Robust sublinear expanders

Matija Bucić

Institute for Advanced Study and Princeton University

Expander graphs

- Expander graphs: "robustly well-connected graphs"

Expander graphs

- Expander graphs: "robustly well-connected graphs"
- Can find them very sparse

Expander graphs

- Expander graphs: "robustly well-connected graphs"
- Can find them very sparse

Definition (Expansion)

An n-vertex graph G is a λ-expander if for all $U \subseteq V(G)$ s.t. $|U| \leq \frac{n}{2 \lambda}$ we have:

$$
|N(U)|>\lambda|U| .
$$

Sublinear expansion

Definition (Sublinear expansion)

An n-vertex graph G is a sublinear expander if $\forall U \subseteq V(G)$ s.t. $|U| \leq \frac{n}{2}$ we have:

$$
|N(U)|>\frac{1}{\log ^{2} n} \cdot|U|
$$

Sublinear expansion

Definition (Sublinear expansion)

An n-vertex graph G is a sublinear expander if $\forall U \subseteq V(G)$ s.t. $|U| \leq \frac{n}{2}$ we have:

$$
|N(U)|>\frac{1}{\log ^{2} n} \cdot|U|
$$

- Komlós and Szemerédi: Can find a sublinear expander of almost the same average degree in any graph.

Robust sublinear expansion

Definition (Robust sublinear expansion)

An n-vertex graph G is a robust sublinear expander if $\forall U \subseteq V(G):|U| \leq \frac{n}{2}$

$$
1^{\circ}: \quad|N(U)|>\log ^{2} n \cdot|U| \quad \text { or }
$$

Robust sublinear expansion

Definition (Robust sublinear expansion)

An n-vertex graph G is a robust sublinear expander if $\forall U \subseteq V(G):|U| \leq \frac{n}{2}$

$$
1^{\circ}: \quad|N(U)|>\log ^{2} n \cdot|U| \quad \text { or }
$$

$2^{\circ}: \quad N(U)$ has $>\frac{|U|}{\log ^{2} n}$ vtcs with $\geq \log ^{4} n$ neighbours in U.

Graph decomposition problems

- General graph decomposition question:

Graph decomposition problems

- General graph decomposition question:

Can we decompose a graph into few graphs with some "nice" properties?

Graph decomposition problems

- General graph decomposition question:

Can we decompose a graph into few graphs with some "nice" properties?

Graph decomposition problems

- General graph decomposition question:

Can we decompose a graph into few graphs with some "nice" properties?

Graph decomposition problems

- General graph decomposition question:

Can we decompose a graph into few graphs with some "nice" properties?

Graph decomposition problems

- General graph decomposition question:

Can we decompose a graph into few graphs with some "nice" properties?

Graph decomposition problems

- General graph decomposition question:

Can we decompose a graph into few graphs with some "nice" properties?

- Walecki 1883: $K_{2 n+1}$ can be decomposed into n cycles.

Graph decomposition problems

- General graph decomposition question:

Can we decompose a graph into few graphs with some "nice" properties?

- Walecki 1883: $K_{2 n+1}$ can be decomposed into n cycles.

Graph decomposition problems

- General graph decomposition question:

Can we decompose a graph into few graphs with some "nice" properties?

- Walecki 1883: $K_{2 n+1}$ can be decomposed into n cycles.
- Can we decompose any graph into cycles?

Graph decomposition problems

- General graph decomposition question:

Can we decompose a graph into few graphs with some "nice" properties?

- Walecki 1883: $K_{2 n+1}$ can be decomposed into n cycles.
- Can we decompose any graph into cycles? No if \exists an odd degree vertex.

Graph decomposition problems

- General graph decomposition question:

Can we decompose a graph into few graphs with some "nice" properties?

- Walecki 1883: $K_{2 n+1}$ can be decomposed into n cycles.
- Can we decompose any graph into cycles? No if \exists an odd degree vertex.
- Veblen 1912: Any graph with all degrees even decomposes into cycles.

Erdős-Gallai Conjecture

Conjecture (Erdős-Gallai 1960s)

Every n-vertex graph can be decomposed into $O(n)$ cycles and edges.

Erdős-Gallai Conjecture

Conjecture (Erdős-Gallai 1960s)

Every n-vertex graph can be decomposed into $O(n)$ cycles and edges.

- Tight if true.

Erdős-Gallai Conjecture

Conjecture (Erdős-Gallai 1960s)

Every n-vertex graph can be decomposed into $O(n)$ cycles and edges.

- Tight if true.
- Erdős 1983: one needs at least $(3 / 2-o(1)) n$ cycles and edges.

Conjecture (Erdős-Gallai 1960s)

Every n-vertex graph can be decomposed into $O(n)$ cycles and edges.

- Tight if true.
- Erdős 1983: one needs at least $(3 / 2-o(1)) n$ cycles and edges.
- Lovász 1968: True for paths in place of cycles

What do we know?

Conjecture (Erdős-Gallai 1960s)

Every n-vertex graph can be decomposed into $O(n)$ cycles and edges.

What do we know?

Conjecture (Erdős-Gallai 1960s)

Every n-vertex graph can be decomposed into $O(n)$ cycles and edges.

- Proved for graphs with linear minimum degree.

What do we know?

Conjecture (Erdős-Gallai 1960s)

Every n-vertex graph can be decomposed into $O(n)$ cycles and edges.

- Proved for graphs with linear minimum degree.
- Proved for random graphs.

What do we know?

Conjecture (Erdős-Gallai 1960s)

Every n-vertex graph can be decomposed into $O(n)$ cycles and edges.

- Proved for graphs with linear minimum degree.
- Proved for random graphs.
- Folklore: $O(n \log n)$ cycles and edges always suffice.

What do we know?

Conjecture (Erdős-Gallai 1960s)

Every n-vertex graph can be decomposed into $O(n)$ cycles and edges.

- Proved for graphs with linear minimum degree.
- Proved for random graphs.
- Folklore: $O(n \log n)$ cycles and edges always suffice.
- Conlon, Fox and Sudakov: $O(n \log \log n)$ cycles and edges always suffice.

What do we know?

Conjecture (Erdős-Gallai 1960s)

Every n-vertex graph can be decomposed into $O(n)$ cycles and edges.

- Proved for graphs with linear minimum degree.
- Proved for random graphs.
- Folklore: $O(n \log n)$ cycles and edges always suffice.
- Conlon, Fox and Sudakov: $O(n \log \log n)$ cycles and edges always suffice.

Theorem (B., Montgomery 2022+)

Any n-vertex graph can be decomposed into $O\left(n \log ^{\star} n\right)$ cycles and edges.

Erdős unit distance problem

Question (Erdős, 1946)

What is the maximum number of unit distances defined by n points in $\left(\mathbb{R}^{2},\|\cdot\|_{2}\right)$?

Erdős unit distance problem

Question (Erdős, 1946)

What is the maximum number of unit distances defined by n points in $\left(\mathbb{R}^{2},\|\cdot\|_{2}\right)$?
Let $U_{\|\cdot\|_{2}}(n)$ denote the answer.

Erdős unit distance problem

Question (Erdős, 1946)

What is the maximum number of unit distances defined by n points in $\left(\mathbb{R}^{2},\|\cdot\|_{2}\right)$?
Let $U_{\| \| \cdot \|_{2}}(n)$ denote the answer.

$$
U_{\|\mid \cdot\|_{2}}(n) \underbrace{\leq O\left(n^{4 / 3}\right)}_{\text {Spencer, Szemerédi, Trotter '84 }}
$$

Erdős unit distance problem

Question (Erdős, 1946)

What is the maximum number of unit distances defined by n points in $\left(\mathbb{R}^{2},\|\cdot\|_{2}\right)$?
Let $U_{\| \| \cdot \|_{2}}(n)$ denote the answer.

$$
\underbrace{\Omega\left(n^{1+\frac{1}{\log \log n}}\right) \leq}_{\text {Erdős '46 }} \quad U_{\|\cdot\|_{2}}(n) \underbrace{\leq O\left(n^{4 / 3}\right)}_{\text {Spencer, Szemerédi, Trotter '84 }}
$$

Erdős unit distance problem

Question (Erdős, 1946)

What is the maximum number of unit distances defined by n points in $\left(\mathbb{R}^{2},\|\cdot\|_{2}\right)$?
Let $U_{\| \| \cdot \|_{2}}(n)$ denote the answer.

In 2D:

$$
\underbrace{\Omega\left(n^{1+\frac{1}{\log \log n}}\right) \leq}_{\text {Erdős '46 }} \quad U_{\|\cdot\|_{2}}(n) \underbrace{\leq O\left(n^{4 / 3}\right)}_{\text {Spencer, Szemerédi, Trotter '84 }}
$$

Erdős unit distance problem

Question (Erdős, 1946)

What is the maximum number of unit distances defined by n points in $\left(\mathbb{R}^{d},\|\cdot\|_{2}\right)$?
Let $U_{\| \| \cdot \|_{2}}(n)$ denote the answer.

In 2D:

Erdős unit distance problem

Question (Erdős, 1946)

What is the maximum number of unit distances defined by n points in $\left(\mathbb{R}^{d},\|\cdot\|_{2}\right)$?
Let $U_{\| \| \cdot \|_{2}}(n)$ denote the answer.

In 2D:

In 3D:
$U_{\|\cdot\|_{2}}(n) \underbrace{\leq O\left(n^{4 / 3}\right)}_{\text {Spencer, Szemerédi, Trotter '84 }}$
$U_{\|\cdot\|_{2}}(n) \quad \underbrace{\leq O\left(n^{3 / 2}\right)}_{\text {Zahl }{ }^{\prime} 12}$

Erdős unit distance problem

Question (Erdős, 1946)

What is the maximum number of unit distances defined by n points in $\left(\mathbb{R}^{d},\|\cdot\|_{2}\right)$?
Let $U_{\| \| \cdot \|_{2}}(n)$ denote the answer.

In 2D:

$U_{\|\cdot\|_{2}}(n) \underbrace{\leq O\left(n^{4 / 3}\right)}_{\text {Spencer, Szemerédi, Trotter '84 }}$

In 3D:

$$
\underbrace{n^{4 / 3+o(1)} \leq \quad U_{\|\cdot\|_{2}}(n) \quad \underbrace{\leq O\left(n^{3 / 2}\right)}_{\text {Zahl ' } 12}}_{\text {Erdős '60 }}
$$

Erdős unit distance problem

Question (Erdős, 1946)

What is the maximum number of unit distances defined by n points in $\left(\mathbb{R}^{d},\|\cdot\|_{2}\right)$?
Let $U_{\| \| \cdot \|_{2}}(n)$ denote the answer.

In 2D:

$$
\underbrace{\Omega\left(n^{1+\frac{1}{\log \log n}}\right) \leq}_{\text {Erdős '46 }} \quad U_{\|\cdot\|_{2}}(n) \underbrace{\leq O\left(n^{4 / 3}\right)}_{\text {Spencer, Szemerédi, Trotter '84 }}
$$

In 3D:

$$
\underbrace{n^{4 / 3+o(1)} \leq \quad U_{\|\cdot\| \|_{2}}(n) \quad \underbrace{\leq O\left(n^{3 / 2}\right)}_{\text {Zahl '12 }}, ~}_{\text {Erdős '60 }}
$$

In 4 and more D:

$$
U_{\|\cdot\|_{2}}(n)=\Theta\left(n^{2}\right)
$$

Erdős unit distance problem in general normed spaces

Let $\|$.$\| be an arbitrary \mathbb{R}^{d}$-norm and $U_{\|\cdot\|}(n)$ denote the answer to the following

Question (Erdős, Ulam 1980)

What is the maximum number of unit distances defined by n points in $\left(\mathbb{R}^{d},\|\cdot\|\right)$?

Erdős unit distance problem in general normed spaces

Let $\|\cdot\|$ be an arbitrary \mathbb{R}^{d}-norm and $U_{\|\cdot\|}(n)$ denote the answer to the following

Question (Erdős, Ulam 1980)

What is the maximum number of unit distances defined by n points in $\left(\mathbb{R}^{d},\|\cdot\|\right)$?

- Folklore: for any norm $U_{\|\cdot\|}(n) \geq\left(\frac{1}{2}-o(1)\right) n \log _{2} n$.

Erdős unit distance problem in general normed spaces

Let $\|\cdot\|$ be an arbitrary \mathbb{R}^{d}-norm and $U_{\|\cdot\|}(n)$ denote the answer to the following

Question (Erdős, Ulam 1980)

What is the maximum number of unit distances defined by n points in $\left(\mathbb{R}^{d},\|\|.\right)$?

- Folklore: for any norm $U_{\|\cdot\| \|}(n) \geq\left(\frac{1}{2}-o(1)\right) n \log _{2} n$.
- Brass 1996: Is there an \mathbb{R}^{2}-norm for which $U_{\|\cdot\|}(n)=\Theta(n \log n)$?

Erdős unit distance problem in general normed spaces

Let $\|$.$\| be an arbitrary \mathbb{R}^{d}$-norm and $U_{\|\cdot\|}(n)$ denote the answer to the following

Question (Erdős, Ulam 1980)

What is the maximum number of unit distances defined by n points in $\left(\mathbb{R}^{d},\|\cdot\|\right)$?

- Folklore: for any norm $U_{\|\cdot\|}(n) \geq\left(\frac{1}{2}-o(1)\right) n \log _{2} n$.
- Brass 1996: Is there an \mathbb{R}^{2}-norm for which $U_{\|\mid\|}(n)=\Theta(n \log n)$?
- Matoušek 2011: For "most" \mathbb{R}^{2}-norms $U_{\|\cdot\|}(n) \leq O(n \log n \log \log n)$.

Erdős unit distance problem in general normed spaces

Let $\|$.$\| be an arbitrary \mathbb{R}^{d}$-norm and $U_{\||| |}(n)$ denote the answer to the following

Question (Erdős, Ulam 1980)

What is the maximum number of unit distances defined by n points in $\left(\mathbb{R}^{d},\|\cdot\|\right)$?

- Folklore: for any norm $U_{\|\cdot\|}(n) \geq\left(\frac{1}{2}-o(1)\right) n \log _{2} n$.
- Brass 1996: Is there an \mathbb{R}^{2}-norm for which $U_{\|\mid\|}(n)=\Theta(n \log n)$?
- Matoušek 2011: For "most" \mathbb{R}^{2}-norms $U_{\|\cdot\|}(n) \leq O(n \log n \log \log n)$.
- Brass-Moser-Pach 2006: For $d \geq 3$ show that $\forall \mathbb{R}^{d}$-norms $U_{\|\mid\|}(n) \gg n \log n$

Erdős unit distance problem in general normed spaces

Let $\|$.$\| be an arbitrary \mathbb{R}^{d}$-norm and $U_{\||| |}(n)$ denote the answer to the following

Question (Erdős, Ulam 1980)

What is the maximum number of unit distances defined by n points in $\left(\mathbb{R}^{d},\|\cdot\|\right)$?

- Folklore: for any norm $U_{\|\cdot\|}(n) \geq\left(\frac{1}{2}-o(1)\right) n \log _{2} n$.
- Brass 1996: Is there an \mathbb{R}^{2}-norm for which $U_{\|\mid\|}(n)=\Theta(n \log n)$?
- Matoušek 2011: For "most" \mathbb{R}^{2}-norms $U_{\|\cdot\|}(n) \leq O(n \log n \log \log n)$.
- Brass-Moser-Pach 2006: For $d \geq 3$ show that $\forall \mathbb{R}^{d}$-norms $U_{\|\cdot\|}(n) \gg n \log n$

For $d \geq 4$ is there an \mathbb{R}^{d}-norm s.t. $U_{\|\cdot\|}(n)=o\left(n^{2}\right)$?

Erdős unit distance problem in general normed spaces

Let $\|\cdot\|$ be an arbitrary \mathbb{R}^{d}-norm and $U_{\|\cdot\|}(n)$ denote the answer to the following

Question (Erdős, Ulam 1980)

What is the maximum number of unit distances defined by n points in $\left(\mathbb{R}^{d},\|\cdot\|\right)$?

- Folklore: for any norm $U_{\|\cdot\|}(n) \geq\left(\frac{1}{2}-o(1)\right) n \log _{2} n$.
- Brass 1996: Is there an \mathbb{R}^{2}-norm for which $U_{\|\mid\|}(n)=\Theta(n \log n)$?
- Matoušek 2011: For "most" \mathbb{R}^{2}-norms $U_{\|\cdot\|}(n) \leq O(n \log n \log \log n)$.
- Brass-Moser-Pach 2006: For $d \geq 3$ show that $\forall \mathbb{R}^{d}$-norms $U_{\|.\|}(n) \gg n \log n$

For $d \geq 4$ is there an \mathbb{R}^{d}-norm s.t. $U_{\|\cdot\|}(n)=o\left(n^{2}\right)$?

Theorem (Alon, B., Sauermann, 2023+)

For any $d \geq 2$ for "most" \mathbb{R}^{d}-norms

$$
U_{\|\cdot\|}(n) \leq \frac{d}{2} \cdot n \log _{2} n .
$$

Erdős unit distance problem in general normed spaces

Let $\|\cdot\|$ be an arbitrary \mathbb{R}^{d}-norm and $U_{\|\cdot\|}(n)$ denote the answer to the following

Question (Erdős, Ulam 1980)

What is the maximum number of unit distances defined by n points in $\left(\mathbb{R}^{d},\|\cdot\|\right)$?

- Folklore: for any norm $U_{\|\cdot\| \|}(n) \geq\left(\frac{1}{2}-o(1)\right) n \log _{2} n$.
- Brass 1996: Is there an \mathbb{R}^{2}-norm for which $U_{\|\cdot\|}(n)=\Theta(n \log n)$?
- Matoušek 2011: For "most" \mathbb{R}^{2}-norms $\quad U_{\|\cdot\|}(n) \leq O(n \log n \log \log n)$.
- Brass-Moser-Pach 2006: For $d \geq 3$ show that $\forall \mathbb{R}^{d}$-norms $U_{\|.\|}(n) \gg n \log n$

For $d \geq 4$ is there an \mathbb{R}^{d}-norm s.t. $U_{\|\cdot\|}(n)=o\left(n^{2}\right)$?

Theorem (Alon, B., Sauermann, 2023+)

For any $d \geq 2$ for "most" \mathbb{R}^{d}-norms

$$
\frac{d-1-o(1)}{2} \cdot n \log _{2} n \leq U_{\|\cdot\|}(n) \leq \frac{d}{2} \cdot n \log _{2} n .
$$

Rainbow Turán problem for all cycles

Question (Keevash, Mubayi, Sudakov, Verstraëte, 2006)

What is the minimum number of edges in an n-vertex graph which guarantees a rainbow cycle in any proper edge colouring?

Rainbow Turán problem for all cycles

Question (Keevash, Mubayi, Sudakov, Verstraëte, 2006)

What is the minimum number of edges in an n-vertex graph which guarantees a rainbow cycle in any proper edge colouring?

- We need at least

$$
\frac{1}{2} n \cdot \log _{2} n
$$

Rainbow Turán problem for all cycles

Question (Keevash, Mubayi, Sudakov, Verstraëte, 2006)

What is the minimum number of edges in an n-vertex graph which guarantees a rainbow cycle in any proper edge colouring?

- We need at least

$$
\begin{aligned}
& \frac{1}{2} n \cdot \log _{2} n \\
& O\left(n \cdot e^{\sqrt{\log n}}\right) \quad \text { suffice }
\end{aligned}
$$

Rainbow Turán problem for all cycles

Question (Keevash, Mubayi, Sudakov, Verstraëte, 2006)

What is the minimum number of edges in an n-vertex graph which guarantees a rainbow cycle in any proper edge colouring?

- We need at least
- Das, Lee, Sudakov:
- Janzer:

$$
\begin{array}{ll}
\frac{1}{2} n \cdot \log _{2} n & \\
O\left(n \cdot e^{\sqrt{\log n}}\right) & \text { suffice } \\
O\left(n \cdot \log ^{4} n\right) & \text { suffice }
\end{array}
$$

Rainbow Turán problem for all cycles

Question (Keevash, Mubayi, Sudakov, Verstraëte, 2006)

What is the minimum number of edges in an n-vertex graph which guarantees a rainbow cycle in any proper edge colouring?

- We need at least
- Das, Lee, Sudakov:
- Janzer:
- Tomon:

$$
\begin{array}{lr}
\frac{1}{2} n \cdot \log _{2} n & \\
O\left(n \cdot e^{\sqrt{\log n}}\right) & \text { suffice } \\
O\left(n \cdot \log ^{4} n\right) & \text { suffice } \\
O\left(n \cdot \log ^{2+o(1)} n\right) \text { suffice }
\end{array}
$$

Rainbow Turán problem for all cycles

Question (Keevash, Mubayi, Sudakov, Verstraëte, 2006)

What is the minimum number of edges in an n-vertex graph which guarantees a rainbow cycle in any proper edge colouring?

- We need at least
- Das, Lee, Sudakov:
- Janzer:

$\frac{1}{2} n \cdot \log _{2} n$	
$O\left(n \cdot e^{\sqrt{\log n}}\right)$	suffice
$O\left(n \cdot \log ^{4} n\right)$	suffice
$O\left(n \cdot \log ^{2+o(1)} n\right)$ suffice	
$O\left(n \cdot \log ^{2} n\right)$	suffice

Rainbow Turán problem for all cycles

Question (Keevash, Mubayi, Sudakov, Verstraëte, 2006)

What is the minimum number of edges in an n-vertex graph which guarantees a rainbow cycle in any proper edge colouring?

- We need at least
- Das, Lee, Sudakov:
- Janzer:
$\frac{1}{2} n \cdot \log _{2} n$
$O\left(n \cdot e^{\sqrt{\log n}}\right) \quad$ suffice
$O\left(n \cdot \log ^{4} n\right) \quad$ suffice
- Tomon:
$O\left(n \cdot \log ^{2+o(1)} n\right)$ suffice
- Janzer, Sudakov; Kim, Lee, Liu, Tran:
$O\left(n \cdot \log ^{2} n\right) \quad$ suffice

Theorem (Alon, B., Sauermann, Zakharov, Zamir)

Any properly coloured n-vertex graph with $O(n \log n \log \log n)$ edges contains a rainbow cycle.

Dissociated sets and additive dimension

$$
\begin{aligned}
& \text { Definition } \\
& \text { Let }(G,+) \text { be a group. A subset } S \subseteq G \text { is said to be dissociated if } \\
& \qquad \sum_{g \in S} \varepsilon_{g} g=0 \\
& \text { for } \varepsilon_{g} \in\{0,1,-1\} \text { implies } \varepsilon_{g}=0 \text { for all } g \in S \text {. }
\end{aligned}
$$

Dissociated sets and additive dimension

$$
\begin{aligned}
& \text { Definition } \\
& \text { Let }(G,+) \text { be a group. A subset } S \subseteq G \text { is said to be dissociated if } \\
& \qquad \sum_{g \in S} \varepsilon_{g} g=0 \\
& \text { for } \varepsilon_{g} \in\{0,1,-1\} \text { implies } \varepsilon_{g}=0 \text { for all } g \in S .
\end{aligned}
$$

- Very useful in Harmonic analysis and additive number theory

Dissociated sets and additive dimension

$$
\begin{aligned}
& \text { Definition } \\
& \text { Let }(G,+) \text { be a group. A subset } S \subseteq G \text { is said to be dissociated if } \\
& \qquad \sum_{g \in S} \varepsilon_{g} g=0 \\
& \text { for } \varepsilon_{g} \in\{0,1,-1\} \text { implies } \varepsilon_{g}=0 \text { for all } g \in S \text {. }
\end{aligned}
$$

- Very useful in Harmonic analysis and additive number theory
- Dissociated sets play the same role independent sets play in vector spaces

Dissociated sets and additive dimension

Definition

Let $(G,+)$ be a group. A subset $S \subseteq G$ is said to be dissociated if

$$
\sum_{g \in S} \varepsilon_{g} g=0
$$

for $\varepsilon_{g} \in\{0,1,-1\}$ implies $\varepsilon_{g}=0$ for all $g \in S$.

- Very useful in Harmonic analysis and additive number theory
- Dissociated sets play the same role independent sets play in vector spaces
- Maximal dissociated sets are spanning

Dissociated sets and additive dimension

Definition

Let $(G,+)$ be a group. A subset $S \subseteq G$ is said to be dissociated if

$$
\sum_{g \in S} \varepsilon_{g} g=0
$$

$$
\text { for } \varepsilon_{g} \in\{0,1,-1\} \text { implies } \varepsilon_{g}=0 \text { for all } g \in S \text {. }
$$

- Very useful in Harmonic analysis and additive number theory
- Dissociated sets play the same role independent sets play in vector spaces
- Maximal dissociated sets are spanning
- Maximal dissociated sets have similar sizes

Dissociated sets and additive dimension

Definition

Let $(G,+)$ be a group. A subset $S \subseteq G$ is said to be dissociated if

$$
\sum_{g \in S} \varepsilon_{g} g=0
$$

for $\varepsilon_{g} \in\{0,1,-1\}$ implies $\varepsilon_{g}=0$ for all $g \in S$.

- Very useful in Harmonic analysis and additive number theory
- Dissociated sets play the same role independent sets play in vector spaces
- Maximal dissociated sets are spanning
- Maximal dissociated sets have similar sizes

Definition

Let $(G,+)$ be a group. The additive dimension $\operatorname{dim} A$ of a subset $A \subseteq G$ is the maximum size of a dissociated subset of A.

A relation between sumset size and additive dimension

Definition

Let $(G,+)$ be a group. The additive dimension $\operatorname{dim} A$ of a subset $A \subseteq G$ is the maximum size of a dissociated subset of A.

A relation between sumset size and additive dimension

Definition

Let $(G,+)$ be a group. The additive dimension $\operatorname{dim} A$ of a subset $A \subseteq G$ is the maximum size of a dissociated subset of A.

Theorem (Sanders, Skhredov, 2007)
Let $(G,+)$ be an Abelian group and $A \subseteq G$ such that $|A+A| \leq K|A|$ then $\operatorname{dim} A \leq O(K \log |A|)$.

A relation between sumset size and additive dimension

Definition

Let $(G,+)$ be a group. The additive dimension $\operatorname{dim} A$ of a subset $A \subseteq G$ is the maximum size of a dissociated subset of A.

Theorem (Sanders, Skhredov, 2007)

Let $(G,+)$ be an Abelian group and $A \subseteq G$ such that $|A+A| \leq K|A|$ then $\operatorname{dim} A \leq O(K \log |A|)$.

Theorem (Alon, B., Sauermann, Zakharov, Zamir)
Let (G, \cdot) be any group and $A \subseteq G$ such that $|A \cdot A| \leq K|A|$ then $\operatorname{dim} A \leq O(K \log |A| \log \log |A|)$.

