Sudakov: O(n log log n) cycles and edges always suffice.

Theorem (B., Montgomery 2022+)

Any n-vertex graph can be decomposed into O(n log⋆ n) cycles and edges.
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Erdős unit distance problem

Question (Erdős, 1946)

What is the maximum number of unit distances defined by n points in (R2, ∥.∥2)?

Let U∥.∥2
(n) denote the answer.

In 2D: Ω
(
n1+

1
log log n

)
≤︸ ︷︷ ︸

Erdős ’46

U||.||2(n) ≤ O(n4/3)︸ ︷︷ ︸
Spencer, Szemerédi, Trotter ’84

In 3D: n4/3+o(1) ≤︸ ︷︷ ︸
Erdős ’60

U||.||2(n) ≤ O(n3/2−ε)︸ ︷︷ ︸
Zahl ’19

In 4 and more D:

U||.||2(n) = Θ(n2)
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Erdős ’60

U||.||2(n) ≤ O(n3/2−ε)︸ ︷︷ ︸
Zahl ’19

In 4 and more D: U||.||2(n) = Θ(n2)
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Erdős unit distance problem in general normed spaces

Let ∥.∥ be an arbitrary Rd -norm and U∥.∥(n) denote the answer to the following

Question (Erdős, Ulam 1980)

What is the maximum number of unit distances defined by n points in (Rd , ∥.∥)?

Folklore: for any norm U∥.∥(n) ≥ ( 12 − o(1))n log2 n.

Brass 1996: Is there an R2-norm for which U∥.∥(n) = Θ(n log n)?

Matoušek 2011: For “most” R2-norms U∥.∥(n) ≤ O(n log n log log n).

Brass-Moser-Pach 2006: For d ≥ 3 show that ∀ Rd -norms U∥.∥(n) ≫ n log n

Brass-Moser-Pach 2006: For d ≥ 4 is there an Rd -norm s.t. U∥.∥(n) = o(n2)?

Theorem (Alon, B., Sauermann, 2023+)

For any d ≥ 2 for “most” Rd -norms

d − 1− o(1)

2
· n log2 n ≤

U∥.∥(n) ≤
d

2
· n log2 n.
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Theorem (Alon, B., Sauermann, 2023+)

For any d ≥ 2 for “most” Rd -norms

d − 1− o(1)

2
· n log2 n ≤

U∥.∥(n) ≤
d

2
· n log2 n.
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Rainbow Turán problem for all cycles

Question (Keevash, Mubayi, Sudakov, Verstraëte, 2006)

What is the minimum number of edges in an n-vertex graph which
guarantees a rainbow cycle in any proper edge colouring?

We need at least

Das, Lee, Sudakov:

Janzer:

Tomon:

Janzer, Sudakov; Kim, Lee, Liu, Tran:

1
2n · log2 n

O(n · e
√
log n) suffice

O(n · log4 n) suffice

O(n · log2+o(1) n) suffice

O(n · log2 n) suffice

Theorem (Alon, B., Sauermann, Zakharov, Zamir)

Any properly coloured n-vertex graph with O(n log n log log n) edges
contains a rainbow cycle.
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Dissociated sets and additive dimension

Definition

Let (G ,+) be a group. A subset S ⊆ G is said to be dissociated if∑
g∈S

εgg = 0

for εg ∈ {0, 1,−1} implies εg = 0 for all g ∈ S .

Very useful in Harmonic analysis and additive number theory

Dissociated sets play the same role independent sets play in vector spaces

▶ Maximal dissociated sets are spanning

▶ Maximal dissociated sets have similar sizes

Definition

Let (G ,+) be a group. The additive dimension dimA of a subset A ⊆ G is
the maximum size of a dissociated subset of A.
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A relation between sumset size and additive dimension

Definition

Let (G ,+) be a group. The additive dimension dimA of a subset A ⊆ G is
the maximum size of a dissociated subset of A.

Theorem (Sanders, Skhredov, 2007)

Let (G ,+) be an Abelian group and A ⊆ G such that |A+A| ≤ K |A| then
dimA ≤ O(K log |A|).

Theorem (Alon, B., Sauermann, Zakharov, Zamir)

Let (G , ·) be any group and A ⊆ G such that |A · A| ≤ K |A| then
dimA ≤ O(K log |A| log log |A|).
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