Erdős-Szekeres theorem for multidimensional arrays

Matija Bucić

joint work with Benny Sudakov and Tuan Tran
Theorem (Erdős-Szekeres, 1935)

Any sequence of \((n - 1)^2 + 1\) distinct real numbers contains a monotone subsequence of length \(n\).
Erdős-Szekeres theorem

Theorem (Erdős-Szekeres, 1935)

Any sequence of \((n - 1)^2 + 1\) distinct real numbers contains a monotone subsequence of length \(n\).
Theorem (Erdős-Szekeres, 1935)

Any sequence of \((n - 1)^2 + 1\) distinct real numbers contains a monotone subsequence of length \(n\).
Theorem (Erdős-Szekeres, 1935)

Any sequence of \((n - 1)^2 + 1\) distinct real numbers contains a monotone subsequence of length \(n\).

3 2 1 6 5 4 9 8 7 10

Many different beautiful proofs.
Theorem (Erdős-Szekeres, 1935)

Any sequence of \((n - 1)^2 + 1\) distinct real numbers contains a monotone subsequence of length \(n\).

Many different beautiful proofs.

Many very natural generalisations and extensions.
Theorem (Erdős-Szekeres, 1935)

Any sequence of \((n - 1)^2 + 1\) distinct real numbers contains a monotone subsequence of length \(n\).

Many different beautiful proofs.

Many very natural generalisations and extensions.

Many different higher dimensional generalisations due to:

\[
3 \quad 2 \quad 1 \quad 6 \quad 5 \quad 4 \quad 9 \quad 8 \quad 7 \quad 10
\]
Theorem (Erdős-Szekeres, 1935)

Any sequence of \((n - 1)^2 + 1\) distinct real numbers contains a monotone subsequence of length \(n\).

Many different beautiful proofs.

Many very natural generalisations and extensions.

Many different higher dimensional generalisations due to: Fishburn and Graham; Kruskal; Linial and Simkin; Szabó and Tardos,...
Higher dimensional version?

- What is a monotone 2D array?
Higher dimensional version?

- What is a monotone 2D array?
- Fishburn and Graham:
Higher dimensional version?

- What is a monotone 2D array?
- Fishburn and Graham:
 - all rows are monotone in the same way
Higher dimensional version?

- What is a monotone 2D array?
- Fishburn and Graham:
 - all rows are monotone in the same way
 - all columns are monotone in the same way
What is a monotone 2D array?

Fishburn and Graham:
- all rows are monotone in the same way
- all columns are monotone in the same way
What is a monotone 2D array?

Fishburn and Graham:
- all rows are monotone in the same way
- all columns are monotone in the same way

Not monotone!
Higher dimensional version?

- What is a monotone 2D array?
- Fishburn and Graham:
 - all rows are monotone in the same way
 - all columns are monotone in the same way

```
7 8 9
4 5 6
1 2 3
```

Not monotone!
What is a monotone 2D array?

Fishburn and Graham:

- all rows are monotone in the same way
- all columns are monotone in the same way

\[
\begin{array}{ccc}
7 & 8 & 9 \\
4 & 5 & 6 \\
1 & 2 & 3 \\
\end{array}
\]

Not monotone!
Higher dimensional version?

- What is a monotone 2D array?
- Fishburn and Graham:
 - all rows are monotone in the same way
 - all columns are monotone in the same way

\[
\begin{array}{ccc}
7 & 8 & 9 \\
4 & 5 & 6 \\
1 & 2 & 3 \\
\end{array}
\]
Higher dimensional version?

- What is a monotone 2D array?
- Fishburn and Graham:
 - all rows are monotone in the same way
 - all columns are monotone in the same way

```
7  8  9
4  5  6
1  2  3
```

Not monotone!
Higher dimensional version?

- What is a monotone 2D array?
- Fishburn and Graham:
 - all rows are monotone in the same way
 - all columns are monotone in the same way

```
7 8 9
4 5 6
1 2 3
```
Higher dimensional version?

- What is a monotone 2D array?
- Fishburn and Graham:
 - all rows are monotone in the same way
 - all columns are monotone in the same way

\[
\begin{array}{ccc}
7 & 8 & 9 \\
4 & 5 & 6 \\
1 & 2 & 3 \\
\end{array}
\]
Higher dimensional version?

- What is a monotone 2D array?
- Fishburn and Graham:
 - all rows are monotone in the same way
 - all columns are monotone in the same way

```
7 8 9
4 5 6
1 2 3
```

Not monotone!
Higher dimensional version?

- What is a monotone 2D array?
- Fishburn and Graham:
 - all rows are monotone in the same way
 - all columns are monotone in the same way

```
7 8 9
4 5 6
1 2 3
```

Not monotone!
Higher dimensional version?

- What is a monotone 2D array?
- Fishburn and Graham:
 - all rows are monotone in the same way
 - all columns are monotone in the same way

\[
\begin{array}{ccc}
7 & 8 & 9 \\
4 & 5 & 6 \\
1 & 2 & 3 \\
\end{array}
\]

Not monotone!
Higher dimensional version?

- What is a monotone 2D array?
- Fishburn and Graham:
 - all rows are monotone in the same way
 - all columns are monotone in the same way

```
    7 8 9
  4 5 6
  1 2 3
```

Not monotone!
Higher dimensional version?

- What is a monotone 2D array?
- Fishburn and Graham:
 - all rows are monotone in the same way
 - all columns are monotone in the same way

\[
\begin{array}{ccc}
7 & 8 & 9 \\
4 & 5 & 6 \\
1 & 2 & 3 \\
\end{array}
\]

\[
\begin{array}{ccc}
3 & 2 & 1 \\
6 & 5 & 4 \\
9 & 8 & 7 \\
\end{array}
\]

Not monotone!
Higher dimensional version?

- **What is a monotone 2D array?**
- **Fishburn and Graham:**
 - all rows are monotone in the same way
 - all columns are monotone in the same way
What is a monotone 2D array?

Fishburn and Graham:
- all rows are monotone in the same way
- all columns are monotone in the same way
Higher dimensional version?

- What is a monotone 2D array?
- Fishburn and Graham:
 - all rows are monotone in the same way
 - all columns are monotone in the same way
Higher dimensional version?

- What is a monotone 2D array?
- Fishburn and Graham:
 - all rows are monotone in the same way
 - all columns are monotone in the same way

Not monotone!

Matija Bucić (ETH Zürich)
Erdős-Szekeres theorem for multidimensional arrays
Mittagseminar, November 2019 3/12
Higher dimensional version?

- What is a monotone 2D array?
- Fishburn and Graham:
 - all rows are monotone in the same way
 - all columns are monotone in the same way
What is a monotone 2D array?

Fishburn and Graham:

- all rows are monotone in the same way
- all columns are monotone in the same way

Not monotone!
Higher dimensional version?

- What is a monotone 2D array?
- Fishburn and Graham:
 - all rows are monotone in the same way
 - all columns are monotone in the same way

Not monotone!
Higher dimensional version?

- What is a monotone 2D array?
- Fishburn and Graham:
 - all rows are monotone in the same way
 - all columns are monotone in the same way

```
7 8 9
4 5 6
1 2 3
```

```
3 2 1
6 5 4
9 8 7
```

```
9 8 7
6 5 4
3 2 1
```

```
4 8 9
3 5 7
1 2 6
```

Not monotone!
Higher dimensional version?

- What is a monotone 2D array?
- Fishburn and Graham:
 - all rows are monotone in the same way
 - all columns are monotone in the same way

Not monotone!
A d-dimensional array is an injective function from $A_1 \times \cdots \times A_d \rightarrow \mathbb{R}$ where $A_1, \ldots, A_d \subseteq \mathbb{Z}$.

Definition (Fishburn and Graham, 1993) An array is monotone if for each dimension all the 1-dimensional subarrays along this dimension are monotone in the same way.

Question (Fishburn and Graham, 1993) What is the smallest N such that any d-dimensional array of size $N \times \cdots \times N$ contains a monotone subarray of size $n \times \cdots \times n$? We denote the answer to this question by $M_d(n)$.
A \(d \)-dimensional array is an injective function from \(A_1 \times \cdots \times A_d \to \mathbb{R} \) where \(A_1, \ldots, A_d \subseteq \mathbb{Z} \), we say it has size \(|A_1| \times \cdots \times |A_d| \).
A d-dimensional array is an injective function from $A_1 \times \cdots \times A_d \rightarrow \mathbb{R}$ where $A_1, \ldots, A_d \subseteq \mathbb{Z}$, we say it has size $|A_1| \times \cdots \times |A_d|$.

Definition (Fishburn and Graham, 1993)

An array is monotone if for each dimension all the 1-dimensional subarrays along this dimension are monotone in the same way.
Higher dimensional Erdős-Szekeres theorem

- A d-dimensional array is an injective function from $A_1 \times \cdots \times A_d \to \mathbb{R}$ where $A_1, \ldots, A_d \subseteq \mathbb{Z}$, we say it has size $|A_1| \times \cdots \times |A_d|$.

Definition (Fishburn and Graham, 1993)

An array is monotone if for each dimension all the 1-dimensional subarrays along this dimension are monotone in the same way.

Question (Fishburn and Graham, 1993)

What is the smallest N such that any d-dimensional array of size $N \times \cdots \times N$ contains a monotone subarray of size $n \times \cdots \times n$?
A d-dimensional array is an injective function from $A_1 \times \cdots \times A_d \rightarrow \mathbb{R}$ where $A_1, \ldots, A_d \subseteq \mathbb{Z}$, we say it has size $|A_1| \times \cdots \times |A_d|$.

Definition (Fishburn and Graham, 1993)

An array is monotone if for each dimension all the 1-dimensional subarrays along this dimension are monotone in the same way.

Question (Fishburn and Graham, 1993)

What is the smallest N such that any d-dimensional array of size $N \times \cdots \times N$ contains a monotone subarray of size $n \times \cdots \times n$?

We denote the answer to this question by $M_d(n)$.

Matija Bucić (ETH Zürich)
Erdős-Szekeres theorem for multidimensional arrays
Mittagseminar, November 2019
4/12
A d-dimensional array is an injective function from $A_1 \times \cdots \times A_d \to \mathbb{R}$ where $A_1, \ldots, A_d \subseteq \mathbb{Z}$, we say it has size $|A_1| \times \cdots \times |A_d|$.

Definition (Fishburn and Graham, 1993)

An array is monotone if for each dimension all the 1-dimensional subarrays along this dimension are monotone in the same way.

Question (Fishburn and Graham, 1993)

What is the smallest N such that any d-dimensional array of size $N \times \cdots \times N$ contains a monotone subarray of size $n \times \cdots \times n$?

We denote the answer to this question by $M_d(n)$.

Matija Bucić (ETH Zürich)
A d-dimensional array is an injective function from $A_1 \times \cdots \times A_d \to \mathbb{R}$ where $A_1, \ldots, A_d \subseteq \mathbb{Z}$, we say it has size $|A_1| \times \cdots \times |A_d|$.

Definition (Fishburn and Graham, 1993)

An array is monotone if for each dimension all the 1-dimensional subarrays along this dimension are monotone in the same way.

Question (Fishburn and Graham, 1993)

What is the smallest N such that any d-dimensional array of size $N \times \cdots \times N$ contains a monotone subarray of size $n \times \cdots \times n$?

We denote the answer to this question by $M_d(n)$.

\[
\begin{array}{ccc}
5 & 4 & 3 \\
6 & 2 & 1 \\
7 & 8 & 9 \\
\end{array}
\]
A \(d \)-dimensional array is an injective function from \(A_1 \times \cdots \times A_d \to \mathbb{R} \) where \(A_1, \ldots, A_d \subseteq \mathbb{Z} \), we say it has size \(|A_1| \times \cdots \times |A_d| \).

Definition (Fishburn and Graham, 1993)

An array is monotone if for each dimension all the 1-dimensional subarrays along this dimension are monotone in the same way.

Question (Fishburn and Graham, 1993)

What is the smallest \(N \) such that any \(d \)-dimensional array of size \(N \times \cdots \times N \) contains a monotone subarray of size \(n \times \cdots \times n \)?

We denote the answer to this question by \(M_d(n) \).

5 4 3 6 2 1 7 8 9
A d-dimensional array is an injective function from $A_1 \times \cdots \times A_d \to \mathbb{R}$ where $A_1, \ldots, A_d \subseteq \mathbb{Z}$, we say it has size $|A_1| \times \cdots \times |A_d|$.

Definition (Fishburn and Graham, 1993)

An array is monotone if for each dimension all the 1-dimensional subarrays along this dimension are monotone in the same way.

Question (Fishburn and Graham, 1993)

What is the smallest N such that any d-dimensional array of size $N \times \cdots \times N$ contains a monotone subarray of size $n \times \cdots \times n$?

We denote the answer to this question by $M_d(n)$.

\[
\begin{array}{ccc}
5 & 4 & 3 \\
6 & 2 & 1 \\
7 & 8 & 9 \\
\end{array}
\begin{array}{ccc}
3 & 2 & 4 \\
9 & 1 & 5 \\
7 & 8 & 6 \\
\end{array}
\]
A d-dimensional array is an injective function from $A_1 \times \cdots \times A_d \to \mathbb{R}$ where $A_1, \ldots, A_d \subseteq \mathbb{Z}$, we say it has size $|A_1| \times \cdots \times |A_d|$.

Definition (Fishburn and Graham, 1993)

An array is monotone if for each dimension all the 1-dimensional subarrays along this dimension are monotone in the same way.

Question (Fishburn and Graham, 1993)

What is the smallest N such that any d-dimensional array of size $N \times \cdots \times N$ contains a monotone subarray of size $n \times \cdots \times n$?

We denote the answer to this question by $M_d(n)$.

```
5 4 3
6 2 1
7 8 9
```

```
3 2 4
9 1 5
7 8 6
```

shows $M_2(2) \geq 4$
Results

- Erdős-Szekeres is precisely $M_1(n) = (n - 1)^2 + 1$.
Results

- Erdős-Szekeres is precisely $M_1(n) = (n - 1)^2 + 1$.

- A random ordering gives $M_d(n) \geq n^{d-1}$.
Erdős-Szekeres is precisely $M_1(n) = (n - 1)^2 + 1$.

A random ordering gives $M_d(n) \geq n^{d-1}$

Fishburn and Graham show:
Erdős-Szekeres is precisely $M_1(n) = (n - 1)^2 + 1$.

A random ordering gives $M_d(n) \geq n^{d-1}$

Fishburn and Graham show:

(i) $M_2(n) \leq \text{towr}_5(O(n))$ and
Erdős-Szekeres is precisely $M_1(n) = (n - 1)^2 + 1$.

A random ordering gives $M_d(n) \geq n^{d-1}$

Fishburn and Graham show:

(i) $M_2(n) \leq \text{towr}_5(O(n))$ and

(ii) $M_d(n)$ is upper bounded by an Ackermann type function.
Results

- Erdős-Szekeres is precisely $M_1(n) = (n - 1)^2 + 1$.

- A random ordering gives $M_d(n) \geq n^{d-1}$

- Fishburn and Graham show:
 1. $M_2(n) \leq \text{towr}_5(O(n))$ and
 2. $M_d(n)$ is upper bounded by an Ackermann type function.

Theorem 1 (B., Sudakov, Tran, 2019+)

(1) $M_2(n) \leq \text{towr}_5(O(n))$

(ii) $M_d(n)$ is upper bounded by an Ackermann type function.
- Erdős-Szekeres is precisely $M_1(n) = (n - 1)^2 + 1$.

- A random ordering gives $M_d(n) \geq n^{d-1}$

- Fishburn and Graham show:

 (i) $M_2(n) \leq \text{towr}_5(O(n))$ and

 (ii) $M_d(n)$ is upper bounded by an Ackermann type function.

Theorem 1 (B., Sudakov, Tran, 2019+)

(i) $M_2(n) \leq 2^{2^n}$,
Erdős-Szekeres is precisely $M_1(n) = (n - 1)^2 + 1$.

A random ordering gives $M_d(n) \geq n^{d-1}$

Fishburn and Graham show:

(i) $M_2(n) \leq \text{towr}_5(O(n))$ and

(ii) $M_d(n)$ is upper bounded by an Ackermann type function.

Theorem 1 (B., Sudakov, Tran, 2019+)

(i) $M_2(n) \leq 2^{2^{2n}}$,

(ii) $M_3(n) \leq 2^{2^{2n^2}}$ and
Erdős-Szekeres is precisely $M_1(n) = (n - 1)^2 + 1$.

A random ordering gives $M_d(n) \geq n^{d-1}$

Fishburn and Graham show:

(i) $M_2(n) \leq \text{towr}_5(O(n))$ and

(ii) $M_d(n)$ is upper bounded by an Ackermann type function.

Theorem 1 (B., Sudakov, Tran, 2019+)

(i) $M_2(n) \leq 2^{2^{2n}}$,

(ii) $M_3(n) \leq 2^{2^{2n^2}}$ and

(iii) $M_d(n) \leq 2^{2^{2^{n^{d-1}}}}$, for $d \geq 4$.
Proofs.

YOU WANT PROOF?
I'LL GIVE YOU PROOF!
Inconsistently monotone arrays.

Definition

An array is inconsistently monotone if all its 1D subarrays are monotone.
Inconsistently monotone arrays.

Definition

An array is inconsistently monotone if all its 1D subarrays are monotone.

\[
\begin{array}{ccc}
8 & 7 & 3 \\
6 & 5 & 4 \\
1 & 2 & 9 \\
\end{array}
\]
Inconsistently monotone arrays.

Definition

An array is inconsistently monotone if all its 1D subarrays are monotone.

\[
\begin{array}{ccc}
8 & 7 & 3 \\
6 & 5 & 4 \\
1 & 2 & 9 \\
\end{array}
\]
Inconsistently monotone arrays.

Definition

An array is inconsistently monotone if all its 1D subarrays are monotone.

\[
\begin{pmatrix}
8 & 7 & 3 \\
6 & 5 & 4 \\
1 & 2 & 9
\end{pmatrix}
\]
Inconsistently monotone arrays.

Definition

An array is inconsistently monotone if all its 1D subarrays are monotone.

\[
\begin{array}{ccc}
8 & 7 & 3 \\
6 & 5 & 4 \\
1 & 2 & 9 \\
\end{array}
\]

Theorem 2 (B., Sudakov, Tran)

For every \(d \geq 2 \), we have

\[
M'_d(n) \leq 2^{2^{(1+o(1))(d-1) n}}.
\]
Inconsistently monotone arrays.

Definition

An array is inconsistently monotone if all its 1D subarrays are monotone.

\[
\begin{array}{ccc}
8 & 7 & 3 \\
6 & 5 & 4 \\
1 & 2 & 9 \\
\end{array}
\]
Inconsistently monotone arrays.

Definition

An array is inconsistently monotone if all its 1D subarrays are monotone.

\[
\begin{array}{ccc}
8 & 7 & 3 \\
6 & 5 & 4 \\
1 & 2 & 9 \\
\end{array}
\]
Inconsistently monotone arrays.

Definition

An array is inconsistently monotone if all its 1D subarrays are monotone.

\[
\begin{array}{ccc}
8 & 7 & 3 \\
6 & 5 & 4 \\
1 & 2 & 9 \\
\end{array}
\]
Inconsistently monotone arrays.

Definition

An array is inconsistently monotone if all its 1D subarrays are monotone.

\[
\begin{array}{ccc}
8 & 7 & 3 \\
6 & 5 & 4 \\
1 & 2 & 9 \\
\end{array}
\]
Inconsistently monotone arrays.

Definition

An array is inconsistently monotone if all its 1D subarrays are monotone.

\[
\begin{pmatrix}
8 & 7 & 3 \\
6 & 5 & 4 \\
1 & 2 & 9
\end{pmatrix}
\]

Let \(M'_d(n) \) be the smallest \(N \) such that any \(d \)-dimensional \(N \times \cdots \times N \) array contains an inconsistently monotone subarray of size \(n \times \cdots \times n \).
Inconsistently monotone arrays.

Definition

An array is inconsistently monotone if all its 1D subarrays are monotone.

\[
\begin{array}{ccc}
8 & 7 & 3 \\
6 & 5 & 4 \\
1 & 2 & 9 \\
\end{array}
\]

- Let \(M'_d(n) \) be the smallest \(N \) such that any \(d \)-dimensional \(N \times \cdots \times N \) array contains an inconsistently monotone subarray of size \(n \times \cdots \times n \).

- \(M'_d(n) \leq M_d(n) \).
Inconsistently monotone arrays.

Definition

An array is inconsistently monotone if all its 1D subarrays are monotone.

\[
\begin{bmatrix}
8 & 7 & 3 \\
6 & 5 & 4 \\
1 & 2 & 9 \\
\end{bmatrix}
\]

- Let \(M'_d(n) \) be the smallest \(N \) such that any \(d \)-dimensional \(N \times \cdots \times N \) array contains an inconsistently monotone subarray of size \(n \times \cdots \times n \).
- \(M'_d(n) \leq M_d(n) \).

Theorem 2 (B., Sudakov, Tran)

For every \(d \geq 2 \), we have \(M'_d(n) \leq 2^{2(1+o(1))n^{d-1}} \).
Proof of 2D case of inconsistent monotonicity.

- Consider an $n^2 \times N$ array f
Proof of 2D case of inconsistent monotonicity.

- Consider an $n^2 \times N$ array f with $n^2, N = n^{2^n} \cdot \binom{n^2}{n}$
Proof of 2D case of inconsistent monotonicity.

- Consider an $n^2 \times N$ array f with $n^2, N = n^{2n} \cdot \binom{n^2}{n} = 2^{(1+o(1))n}$.

Matija Bucić (ETH Zürich) Erdős-Szekeres theorem for multidimensional arrays Mittagseminar, November 2019 8/12
Proof of 2D case of inconsistent monotonicity.

- Consider an $n^2 \times N$ array f with $n^2, N = n^{2n} \cdot \binom{n^2}{n} = 2^{2(1+o(1))n}$.

\begin{align*}
\begin{bmatrix}
56 & 36 & 24 & 57 & 30 & 52 & 37 & 43 & 46 & 17 & 16 & 1 & 2 & 11 \\
41 & 8 & 42 & 60 & 68 & 38 & 48 & 58 & 66 & 44 & 61 & 28 & 49 & 29 \\
40 & 59 & 23 & 67 & 54 & 62 & 4 & 51 & 55 & 7 & 34 & 33 & 63 & 21 \\
10 & 64 & 22 & 32 & 3 & 12 & 69 & 6 & 13 & 31 & 14 & 35 & 15 & 19 \\
53 & 20 & 65 & 45 & 50 & 5 & 47 & 70 & 39 & 25 & 26 & 27 & 18 & 9
\end{bmatrix}
\end{align*}
Proof of 2D case of inconsistent monotonicity.

- Consider an $n^2 \times N$ array f with $n^2, N = n^{2n} \cdot \left(\frac{n^2}{n}\right) = 2^{(1+o(1))n}$.
- Each column contains a monotone subsequence of size n.

$$
\begin{pmatrix}
56 & 36 & 24 & 57 & 30 & 52 & 37 & 43 & 46 & 17 & 16 & 1 & 2 & 11 \\
41 & 8 & 42 & 60 & 68 & 38 & 48 & 58 & 66 & 44 & 61 & 28 & 49 & 29 \\
40 & 59 & 23 & 67 & 54 & 62 & 4 & 51 & 55 & 7 & 34 & 33 & 63 & 21 \\
10 & 64 & 22 & 32 & 3 & 12 & 69 & 6 & 13 & 31 & 14 & 35 & 15 & 19 \\
53 & 20 & 65 & 45 & 50 & 5 & 47 & 70 & 39 & 25 & 26 & 27 & 18 & 9
\end{pmatrix}
$$

Matija Bucić (ETH Zürich) Erdős-Szekeres theorem for multidimensional arrays Mittagseminar, November 2019 8/12
Proof of 2D case of inconsistent monotonicity.

- Consider an \(n^2 \times N \) array \(f \) with \(n^2, N = n^{2^n} \cdot \binom{n^2}{n} = 2^{(1+o(1))n} \).
- Each column contains a monotone subsequence of size \(n \).
Proof of 2D case of inconsistent monotonicity.

- Consider an $n^2 \times N$ array f with n^2, $N = n^{2n} \cdot \binom{n^2}{n} = 2^{(1+o(1))n}$.
- Each column contains a monotone subsequence of size n and it can appear in $\binom{n^2}{n}$ different positions.
Proof of 2D case of inconsistent monotonicity.

- Consider an $n^2 \times N$ array f with $N = n^{2n} \cdot \left(\frac{n^2}{n}\right) = 2^{(1+o(1))n}$.
- Each column contains a monotone subsequence of size n and it can appear in $\left(\frac{n^2}{n}\right)$ different positions.
- Keep the most common position to get an $M \times n$ array with all columns monotone and $M = N/\left(\frac{n^2}{n}\right) \geq n^{2n}$.
Proof of 2D case of inconsistent monotonicity.

- Consider an \(n^2 \times N \) array \(f \) with \(n^2, N = n^{2n} \cdot \binom{n^2}{n} = 2^{(1+o(1))n} \).
- Each column contains a monotone subsequence of size \(n \) and it can appear in \(\binom{n^2}{n} \) different positions.
- Keep the most common position to get an \(M \times n \) array with all columns monotone and \(M = N/\binom{n^2}{n} \geq n^{2n} \).
Proof of 2D case of inconsistent monotonicity.

- Consider an \(n^2 \times N \) array \(f \) with \(n^2, N = n^{2n} \cdot \binom{n^2}{n} = 2^{(1+o(1))n} \).

- Each column contains a monotone subsequence of size \(n \) and it can appear in \(\binom{n^2}{n} \) different positions.

- Keep the most common position to get an \(M \times n \) array with all columns monotone and \(M = N/\binom{n^2}{n} \geq n^{2n} \).
Proof of 2D case of inconsistent monotonicity.

- Consider an \(n^2 \times N \) array \(f \) with \(n^2, N = n^{2n} \cdot \binom{n^2}{n} = 2^{2(1+o(1))n} \).
- Each column contains a monotone subsequence of size \(n \) and it can appear in \(\binom{n^2}{n} \) different positions.
- Keep the most common position to get an \(M \times n \) array with all columns monotone and \(M = N/\binom{n^2}{n} \geq n^{2n} \).
Proof of 2D case of inconsistent monotonicity.

Consider an $n^2 \times N$ array f with $n^2, N = n^{2n} \cdot \binom{n^2}{n} = 2^{2(1+o(1))n}$.

Each column contains a monotone subsequence of size n and it can appear in $\binom{n^2}{n}$ different positions.

Keep the most common position to get an $M \times n$ array with all columns monotone and $M = N/\binom{n^2}{n} \geq n^{2n}$

First row contains a monotone subsequence of size \sqrt{M},
Proof of 2D case of inconsistent monotonicity.

- Consider an $n^2 \times N$ array f with $n^2, N = n^{2n} \cdot \binom{n^2}{n} = 2^{(1+o(1))n}$.
- Each column contains a monotone subsequence of size n and it can appear in $\binom{n^2}{n}$ different positions.
- Keep the most common position to get an $M \times n$ array with all columns monotone and $M = N/\binom{n^2}{n} \geq n^{2n}$.
- First row contains a monotone subsequence of size \sqrt{M},
Proof of 2D case of inconsistent monotonicity.

- Consider an \(n^2 \times N \) array \(f \) with \(n^2, N = n^{2^n} \cdot \binom{n^2}{n} = 2^{2(1+o(1))n} \).
- Each column contains a monotone subsequence of size \(n \) and it can appear in \(\binom{n^2}{n} \) different positions.
- Keep the most common position to get an \(M \times n \) array with all columns monotone and \(M = \frac{N}{\binom{n^2}{n}} \geq n^{2^n} \).
- First row contains a monotone subsequence of size \(\sqrt{M} \), delete all columns not intersecting it.

\[
\begin{pmatrix}
41 & 8 & 42 & 68 & 58 & 66 & 61 & 28 & 29 \\
40 & 59 & 23 & 54 & 51 & 55 & 34 & 33 & 21 \\
10 & 64 & 22 & 3 & 6 & 13 & 14 & 35 & 19
\end{pmatrix}
\]
Proof of 2D case of inconsistent monotonicity.

- Consider an $n^2 \times N$ array f with $n^2, N = n^{2n} \cdot \binom{n^2}{n} = 2^{(1+o(1))n}$.
- Each column contains a monotone subsequence of size n and it can appear in $\binom{n^2}{n}$ different positions.
- Keep the most common position to get an $M \times n$ array with all columns monotone and $M = N/\binom{n^2}{n} \geq n^{2n}$.
- First row contains a monotone subsequence of size \sqrt{M}, delete all columns not intersecting it.
Proof of 2D case of inconsistent monotonicity.

- Consider an $n^2 \times N$ array f with $n^2, N = n^{2n} \cdot \binom{n^2}{n} = 2^{2(1+o(1))n}$.
- Each column contains a monotone subsequence of size n and it can appear in $\binom{n^2}{n}$ different positions.
- Keep the most common position to get an $M \times n$ array with all columns monotone and $M = N/\binom{n^2}{n} \geq n^{2n}$.
- First row contains a monotone subsequence of size \sqrt{M}, delete all columns not intersecting it.
- Repeat for every row.

<table>
<thead>
<tr>
<th></th>
<th>68</th>
<th>58</th>
<th>66</th>
<th>61</th>
<th>29</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>54</td>
<td>51</td>
<td>55</td>
<td>34</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>6</td>
<td>13</td>
<td>14</td>
<td>19</td>
</tr>
</tbody>
</table>
Proof of 2D case of inconsistent monotonicity.

- Consider an $n^2 \times N$ array f with $n^2, N = n^{2^n} \cdot \binom{n^2}{n} = 2^{(1+o(1))n}$.
- Each column contains a monotone subsequence of size n and it can appear in $\binom{n^2}{n}$ different positions.
- Keep the most common position to get an $M \times n$ array with all columns monotone and $M = N/\binom{n^2}{n} \geq n^{2n}$.
- First row contains a monotone subsequence of size \sqrt{M}, delete all columns not intersecting it.
- Repeat for every row.

<table>
<thead>
<tr>
<th>68</th>
<th>58</th>
<th>66</th>
<th>61</th>
<th>29</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>51</td>
<td>55</td>
<td>34</td>
<td>21</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>13</td>
<td>14</td>
<td>19</td>
</tr>
</tbody>
</table>
Proof of 2D case of inconsistent monotonicity.

- Consider an $n^2 \times N$ array f with $n^2, N = n^{2^n} \cdot \left(\frac{n^2}{n}\right) = 2^{(1+o(1))n}$.
- Each column contains a monotone subsequence of size n and it can appear in $\left(\frac{n^2}{n}\right)$ different positions.
- Keep the most common position to get an $M \times n$ array with all columns monotone and $M = N / \left(\frac{n^2}{n}\right) \geq n^{2^n}$.
- First row contains a monotone subsequence of size \sqrt{M}, delete all columns not intersecting it.
- Repeat for every row.
Proof of 2D case of inconsistent monotonicity.

- Consider an \(n^2 \times N \) array \(f \) with \(n^2, N = n^{2n} \cdot \binom{n^2}{n} = 2^{(1+o(1))n} \).

- Each column contains a monotone subsequence of size \(n \) and it can appear in \(\binom{n^2}{n} \) different positions.

- Keep the most common position to get an \(M \times n \) array with all columns monotone and \(M = \frac{N}{\binom{n^2}{n}} \geq n^{2n} \).

- First row contains a monotone subsequence of size \(\sqrt{M} \), delete all columns not intersecting it.

- Repeat for every row.
Proof of 2D case of inconsistent monotonicity.

- Consider an \(n^2 \times N \) array \(f \) with \(n^2, N = n^{2^n} \cdot \binom{n^2}{n} = 2^{(1+o(1))n} \).
- Each column contains a monotone subsequence of size \(n \) and it can appear in \(\binom{n^2}{n} \) different positions.
- Keep the most common position to get an \(M \times n \) array with all columns monotone and \(M = N/\binom{n^2}{n} \geq n^{2n} \).
- First row contains a monotone subsequence of size \(\sqrt{M} \), delete all columns not intersecting it.
- Repeat for every row.
Proof of 2D case of inconsistent monotonicity.

- Consider an \(n^2 \times N \) array \(f \) with \(n^2, N = n^{2n} \cdot \left(\frac{n^2}{n} \right) = 2^{2(1+o(1))n} \).

- Each column contains a monotone subsequence of size \(n \) and it can appear in \(\binom{n^2}{n} \) different positions.

- Keep the most common position to get an \(M \times n \) array with all columns monotone and \(M = \frac{N}{\binom{n^2}{n}} \geq n^{2n} \).

- First row contains a monotone subsequence of size \(\sqrt{M} \), delete all columns not intersecting it.

- Repeat for every row.

- We get an \(M^{1/2^n} \times n \) array with all rows and columns monotone.
Proof of 2D case of inconsistent monotonicity.

- Consider an $n^2 \times N$ array f with n^2, $N = n^{2n} \cdot \binom{n^2}{n} = 2^{(1+o(1))n}$.
- Each column contains a monotone subsequence of size n and it can appear in $\binom{n^2}{n}$ different positions.
- Keep the most common position to get an $M \times n$ array with all columns monotone and $M = N/\binom{n^2}{n} \geq n^{2n}$.
- First row contains a monotone subsequence of size \sqrt{M}, delete all columns not intersecting it.
- Repeat for every row.
- We get an $\left\lfloor M^{1/2n} \right\rfloor \times n$ array with all rows and columns monotone.
Proof of 2D case of inconsistent monotonicity.

- Consider an $n^2 \times N$ array f with $n^2, N = n^{2n} \cdot \binom{n^2}{n} = 2^{2(1+o(1))n}$.

- Each column contains a monotone subsequence of size n and it can appear in $\binom{n^2}{n}$ different positions.

- Keep the most common position to get an $M \times n$ array with all columns monotone and $M = N/\binom{n^2}{n} \geq n^{2n}$

- First row contains a monotone subsequence of size \sqrt{M}, delete all columns not intersecting it.

- Repeat for every row.

- We get an $M^{1/2^n} \times n$ array with all rows and columns monotone.

Theorem (B., Sudakov, Tran)

\[M'_2(n) \leq 2^{2(1+o(1))n}. \]
Monotone 2D case

- Notice that \(M_2(n) \leq M'_2(2n - 1) \).
Monotone 2D case

- Notice that $M_2(n) \leq M'_2(2n - 1)$.
 - Delete the less common of increasing/decreasing rows.
Monotone 2D case

- Notice that $M_2(n) \leq M'_2(2n - 1)$.
 - Delete the less common of increasing/decreasing rows.
 - Delete the less common of increasing/decreasing columns.
Monotone 2D case

- Notice that $M_2(n) \leq M'_2(2n - 1)$.
 - Delete the less common of increasing/decreasing rows.
 - Delete the less common of increasing/decreasing columns.

Theorem (B., Sudakov, Tran)

$$M_2(n) \leq 2^{2(2+o(1))n}.$$
Monotone 2D case

- Notice that $M_2(n) \leq M'_2(2n - 1)$.
 - Delete the less common of increasing/decreasing rows.
 - Delete the less common of increasing/decreasing columns.

Theorem (B., Sudakov, Tran)

$$M_2(n) \leq 2^{2(2+o(1))n}.$$
Monotone 2D case

- Notice that $M_2(n) \leq M_2'(2n - 1)$.
 - Delete the less common of increasing/decreasing rows.
 - Delete the less common of increasing/decreasing columns.

Theorem (B., Sudakov, Tran)

\[M_2(n) \leq 2^{2(2+o(1))n} \]
Monotone 2D case

- Notice that \(M_2(n) \leq M'_2(2n - 1) \).
 - Delete the less common of increasing/decreasing rows.
 - Delete the less common of increasing/decreasing columns.

Theorem (B., Sudakov, Tran)

\[
M_2(n) \leq 2^{2(2+o(1))n}.
\]

Lemma (Grid Ramsey)

\(\exists C = C(d, k) : \text{for } N \geq 2^{Cn^{d-1}} , \text{any } k\text{-colouring of the } d\text{-dimensional } N \times \ldots \times N \text{ grid contains a monochromatic subgrid of size } n \times \ldots \times n. \)
From inconsistency to consistency

Theorem (B., Sudakov, Tran)

For $d \geq 3$ we have $M_d(n) \leq M'_d(2^n C_d n^{d-1})$.

Proof. Consider an inconsistently monotone array of size $2^C n^{d-1} \times \cdots \times 2^C n^{d-1}$. Colour each entry into one of 2^d many colours corresponding to the monotonicity pattern of 1D subarrays passing through it. Grid Ramsey gives us a monochromatic $n \times \cdots \times n$ subarray, which is monotone by definition of our colouring.
From inconsistency to consistency

Theorem (B., Sudakov, Tran)

For $d \geq 3$ we have $M_d(n) \leq M'_d(2^{C_d}n^{d-1})$.

Proof.
From inconsistency to consistency

Theorem (B., Sudakov, Tran)

For \(d \geq 3 \) we have \(M_d(n) \leq M'_d(2^{C_d n^{d-1}}) \).

Proof.

- Consider an inconsistently monotone array of size \(2^{C_n^{d-1}} \times \cdots \times 2^{C_n^{d-1}} \).
Theorem (B., Sudakov, Tran)

For \(d \geq 3 \) we have \(M_d(n) \leq M'_d(2^{C_d}n^{d-1}) \).

Proof.

- Consider an inconsistently monotone array of size \(2^{C_d}n^{d-1} \times \cdots \times 2^{C_d}n^{d-1} \).
- Colour each entry into one of \(2^d \) many colours corresponding to the monotonicity pattern of 1D subarrays passing through it.
From inconsistency to consistency

Theorem (B., Sudakov, Tran)

For \(d \geq 3 \) we have \(M_d(n) \leq M'_d(2^{C_d n^{d-1}}) \).

Proof.

- Consider an inconsistently monotone array of size \(2^{C n^{d-1}} \times \cdots \times 2^{C n^{d-1}} \).
- Colour each entry into one of \(2^d \) many colours corresponding to the monotonicity pattern of 1D subarrays passing through it.
From inconsistency to consistency

Theorem (B., Sudakov, Tran)

For $d \geq 3$ we have $M_d(n) \leq M'_d(2^{C_d n^{d-1}})$.

Proof.

- Consider an inconsistently monotone array of size $2^{C_d n^{d-1}} \times \cdots \times 2^{C_d n^{d-1}}$.
- Colour each entry into one of 2^d many colours corresponding to the monotonicity pattern of 1D subarrays passing through it.
From inconsistency to consistency

Theorem (B., Sudakov, Tran)

For \(d \geq 3 \) we have \(M_d(n) \leq M'_d(2^{C_d}n^{d-1}) \).

Proof.

- Consider an inconsistently monotone array of size \(2^{C_d}n^{d-1} \times \cdots \times 2^{C_d}n^{d-1} \).
- Colour each entry into one of \(2^d \) many colours corresponding to the monotonicity pattern of 1D subarrays passing through it.

\[
\begin{array}{cccc}
\downarrow & \downarrow & \uparrow & \uparrow \\
\bullet & \bullet & \bullet & \bullet \\
& 6 & 5 & 4 \\
8 & 7 & 3 & 1 & 2 & 9 \\
\end{array}
\]
From inconsistency to consistency

Theorem (B., Sudakov, Tran)

For \(d \geq 3 \) we have \(M_d(n) \leq M'_d(2^{C_d}n^{d-1}) \).

Proof.

- Consider an inconsistently monotone array of size \(2^{C_d}n^{d-1} \times \cdots \times 2^{C_d}n^{d-1} \).
- Colour each entry into one of \(2^d \) many colours corresponding to the monotonicity pattern of 1D subarrays passing through it.
From inconsistency to consistency

Theorem (B., Sudakov, Tran)

For \(d \geq 3 \) we have \(M_d(n) \leq M'_d(2^{C_d n^{d-1}}) \).

Proof.

- Consider an inconsistently monotone array of size \(2^{C_n^{d-1}} \times \cdots \times 2^{C_n^{d-1}} \).
- Colour each entry into one of \(2^d \) many colours corresponding to the monotonicity pattern of 1D subarrays passing through it.
Theorem (B., Sudakov, Tran)

For \(d \geq 3 \) we have \(M_d(n) \leq M'_d(2^{C_d}n^{d-1}) \).

Proof.

- Consider an inconsistently monotone array of size \(2^{C_n^{d-1}} \times \cdots \times 2^{C_n^{d-1}} \).
- Colour each entry into one of \(2^d \) many colours corresponding to the monotonicity pattern of 1D subarrays passing through it.
From inconsistency to consistency

Theorem (B., Sudakov, Tran)

For $d \geq 3$ we have $M_d(n) \leq M'_d(2^{C_d n^{d-1}})$.

Proof.

- Consider an inconsistently monotone array of size $2^{C_d n^{d-1}} \times \cdots \times 2^{C_d n^{d-1}}$.
- Colour each entry into one of 2^d many colours corresponding to the monotonicity pattern of 1D subarrays passing through it.
Theorem (B., Sudakov, Tran)

For $d \geq 3$ we have $M_d(n) \leq M'_d(2^{Cd}n^{d-1})$.

Proof.

- Consider an inconsistently monotone array of size $2^{Cn^{d-1}} \times \cdots \times 2^{Cn^{d-1}}$.
- Colour each entry into one of 2^d many colours corresponding to the monotonicity pattern of 1D subarrays passing through it.
Theorem (B., Sudakov, Tran)

For $d \geq 3$ we have $M_d(n) \leq M'_d(2^{C_d n^{d-1}})$.

Proof.

- Consider an inconsistently monotone array of size $2^{C_d n^{d-1}} \times \cdots \times 2^{C_d n^{d-1}}$.
- Colour each entry into one of 2^d many colours corresponding to the monotonicity pattern of 1D subarrays passing through it.
From inconsistency to consistency

Theorem (B., Sudakov, Tran)

For \(d \geq 3 \) we have \(M_d(n) \leq M'_d(2^{C_d n^{d-1}}) \).

Proof.

- Consider an inconsistently monotone array of size \(2^{C_n^{d-1}} \times \cdots \times 2^{C_n^{d-1}} \).
- Colour each entry into one of \(2^d \) many colours corresponding to the monotonicity pattern of 1D subarrays passing through it.
From inconsistency to consistency

Theorem (B., Sudakov, Tran)

For $d \geq 3$ we have $M_d(n) \leq M'_d(2^{C_d n^{d-1}})$.

Proof.

- Consider an inconsistently monotone array of size $2^{C_d n^{d-1}} \times \cdots \times 2^{C_d n^{d-1}}$.
- Colour each entry into one of 2^d many colours corresponding to the monotonicity pattern of 1D subarrays passing through it.
From inconsistency to consistency

Theorem (B., Sudakov, Tran)

For $d \geq 3$ we have $M_d(n) \leq M'_d(2^{C_d}n^{d-1})$.

Proof.

- Consider an inconsistently monotone array of size $2^{C_n^{d-1}} \times \cdots \times 2^{C_n^{d-1}}$.
- Colour each entry into one of 2^d many colours corresponding to the monotonicity pattern of 1D subarrays passing through it.
From inconsistency to consistency

Theorem (B., Sudakov, Tran)

For $d \geq 3$ we have $M_d(n) \leq M'_d(2^{C_d n^{d-1}})$.

Proof.

- Consider an inconsistently monotone array of size $2^{C_d n^{d-1}} \times \cdots \times 2^{C_d n^{d-1}}$.
- Colour each entry into one of 2^d many colours corresponding to the monotonicity pattern of 1D subarrays passing through it.
From inconsistency to consistency

Theorem (B., Sudakov, Tran)

For $d \geq 3$ we have $M_d(n) \leq M'_d(2^{Cd}n^{d-1})$.

Proof.

- Consider an inconsistently monotone array of size $2^{Cd} \times \cdots \times 2^{Cd}$.
- Colour each entry into one of 2^d many colours corresponding to the monotonicity pattern of 1D subarrays passing through it.
Theorem (B., Sudakov, Tran)

For $d \geq 3$ we have $M_d(n) \leq M'_d(2^{C_d n^{d-1}})$.

Proof.

- Consider an inconsistently monotone array of size $2^{C_n d^{d-1}} \times \cdots \times 2^{C_n d^{d-1}}$.
- Colour each entry into one of 2^d many colours corresponding to the monotonicity pattern of 1D subarrays passing through it.
From inconsistency to consistency

Theorem (B., Sudakov, Tran)

For $d \geq 3$ we have $M_d(n) \leq M'_d(2^{C_d n^{d-1}})$.

Proof.

- Consider an inconsistently monotone array of size $2^{C_n d-1} \times \cdots \times 2^{C_n d-1}$.
- Colour each entry into one of 2^d many colours corresponding to the monotonicity pattern of 1D subarrays passing through it.
From inconsistency to consistency

Theorem (B., Sudakov, Tran)

For $d \geq 3$ we have $M_d(n) \leq M'_d(2^{C_d}n^{d-1})$.

Proof.
- Consider an inconsistently monotone array of size $2^{C_d}n^{d-1} \times \cdots \times 2^{C_d}n^{d-1}$.
- Colour each entry into one of 2^d many colours corresponding to the monotonicity pattern of 1D subarrays passing through it.
From inconsistency to consistency

Theorem (B., Sudakov, Tran)

For \(d \geq 3 \) we have \(M_d(n) \leq M'_d(2^{C_d}n^{d-1}) \).

Proof.

- Consider an inconsistently monotone array of size \(2^{C_d}n^{d-1} \times \cdots \times 2^{C_d}n^{d-1} \).
- Colour each entry into one of \(2^d \) many colours corresponding to the monotonicity pattern of 1D subarrays passing through it.
From inconsistency to consistency

Theorem (B., Sudakov, Tran)

For $d \geq 3$ we have $M_d(n) \leq M'_d(2^{C_d n^{d-1}})$.

Proof.

- Consider an inconsistently monotone array of size $2^{C_n^{d-1}} \times \cdots \times 2^{C_n^{d-1}}$.
- Colour each entry into one of 2^d many colours corresponding to the monotonicity pattern of 1D subarrays passing through it.
Theorem (B., Sudakov, Tran)

For \(d \geq 3 \) we have \(M_d(n) \leq M'_d(2^{C_d n^{d-1}}) \).

Proof.

- Consider an inconsistently monotone array of size \(2^{C_n d-1} \times \cdots \times 2^{C_n d-1} \).
- Colour each entry into one of \(2^d \) many colours corresponding to the monotonicity pattern of 1D subarrays passing through it.
Theorem (B., Sudakov, Tran)

For $d \geq 3$ we have $M_d(n) \leq M'_d(2^{C_d n^{d-1}})$.

Proof.

- Consider an inconsistently monotone array of size $2^{C_n d^{d-1}} \times \cdots \times 2^{C_n d^{d-1}}$.
- Colour each entry into one of 2^d many colours corresponding to the monotonicity pattern of 1D subarrays passing through it.
- Grid Ramsey gives us a monochromatic $n \times \cdots \times n$ subarray, which is monotone by definition of our colouring.
Theorem (B., Sudakov, Tran)

For $d \geq 3$ we have $M_d(n) \leq M'_d(2^{C_d n^{d-1}})$.

Proof.

- Consider an inconsistently monotone array of size $2^{C_n^{d-1}} \times \cdots \times 2^{C_n^{d-1}}$.
- Colour each entry into one of 2^d many colours corresponding to the monotonicity pattern of 1D subarrays passing through it.
- Grid Ramsey gives us a monochromatic $n \times \cdots \times n$ subarray, which is monotone by definition of our colouring.
Concluding remarks and open problems

- For 3D we have a different argument, giving a double exponential bound.
Concluding remarks and open problems

- For 3D we have a different argument, giving a double exponential bound.
- Finding monotone subarrays is related to:
 - Finding long common monotone subsequences of permutations.
 - Ramsey type problems for vertex ordered graphs.
 - Canonical orderings of discrete structures.
- Question: Is $M_2(n)$ exponential or double exponential?
- Question: Is $M_d(n)$ always at most double exponential in n?
Concluding remarks and open problems

- For 3D we have a different argument, giving a double exponential bound.
- Finding monotone subarrays is related to:
 - Finding long common monotone subsequences of permutations.

Question: Is $M_2(n)$ exponential or double exponential?

Question: Is $M_d(n)$ always at most double exponential in n?
Concluding remarks and open problems

- For 3D we have a different argument, giving a double exponential bound.
- Finding monotone subarrays is related to:
 - Finding long common monotone subsequences of permutations.
 - Ramsey type problems for vertex ordered graphs.
Concluding remarks and open problems

- For 3D we have a different argument, giving a double exponential bound.
- Finding monotone subarrays is related to:
 - Finding long common monotone subsequences of permutations.
 - Ramsey type problems for vertex ordered graphs.
 - Canonical orderings of discrete structures.

Question: Is $M_2(n)$ exponential or double exponential?

Question: Is $M_d(n)$ always at most double exponential in n?
Concluding remarks and open problems

- For 3D we have a different argument, giving a double exponential bound.
- Finding monotone subarrays is related to:
 - Finding long common monotone subsequences of permutations.
 - Ramsey type problems for vertex ordered graphs.
 - Canonical orderings of discrete structures.

Question

Is $M_2(n)$ exponential or double exponential?
Concluding remarks and open problems

- For 3D we have a different argument, giving a double exponential bound.
- Finding monotone subarrays is related to:
 - Finding long common monotone subsequences of permutations.
 - Ramsey type problems for vertex ordered graphs.
 - Canonical orderings of discrete structures.

Question

Is $M_2(n)$ exponential or double exponential?

Question

Is $M_d(n)$ always at most double exponential in n?