Robust sublinear expanders

Matija Bucić

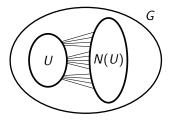
Institute for Advanced Study and Princeton University

• Expander graphs: "robustly well-connected graphs"

• Expander graphs: "robustly well-connected graphs"

Definition (Expansion)

An n-vertex graph G is a λ -expander if for all $U \subseteq V(G)$ s.t. $|U| \leq \frac{n}{2\lambda}$ we have: $|N(U)| > \lambda |U|$.

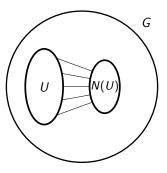


Sublinear expansion

Definition (Sublinear expansion)

An n-vertex graph G is a sublinear expander if $\forall U \subseteq V(G)$ s.t. $|U| \leq \frac{n}{2}$ we have:

$$|V(U)| > \frac{1}{\log^2 n} \cdot |U|$$

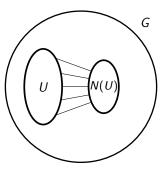


Sublinear expansion

Definition (Sublinear expansion)

An n-vertex graph G is a sublinear expander if $\forall U \subseteq V(G)$ s.t. $|U| \leq \frac{n}{2}$ we have:

$$|V(U)| > \frac{1}{\log^2 n} \cdot |U|$$

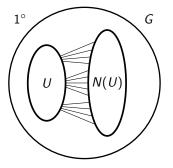


• Komlós and Szemerédi: Can find a sublinear expander of almost the same average degree in any graph.

Definition (Robust sublinear expansion)

An n-vertex graph G is a robust sublinear expander if $\forall U \subseteq V(G)$: $|U| \leq \frac{n}{2}$

 $1^{\circ}: |N(U)| > \log^2 n \cdot |U|$ or

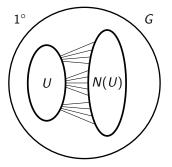


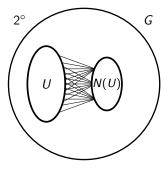
Definition (Robust sublinear expansion)

An n-vertex graph G is a robust sublinear expander if $\forall U \subseteq V(G)$: $|U| \leq \frac{n}{2}$

$$1^{\circ}: |N(U)| > \log^{2} n \cdot |U| \quad or$$

$$2^{\circ}: N(U) \text{ has } > \frac{|U|}{\log^{2} n} \text{ vtcs with } \ge \log^{4} n \text{ neighbours in } U.$$



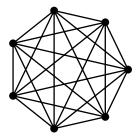


Graph decomposition problems

• General graph decomposition question:

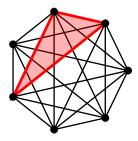
Graph decomposition problems

• General graph decomposition question:



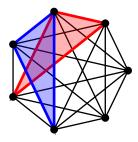
Graph decomposition problems

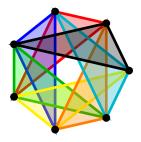
• General graph decomposition question:



Graph decomposition problems

• General graph decomposition question:

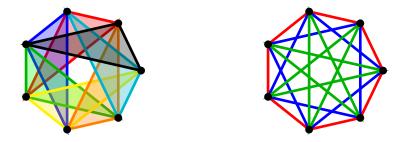




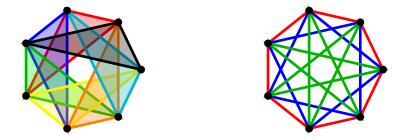
Can we decompose a graph into few graphs with some "nice" properties?

• Walecki 1883: K_{2n+1} can be decomposed into *n* cycles.

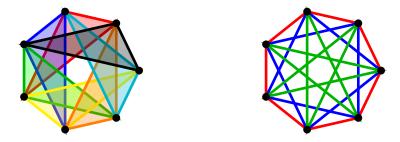
Can we decompose a graph into few graphs with some "nice" properties?



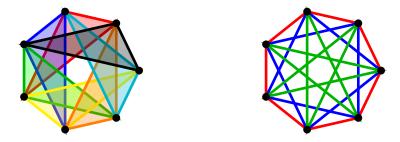
• Walecki 1883: K_{2n+1} can be decomposed into *n* cycles.



- Walecki 1883: K_{2n+1} can be decomposed into *n* cycles.
- Can we decompose any graph into cycles?



- Walecki 1883: K_{2n+1} can be decomposed into *n* cycles.
- Can we decompose any graph into cycles? No if \exists an odd degree vertex.



- Walecki 1883: K_{2n+1} can be decomposed into *n* cycles.
- Can we decompose any graph into cycles? No if \exists an odd degree vertex.
- Veblen 1912: Any graph with all degrees even decomposes into cycles.

Every n-vertex graph can be decomposed into O(n) cycles and edges.

• Tight if true.

- Tight if true.
 - Erdős 1983: one needs at least (3/2 o(1))n cycles and edges.

Every n-vertex graph can be decomposed into O(n) cycles and edges.

- Tight if true.
 - Erdős 1983: one needs at least (3/2 o(1))n cycles and edges.

• Lovász 1968: True for paths in place of cycles

Every n-vertex graph can be decomposed into O(n) cycles and edges.

• Proved for graphs with linear minimum degree.

- Proved for graphs with linear minimum degree.
- Proved for random graphs.

- Proved for graphs with linear minimum degree.
- Proved for random graphs.
- Folklore: $O(n \log n)$ cycles and edges always suffice.

- Proved for graphs with linear minimum degree.
- Proved for random graphs.
- Folklore: $O(n \log n)$ cycles and edges always suffice.
- Conlon, Fox and Sudakov: $O(n \log \log n)$ cycles and edges always suffice.

Every n-vertex graph can be decomposed into O(n) cycles and edges.

- Proved for graphs with linear minimum degree.
- Proved for random graphs.
- Folklore: $O(n \log n)$ cycles and edges always suffice.
- Conlon, Fox and Sudakov: $O(n \log \log n)$ cycles and edges always suffice.

Theorem (B., Montgomery 2022+)

Any n-vertex graph can be decomposed into $O(n \log^* n)$ cycles and edges.

What is the maximum number of unit distances defined by n points in $(\mathbb{R}^2, \|.\|_2)$?

What is the maximum number of unit distances defined by n points in $(\mathbb{R}^2, \|.\|_2)$?

Let $U_{\parallel,\parallel_2}(n)$ denote the answer.

What is the maximum number of unit distances defined by n points in $(\mathbb{R}^2, \|.\|_2)$?

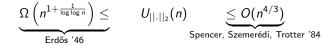
Let $U_{\parallel,\parallel_2}(n)$ denote the answer.

 $U_{||.||_2}(n) \leq O(n^{4/3})$

Spencer, Szemerédi, Trotter '84

What is the maximum number of unit distances defined by n points in $(\mathbb{R}^2, \|.\|_2)$?

Let $U_{\parallel,\parallel_2}(n)$ denote the answer.



What is the maximum number of unit distances defined by n points in $(\mathbb{R}^2, \|.\|_2)$?

Let $U_{\parallel,\parallel_2}(n)$ denote the answer.

In 2D: $\underbrace{\Omega\left(n^{1+\frac{1}{\log \log n}}\right)}_{\text{Erdős '46}} \qquad \underbrace{U_{||.||_2}(n)}_{\text{Spencer, Szemerédi, Trotter '84}}$

What is the maximum number of unit distances defined by n points in $(\mathbb{R}^d, \|.\|_2)$?

Let $U_{\|.\|_2}(n)$ denote the answer.

In 2D: $\Omega\left(n^{1}\right)$

$$\underbrace{\Omega\left(n^{1+\frac{1}{\log\log n}}\right)}_{\text{Erdős '46}} \qquad U_{||.||_2}(n) \underbrace{\leq O(n^{4/3})}_{\text{Spencer, Szemerédi, Trotter}}$$

'84

What is the maximum number of unit distances defined by n points in $(\mathbb{R}^d, \|.\|_2)$?

Let $U_{\|.\|_2}(n)$ denote the answer.

In 2D: $\underbrace{\Omega\left(n^{1+\frac{1}{\log\log n}}\right)}_{\text{Erdős '46}} \qquad \underbrace{U_{||.||_2}(n)}_{\text{Spencer, Szemerédi, Trotter '84}} \leq \underbrace{O(n^{4/3})}_{\text{Spencer, Szemerédi, Trotter '84}}$ In 3D: $\underbrace{U_{||.||_2}(n)}_{\text{Spencer, Szemerédi, Trotter '84}} \leq \underbrace{O(n^{3/2-\varepsilon})}_{\text{Spencer, Szemerédi, Trotter '84}}$

Zahĺ '19

What is the maximum number of unit distances defined by n points in $(\mathbb{R}^d, \|.\|_2)$?

Let $U_{\|.\|_2}(n)$ denote the answer.

In 2D:

$$\underbrace{\Omega\left(n^{1+\frac{1}{\log\log n}}\right)}_{\text{Erdős '46}} \qquad \underbrace{U_{||.||_2}(n)}_{\text{Spencer, Szemerédi, Trotter '84}}$$
In 3D:

$$\underbrace{n^{4/3+o(1)}_{\text{Erdős '60}} \qquad \underbrace{U_{||.||_2}(n)}_{\text{Zahl '19}} \leq \underbrace{O(n^{3/2-\varepsilon})}_{\text{Zahl '19}}$$

Question (Erdős, 1946)

What is the maximum number of unit distances defined by n points in $(\mathbb{R}^d, \|.\|_2)$?

Let $U_{\|.\|_2}(n)$ denote the answer.

In 2D:

$$\underbrace{\Omega\left(n^{1+\frac{1}{\log\log n}}\right) \leq}_{\text{Erdős '46}} \qquad \underbrace{U_{||.||_{2}}(n)}_{\text{Spencer, Szemerédi, Trotter '84}} \\
\text{In 3D:} \qquad \underbrace{n^{4/3+o(1)} \leq}_{\text{Erdős '60}} \qquad \underbrace{U_{||.||_{2}}(n)}_{\text{Zahl '19}} \leq \underbrace{O(n^{3/2-\varepsilon})}_{\text{Zahl '19}} \\
\text{In 4 and more D:} \qquad \underbrace{U_{||.||_{2}}(n) = \Theta(n^{2})} \\$$

Let $\|.\|$ be an arbitrary \mathbb{R}^d -norm and $U_{\|.\|}(n)$ denote the answer to the following

Question (Erdős, Ulam 1980)

Let $\|.\|$ be an arbitrary \mathbb{R}^d -norm and $U_{\|.\|}(n)$ denote the answer to the following

Question (Erdős, Ulam 1980)

What is the maximum number of unit distances defined by n points in $(\mathbb{R}^d, \|.\|)$?

• Folklore: for any norm $U_{\|.\|}(n) \ge (\frac{1}{2} - o(1))n \log_2 n$.

Let $\|.\|$ be an arbitrary \mathbb{R}^d -norm and $U_{\|.\|}(n)$ denote the answer to the following

Question (Erdős, Ulam 1980)

- Folklore: for any norm $U_{\|.\|}(n) \ge (\frac{1}{2} o(1))n\log_2 n$.
- **Brass** 1996: Is there an \mathbb{R}^2 -norm for which $U_{\|.\|}(n) = \Theta(n \log n)$?

Let $\|.\|$ be an arbitrary \mathbb{R}^d -norm and $U_{\|.\|}(n)$ denote the answer to the following

Question (Erdős, Ulam 1980)

- Folklore: for any norm $U_{\|.\|}(n) \ge (\frac{1}{2} o(1))n\log_2 n$.
- Brass 1996: Is there an \mathbb{R}^2 -norm for which $U_{\|.\|}(n) = \Theta(n \log n)$?
- Matoušek 2011: For "most" \mathbb{R}^2 -norms $U_{\|.\|}(n) \leq O(n \log n \log \log n)$.

Let $\|.\|$ be an arbitrary \mathbb{R}^d -norm and $U_{\|.\|}(n)$ denote the answer to the following

Question (Erdős, Ulam 1980)

- Folklore: for any norm $U_{\|.\|}(n) \ge (\frac{1}{2} o(1))n \log_2 n$.
- Brass 1996: Is there an \mathbb{R}^2 -norm for which $U_{\|.\|}(n) = \Theta(n \log n)$?
- Matoušek 2011: For "most" \mathbb{R}^2 -norms $U_{\|.\|}(n) \leq O(n \log n \log \log n)$.
- Brass-Moser-Pach 2006: For $d \ge 3$ show that $\forall \mathbb{R}^d$ -norms $U_{\|.\|}(n) \gg n \log n$

Let $\|.\|$ be an arbitrary \mathbb{R}^d -norm and $U_{\|.\|}(n)$ denote the answer to the following

Question (Erdős, Ulam 1980)

- Folklore: for any norm $U_{\|.\|}(n) \ge (\frac{1}{2} o(1))n\log_2 n$.
- Brass 1996: Is there an \mathbb{R}^2 -norm for which $U_{\|.\|}(n) = \Theta(n \log n)$?
- Matoušek 2011: For "most" \mathbb{R}^2 -norms $U_{\|.\|}(n) \leq O(n \log n \log \log n)$.
- Brass-Moser-Pach 2006: For d ≥ 3 show that ∀ ℝ^d-norms U_{||.||}(n) ≫ n log n
 For d ≥ 4 is there an ℝ^d-norm s.t. U_{||.||}(n) = o(n²)?

Let $\|.\|$ be an arbitrary \mathbb{R}^d -norm and $U_{\|.\|}(n)$ denote the answer to the following

Question (Erdős, Ulam 1980)

What is the maximum number of unit distances defined by n points in $(\mathbb{R}^d, \|.\|)$?

- Folklore: for any norm $U_{\|.\|}(n) \ge (\frac{1}{2} o(1))n \log_2 n$.
- Brass 1996: Is there an \mathbb{R}^2 -norm for which $U_{\|.\|}(n) = \Theta(n \log n)$?
- Matoušek 2011: For "most" \mathbb{R}^2 -norms $U_{\|\cdot\|}(n) \leq O(n \log n \log \log n)$.
- Brass-Moser-Pach 2006: For d ≥ 3 show that ∀ ℝ^d-norms U_{||.||}(n) ≫ n log n
 For d ≥ 4 is there an ℝ^d-norm s.t. U_{||.||}(n) = o(n²)?

Theorem (Alon, B., Sauermann, 2023+)

For any $d \ge 2$ for "most" \mathbb{R}^d -norms

$$U_{\parallel,\parallel}(n) \leq rac{d}{2} \cdot n \log_2 n.$$

Matija Bucić (IAS and Princeton)

Let $\|.\|$ be an arbitrary \mathbb{R}^d -norm and $U_{\|.\|}(n)$ denote the answer to the following

Question (Erdős, Ulam 1980)

What is the maximum number of unit distances defined by n points in $(\mathbb{R}^d, \|.\|)$?

- Folklore: for any norm $U_{\|.\|}(n) \ge (\frac{1}{2} o(1))n \log_2 n$.
- Brass 1996: Is there an \mathbb{R}^2 -norm for which $U_{\|.\|}(n) = \Theta(n \log n)$?
- Matoušek 2011: For "most" \mathbb{R}^2 -norms $U_{\|\cdot\|}(n) \leq O(n \log n \log \log n)$.
- Brass-Moser-Pach 2006: For d ≥ 3 show that ∀ ℝ^d-norms U_{||.||}(n) ≫ n log n
 For d ≥ 4 is there an ℝ^d-norm s.t. U_{||.||}(n) = o(n²)?

Theorem (Alon, B., Sauermann, 2023+)

For any $d \ge 2$ for "most" \mathbb{R}^d -norms

$$\frac{d-1-o(1)}{2} \cdot n \log_2 n \leq U_{\parallel,\parallel}(n) \leq \frac{d}{2} \cdot n \log_2 n.$$

Matija Bucić (IAS and Princeton)

Question (Keevash, Mubayi, Sudakov, Verstraëte, 2006)

What is the minimum number of edges in an n-vertex graph which guarantees a rainbow cycle in any proper edge colouring?

Question (Keevash, Mubayi, Sudakov, Verstraëte, 2006)

What is the minimum number of edges in an n-vertex graph which guarantees a rainbow cycle in any proper edge colouring?

• We need at least

 $\frac{1}{2}n \cdot \log_2 n$

Question (Keevash, Mubayi, Sudakov, Verstraëte, 2006)

What is the minimum number of edges in an n-vertex graph which guarantees a rainbow cycle in any proper edge colouring?

We need at least $\frac{1}{2}n \cdot \log_2 n$ Das, Lee, Sudakov: $O(n \cdot e^{\sqrt{\log n}})$ suffice

Question (Keevash, Mubayi, Sudakov, Verstraëte, 2006)

What is the minimum number of edges in an n-vertex graph which guarantees a rainbow cycle in any proper edge colouring?

We need at least $\frac{1}{2}n \cdot \log_2 n$ Das, Lee, Sudakov: $O(n \cdot e^{\sqrt{\log n}})$ suffice
Janzer: $O(n \cdot \log^4 n)$ suffice

Question (Keevash, Mubayi, Sudakov, Verstraëte, 2006)

What is the minimum number of edges in an n-vertex graph which guarantees a rainbow cycle in any proper edge colouring?

• We need at least $\frac{1}{2}n \cdot \log_2 n$ • Das, Lee, Sudakov: $O(n \cdot e^{\sqrt{\log n}})$ suffice• Janzer: $O(n \cdot \log^4 n)$ suffice• Tomon: $O(n \cdot \log^{2+o(1)} n)$ suffice

Question (Keevash, Mubayi, Sudakov, Verstraëte, 2006)

What is the minimum number of edges in an n-vertex graph which guarantees a rainbow cycle in any proper edge colouring?

• We need at least $\frac{1}{2}n \cdot \log_2 n$ • Das, Lee, Sudakov: $O(n \cdot e^{\sqrt{\log n}})$ suffice• Janzer: $O(n \cdot \log^4 n)$ suffice• Tomon: $O(n \cdot \log^{2+o(1)} n)$ suffice• Janzer, Sudakov; Kim, Lee, Liu, Tran: $O(n \cdot \log^2 n)$ suffice

Question (Keevash, Mubayi, Sudakov, Verstraëte, 2006)

What is the minimum number of edges in an n-vertex graph which guarantees a rainbow cycle in any proper edge colouring?

• We need at least	$\frac{1}{2}n \cdot \log_2 n$	
• Das, Lee, Sudakov:	$O(n \cdot e^{\sqrt{\log n}})$	suffice
• Janzer:	$O(n \cdot \log^4 n)$	suffice
• Tomon:	$O(n \cdot \log^{2+o(1)})$	n) suffice
• Janzer, Sudakov; Kim, Lee, Liu, Tran:	$O(n \cdot \log^2 n)$	suffice

Theorem (Alon, B., Sauermann, Zakharov, Zamir)

Any properly coloured n-vertex graph with $O(n \log n \log \log n)$ edges contains a rainbow cycle.

Matija Bucić (IAS and Princeton)

Definition

Let (G, +) be a group. A subset $S \subseteq G$ is said to be <u>dissociated</u> if

$$\sum_{g\in S}\varepsilon_g g=0$$

for $\varepsilon_g \in \{0, 1, -1\}$ implies $\varepsilon_g = 0$ for all $g \in S$.

Definition

Let (G, +) be a group. A subset $S \subseteq G$ is said to be <u>dissociated</u> if

$$\sum_{oldsymbol{g}\in \mathcal{S}}arepsilon_{oldsymbol{g}}oldsymbol{g}=oldsymbol{0}$$

for $\varepsilon_g \in \{0, 1, -1\}$ implies $\varepsilon_g = 0$ for all $g \in S$.

• Very useful in Harmonic analysis and additive number theory

Definition

Let (G, +) be a group. A subset $S \subseteq G$ is said to be <u>dissociated</u> if $\sum_{g \in S} \varepsilon_g g = 0$ for $\varepsilon_g \in \{0, 1, -1\}$ implies $\varepsilon_g = 0$ for all $g \in S$.

- Very useful in Harmonic analysis and additive number theory
- Dissociated sets play the same role independent sets play in vector spaces

Definition

Let (G, +) be a group. A subset $S \subseteq G$ is said to be <u>dissociated</u> if $\sum_{g \in S} \varepsilon_g g = 0$ for $\varepsilon_g \in \{0, 1, -1\}$ implies $\varepsilon_g = 0$ for all $g \in S$.

- Very useful in Harmonic analysis and additive number theory
- Dissociated sets play the same role independent sets play in vector spaces
 - Maximal dissociated sets are spanning

Definition

Let (G, +) be a group. A subset $S \subseteq G$ is said to be <u>dissociated</u> if $\sum_{g \in S} \varepsilon_g g = 0$

for $\varepsilon_g \in \{0, 1, -1\}$ implies $\varepsilon_g = 0$ for all $g \in S$.

- Very useful in Harmonic analysis and additive number theory
- Dissociated sets play the same role independent sets play in vector spaces
 - Maximal dissociated sets are spanning
 - Maximal dissociated sets have similar sizes

Definition

Let (G, +) be a group. A subset $S \subseteq G$ is said to be <u>dissociated</u> if

$$\sum_{g\in S}arepsilon_g g=0$$

for $\varepsilon_g \in \{0, 1, -1\}$ implies $\varepsilon_g = 0$ for all $g \in S$.

- Very useful in Harmonic analysis and additive number theory
- Dissociated sets play the same role independent sets play in vector spaces
 - Maximal dissociated sets are spanning
 - Maximal dissociated sets have similar sizes

Definition

Let (G, +) be a group. The <u>additive dimension</u> dim A of a subset $A \subseteq G$ is the maximum size of a dissociated subset of A.

Matija Bucić (IAS and Princeton)

Definition

Let (G, +) be a group. The <u>additive dimension</u> dim A of a subset $A \subseteq G$ is the maximum size of a dissociated subset of A.

Definition

Let (G, +) be a group. The <u>additive dimension</u> dim A of a subset $A \subseteq G$ is the maximum size of a dissociated subset of A.

Theorem (Sanders, Skhredov, 2007)

Let (G, +) be an Abelian group and $A \subseteq G$ such that $|A + A| \leq K|A|$ then dim $A \leq O(K \log |A|)$.

Definition

Let (G, +) be a group. The <u>additive dimension</u> dim A of a subset $A \subseteq G$ is the maximum size of a dissociated subset of A.

Theorem (Sanders, Skhredov, 2007)

Let (G, +) be an Abelian group and $A \subseteq G$ such that $|A + A| \leq K|A|$ then dim $A \leq O(K \log |A|)$.

Theorem (Alon, B., Sauermann, Zakharov, Zamir)

Let (G, \cdot) be any group and $A \subseteq G$ such that $|A \cdot A| \leq K|A|$ then dim $A \leq O(K \log |A| \log \log |A|)$.

