Towards the Erdős-Gallai Cycle Decomposition Conjecture

Matija Bucić

Institute for Advanced Study and Princeton University

joint work with Richard Montgomery
General graph decomposition question:

Walecki 1883: K_{2n+1} can be decomposed into n cycles.

Veblen 1912: Any graph with all degrees even decomposes into cycles.
General graph decomposition question:

Can we decompose a graph into few graphs with some “nice” properties?

Walecki 1883: K_{2n+1} can be decomposed into n cycles.

Veblen 1912: Any graph with all degrees even decomposes into cycles.
General graph decomposition question:

Can we decompose a graph into few graphs with some “nice” properties?

- Walecki 1883: $K_{2n} + 1$ can be decomposed into n cycles.
- Veblen 1912: Any graph with all degrees even decomposes into cycles.
Graph decomposition problems

- General graph decomposition question:

 Can we decompose a graph into few graphs with some “nice” properties?

- Walecki 1883: K_{2n+1} can be decomposed into n cycles.
- Veblen 1912: Any graph with all degrees even decomposes into cycles.
General graph decomposition question:

Can we decompose a graph into few graphs with some “nice” properties?
Graph decomposition problems

- General graph decomposition question:

 Can we decompose a graph into few graphs with some “nice” properties?

- Walecki 1883: $K_{2n} + 1$ can be decomposed into n cycles.

- Veblen 1912: Any graph with all degrees even decomposes into cycles.
Graph decomposition problems

- General graph decomposition question:
 Can we decompose a graph into few graphs with some “nice” properties?

- Walecki 1883: K_{2n+1} can be decomposed into n cycles.

Veblen 1912: Any graph with all degrees even decomposes into cycles.
Graph decomposition problems

- General graph decomposition question:
 Can we decompose a graph into few graphs with some “nice” properties?

- Walecki 1883: K_{2n+1} can be decomposed into n cycles.

Matija Bucić (IAS and Princeton)

Towards the Erdős-Gallai Cycle Decomposition Conjecture

MIT, November 2022
Graph decomposition problems

- General graph decomposition question:

 Can we decompose a graph into few graphs with some “nice” properties?

- Walecki 1883: K_{2n+1} can be decomposed into n cycles.

- Can we decompose any graph into cycles?
Graph decomposition problems

- General graph decomposition question:
 Can we decompose a graph into few graphs with some “nice” properties?

- Walecki 1883: K_{2n+1} can be decomposed into n cycles.

- Can we decompose any graph into cycles? No if \exists an odd degree vertex.
Graph decomposition problems

- General graph decomposition question:

 Can we decompose a graph into few graphs with some “nice” properties?

- Walecki 1883: \(K_{2n+1} \) can be decomposed into \(n \) cycles.

- Can we decompose any graph into cycles? No if \(\exists \) an odd degree vertex.

- Veblen 1912: Any graph with all degrees even decomposes into cycles.
Conjecture (Erdős-Gallai 1960s)

Every \(n \)-vertex graph can be decomposed into \(O(n) \) cycles and edges.

▶ Any graph with all odd degrees needs at least \(\frac{n}{2} \) edges.
▶ Gallai 1966: one needs at least \((4/3 - o(1))n\) cycles and edges.
▶ Erdős 1983: one needs at least \((3/2 - o(1))n\) cycles and edges.

Lovász 1968: True for paths in place of cycles
Pyber 1985: Precise solution for the covering version.
Conjecture (Erdős-Gallai 1960s)

Every n-vertex graph can be decomposed into $O(n)$ cycles and edges.

Conjecture

Every Eulerian n-vertex graph can be decomposed into at most $O(n)$ cycles.
Erdős-Gallai Conjecture

Conjecture (Erdős-Gallai 1960s)

Every n-vertex graph can be decomposed into $O(n)$ cycles and edges.

Conjecture (Hajós 1960s)

Every Eulerian n-vertex graph can be decomposed into at most $\lfloor n/2 \rfloor$ cycles.

Erdős-Gallai Conjecture

Conjecture (Erdős-Gallai 1960s)

Every n-vertex graph can be decomposed into $O(n)$ cycles and edges.

Tight if true.

▶ Any graph with all odd degrees needs at least $\frac{n}{2}$ edges.

▶ Gallai 1966: one needs at least $(\frac{4}{3} - o(1))n$ cycles and edges.

▶ Erdős 1983: one needs at least $(\frac{3}{2} - o(1))n$ cycles and edges.

Lovász 1968: True for paths in place of cycles

Pyber 1985: Precise solution for the covering version.
Conjecture (Erdős-Gallai 1960s)

Every n-vertex graph can be decomposed into $O(n)$ cycles and edges.

- Tight if true.
 - Any graph with all odd degrees needs at least $n/2$ edges.
Erdős-Gallai Conjecture

Conjecture (Erdős-Gallai 1960s)

Every n-vertex graph can be decomposed into $O(n)$ cycles and edges.

- Tight if true.
 - Any graph with all odd degrees needs at least $n/2$ edges.
 - Gallai 1966: one needs at least $(4/3 - o(1))n$ cycles and edges.
Conjecture (Erdős-Gallai 1960s)

Every n-vertex graph can be decomposed into $O(n)$ cycles and edges.

- Tight if true.
 - Any graph with all odd degrees needs at least $n/2$ edges.
 - Gallai 1966: one needs at least $(4/3 - o(1))n$ cycles and edges.
 - Erdős 1983: one needs at least $(3/2 - o(1))n$ cycles and edges.
Erdős-Gallai Conjecture: related work

Conjecture (Erdős-Gallai 1960s)

Every \(n \)-vertex graph can be decomposed into \(O(n) \) cycles and edges.

- Tight if true.
 - Any graph with all odd degrees needs at least \(n/2 \) edges.
 - Gallai 1966: one needs at least \((4/3 - o(1))n \) cycles and edges.
 - Erdős 1983: one needs at least \((3/2 - o(1))n \) cycles and edges.
- Lovász 1968: True for paths in place of cycles
Erdős-Gallai Conjecture: related work

Conjecture (Erdős-Gallai 1960s)

Every n-vertex graph can be decomposed into $O(n)$ cycles and edges.

- Tight if true.
 - Any graph with all odd degrees needs at least $n/2$ edges.
 - Gallai 1966: one needs at least $(4/3 - o(1))n$ cycles and edges.
 - Erdős 1983: one needs at least $(3/2 - o(1))n$ cycles and edges.

- Lovász 1968: True for paths in place of cycles
- Pyber 1985: Precise solution for the covering version.
Conjecture (Erdős-Gallai 1960s)

Every n-vertex graph can be decomposed into $O(n)$ cycles and edges.
What do we know?

Conjecture (Erdős-Gallai 1960s)

Every n-vertex graph can be decomposed into $O(n)$ cycles and edges.

- True for graphs with linear minimum degree.
- True for (quasi)random graphs.

Towards the Erdős-Gallai Cycle Decomposition Conjecture

Matija Bucić (IAS and Princeton)
What do we know?

Conjecture (Erdős-Gallai 1960s)

Every n-vertex graph can be decomposed into $O(n)$ cycles and edges.

- True for graphs with linear minimum degree.
 - Conlon, Fox, Sudakov 2013.
- True for (quasi)random graphs.
 - Conlon, Fox, Sudakov 2013.
 - Korándi, Krivelevich and Sudakov 2015: correct asymptotics.
 - Glock, Kühn and Osthus 2016: exact result.
What do we know?

Conjecture (Erdős-Gallai 1960s)

Every n-vertex graph can be decomposed into $O(n)$ cycles and edges.

- True for graphs with linear minimum degree.
 - Conlon, Fox, Sudakov 2013.
 - Girão, Granet, Kühn, and Osthus 2021: correct asymptotics.
What do we know?

Conjecture (Erdős-Gallai 1960s)

Every \(n \)-*vertex graph can be decomposed into \(O(n) \) cycles and edges.*

- True for graphs with linear minimum degree.
 - Conlon, Fox, Sudakov 2013.
 - Girão, Granet, Kühn, and Osthus 2021: correct asymptotics.

- True for (quasi)random graphs.
 - Conlon, Fox, Sudakov 2013.
 - Korándi, Krivelevich and Sudakov 2015: correct asymptotics.
 - Glock, Kühn and Osthus 2016: exact result.
What do we know?

Conjecture (Erdős-Gallai 1960s)

Every n-vertex graph can be decomposed into $O(n)$ cycles and edges.

- True for graphs with linear minimum degree.
 - Conlon, Fox, Sudakov 2013.
 - Girão, Granet, Kühn, and Osthus 2021: correct asymptotics.

- True for (quasi)random graphs.
 - Conlon, Fox, Sudakov 2013.
What do we know?

Conjecture (Erdős-Gallai 1960s)

Every n-vertex graph can be decomposed into $O(n)$ cycles and edges.

- True for graphs with linear minimum degree.
 - Conlon, Fox, Sudakov 2013.
 - Girão, Granet, Kühn, and Osthus 2021: correct asymptotics.

- True for (quasi)random graphs.
 - Conlon, Fox, Sudakov 2013.
 - Korándi, Krivelevich and Sudakov 2015: correct asymptotics.
Conjecture (Erdős-Gallai 1960s)

Every \(n \)-vertex graph can be decomposed into \(O(n) \) cycles and edges.

- True for graphs with linear minimum degree.
 - Conlon, Fox, Sudakov 2013.
 - Girão, Granet, Kühn, and Osthus 2021: correct asymptotics.

- True for (quasi)random graphs.
 - Conlon, Fox, Sudakov 2013.
 - Korándi, Krivelevich and Sudakov 2015: correct asymptotics.
 - Glock, Kühn and Osthus 2016: exact result.
Conjecture (Erdős-Gallai 1960s)

Every n-vertex graph can be decomposed into $O(n)$ cycles and edges.

- True for graphs with linear minimum degree.
- True for (quasi)random graphs.
What do we know?

Conjecture (Erdős-Gallai 1960s)

Every n-vertex graph can be decomposed into O(n) cycles and edges.

- True for graphs with linear minimum degree.
- True for (quasi)random graphs.
- Folklore: $O(n \log n)$ cycles and edges always suffice.
Conjecture (Erdős-Gallai 1960s)

Every n-vertex graph can be decomposed into $O(n)$ cycles and edges.

- True for graphs with linear minimum degree.
- True for (quasi)random graphs.
- Folklore: $O(n \log n)$ cycles and edges always suffice.
- Conlon, Fox and Sudakov: $O(n \log \log n)$ cycles and edges always suffice.
What do we know?

Conjecture (Erdős-Gallai 1960s)

Every n-vertex graph can be decomposed into $O(n)$ cycles and edges.

- True for graphs with linear minimum degree.
- True for (quasi)random graphs.
- Folklore: $O(n \log n)$ cycles and edges always suffice.
- Conlon, Fox and Sudakov: $O(n \log \log n)$ cycles and edges always suffice.

Theorem (B., Montgomery 2022+)

Any n-vertex graph can be decomposed into $O(n \log^* n)$ cycles and edges.
Theorem (Lovász, 1968)

Every \(n \)-vertex graph can be decomposed into at most \(\frac{n}{2} \) paths and cycles.

Proof:

1. Add an auxiliary vertex \(v \) and join it to all even degree vertices.
2. Lovász' Theorem gives a decomposition into paths and cycles.
3. \(n \) odd degree vertices \(\Rightarrow \) it is a path decomposition and
4. each original vertex is an endpoint of exactly one path.
5. Removing \(v \) gives the desired decomposition.
Theorem (Lovász, 1968)

Every n-vertex graph can be decomposed into at most $\frac{n}{2}$ paths and cycles.

Corollary

Every n-vertex graph can be decomposed into at most n paths in such a way that no vertex is an endpoint of more than two paths.
Theorem (Lovász, 1968)

Every n-vertex graph can be decomposed into at most $\frac{n}{2}$ paths and cycles.

Corollary

Every n-vertex graph can be decomposed into at most n paths in such a way that no vertex is an endpoint of more than two paths.

Proof:
Theorem (Lovász, 1968)

Every n-vertex graph can be decomposed into at most $\frac{n}{2}$ paths and cycles.

Corollary

Every n-vertex graph can be decomposed into at most n paths in such a way that no vertex is an endpoint of more than two paths.

Proof:

- Add an auxiliary vertex v and join it to all even degree vertices.
Theorem (Lovász, 1968)

Every n-vertex graph can be decomposed into at most $\frac{n}{2}$ paths and cycles.

Corollary

Every n-vertex graph can be decomposed into at most n paths in such a way that no vertex is an endpoint of more than two paths.

Proof:

- Add an auxiliary vertex v and join it to all even degree vertices.
- Lovász’ Theorem gives a decomposition into paths and cycles.
Theorem (Lovász, 1968)

Every n-vertex graph can be decomposed into at most $\frac{n}{2}$ paths and cycles.

Corollary

Every n-vertex graph can be decomposed into at most n paths in such a way that no vertex is an endpoint of more than two paths.

Proof:

- Add an auxiliary vertex v and join it to all even degree vertices.
- Lovász’ Theorem gives a decomposition into paths and cycles.
- n odd degree vertices \implies it is a path decomposition and
Theorem (Lovász, 1968)

Every n-vertex graph can be decomposed into at most $\frac{n}{2}$ paths and cycles.

Corollary

Every n-vertex graph can be decomposed into at most n paths in such a way that no vertex is an endpoint of more than two paths.

Proof:

- Add an auxiliary vertex v and join it to all even degree vertices.
- Lovász’ Theorem gives a decomposition into paths and cycles.
- n odd degree vertices \implies it is a path decomposition and
- each original vertex is an endpoint of exactly one path.
Theorem (Lovász, 1968)

Every n-vertex graph can be decomposed into at most $\frac{n}{2}$ paths and cycles.

Corollary

Every n-vertex graph can be decomposed into at most n paths in such a way that no vertex is an endpoint of more than two paths.

Proof:

- Add an auxiliary vertex v and join it to all even degree vertices.
- Lovász’ Theorem gives a decomposition into paths and cycles.
- n odd degree vertices \implies it is a path decomposition and
- each original vertex is an endpoint of exactly one path.
- Removing v gives the desired decomposition.
Robust sublinear expansion

Definition (Expansion)

An n-vertex graph G is a λ-expander if for all $U \subseteq V(G)$ s.t. $|U| \leq \frac{n}{2\lambda}$ we have:

$$|N(U)| > \lambda |U|.$$
Definition (Sublinear expansion)

An n-vertex graph G is a sublinear expander if $\forall U \subseteq V(G)$ s.t. $|U| \leq \frac{n}{2}$ we have:

$$|N(U)| > \frac{1}{\log^2 n} \cdot |U|$$
Definition (Robust sublinear expansion)

An \(n \)-vertex graph \(G \) is a \(d \)-robust expander if \(\forall U \subseteq V(G) : |U| \leq \frac{n}{2} \) we have

\[
1^\circ : \quad |N(U)| > d \cdot |U| \quad \text{or} \quad 2^\circ : \quad N(U) \text{ has } > \frac{|U|}{\log^2 n} \text{ vtcs with } \geq d \log^2 n \text{ neighbours in } U.
\]
Definition (Robust sublinear expansion)

An n-vertex graph G is a d-robust expander if $\forall U \subseteq V(G) : |U| \leq \frac{n}{2}$ we have

1°: $|N(U)| > d \cdot |U|$ or

2°: $N(U)$ has $> \frac{|U|}{\log^2 n}$ vtcs with $\geq d \log^2 n$ neighbours in U.

We prove a number of properties of this weaker notion of expander graphs:
Robust sublinear expansion

Definition (Robust sublinear expansion)

An n-vertex graph G is a d-robust expander if $\forall U \subseteq V(G) : |U| \leq \frac{n}{2}$ we have

1°: $|N(U)| > d \cdot |U|$ or

2°: $N(U)$ has $> \frac{|U|}{\log^2 n}$ vtcs with $\geq d \log^2 n$ neighbours in U.

We prove a number of properties of this weaker notion of expander graphs:

- An (almost) partitioning of an arbitrary graph into expanders lemma.
Robust sublinear expansion

Definition (Robust sublinear expansion)

An n-vertex graph G is a d-robust expander if $\forall U \subseteq V(G) : |U| \leq \frac{n}{2}$ we have

1°: $|N(U)| > (d + 1) \cdot |U|$ or

2°: $N(U)$ has $> \frac{|U|}{\log^2 n}$ vtcs with $\geq d \log^2 n$ neighbours in U.

We prove a number of properties of this weaker notion of expander graphs:

- An (almost) partitioning of an arbitrary graph into expanders lemma.
 - partition all but $n \log^C n$ edges into expanders H_1, \ldots, H_t
Robust sublinear expansion

Definition (Robust sublinear expansion)

An n-vertex graph G is a d-robust expander if $\forall U \subseteq V(G) : |U| \leq \frac{n}{2}$ we have

\begin{align*}
1^\circ & : |N(U)| > (d + 1) \cdot |U| \quad \text{or} \\
2^\circ & : N(U) \text{ has } > \frac{|U|}{\log^2 n} \text{ vtcs with } \geq d \log^2 n \text{ neighbours in } U.
\end{align*}

We prove a number of properties of this weaker notion of expander graphs:

- An (almost) partitioning of an arbitrary graph into expanders lemma.
 - partition all but $n \log^C n$ edges into expanders H_1, \ldots, H_t
 - such that $|H_1| + \ldots + |H_t| \leq 2n$
Robust sublinear expansion

Definition (Robust sublinear expansion)

An n-vertex graph G is a d-robust expander if $\forall U \subseteq V(G) : |U| \leq \frac{n}{2}$ we have

1°: $|N(U)| > (d + 1) \cdot |U|$ or

2°: $N(U)$ has $\geq \frac{|U|}{\log^2 n}$ verticies with $\geq d \log^2 n$ neighbours in U.

We prove a number of properties of this weaker notion of expander graphs:

- An (almost) partitioning of an arbitrary graph into expanders lemma.
- An edge-subsampling lemma.
Robust sublinear expansion

Definition (Robust sublinear expansion)

An n-vertex graph G is a d-robust expander if $\forall U \subseteq V(G) : |U| \leq \frac{n}{2}$ we have:

1°: $|N(U)| > (d + 1) \cdot |U|$ or

2°: $N(U)$ has $\geq \frac{|U|}{\log^2 n}$ vtcs with $\geq d \log^2 n$ neighbours in U.

- We prove a number of properties of this weaker notion of expander graphs:
 - An (almost) partitioning of an arbitrary graph into expanders lemma.
 - An edge-subsampling lemma.
 - Can be used to “parallelize” some of our arguments.
Robust sublinear expansion

Definition (Robust sublinear expansion)

An \(n \)-vertex graph \(G \) is a \(d \)-robust expander if \(\forall U \subseteq V(G) : |U| \leq \frac{n}{2} \) we have

1°: \[|N(U)| > (d + 1) \cdot |U| \]
or

2°: \[N(U) \text{ has } > \frac{|U|}{\log^2 n} \text{ vtcs with } \geq d \log^2 n \text{ neighbours in } U. \]

- We prove a number of properties of this weaker notion of expander graphs:
 - An (almost) partitioning of an arbitrary graph into expanders lemma.
 - An edge-subsampling lemma.
 - A very strong connectivity property

Matija Bucić (IAS and Princeton) Towards the Erdős-Gallai Cycle Decomposition Conjecture MIT, November 2022
Robust sublinear expansion

Definition (Robust sublinear expansion)

An n-vertex graph G is a d-robust expander if $\forall U \subseteq V(G) : |U| \leq \frac{n}{2}$ we have

1° : $|N(U)| > (d + 1) \cdot |U|$ or

2° : $N(U)$ has $\frac{|U|}{\log^2 n}$ vtcs with $\geq d \log^2 n$ neighbours in U.

- We prove a number of properties of this weaker notion of expander graphs:
 - An (almost) partitioning of an arbitrary graph into expanders lemma.
 - An edge-subsampling lemma.
 - A very strong connectivity property
 - We can join any collection of disjoint pairs of vtcs with short edge disjoint paths

Matija Bucić (IAS and Princeton) Towards the Erdős-Gallai Cycle Decomposition Conjecture MIT, November 2022
Definition (Robust sublinear expansion)

An n-vertex graph G is a d-robust expander if $\forall U \subseteq V(G): |U| \leq \frac{n}{2}$ we have

1°: $|N(U)| > (d + 1) \cdot |U|$ or

2°: $N(U)$ has $\frac{|U|}{\log^2 n}$ vtcs with $\geq d \log^2 n$ neighbours in U.

We prove a number of properties of this weaker notion of expander graphs:

- An (almost) partitioning of an arbitrary graph into expanders lemma.
- An edge-subsampling lemma.
- A very strong connectivity property
 - We can join any collection of disjoint pairs of vtcs with short edge disjoint paths
 - Also true if we insist paths go “through” a random subset of vtcs
Robust sublinear expansion

Definition (Robust sublinear expansion)

An n-vertex graph G is a d-robust expander if $\forall U \subseteq V(G) : |U| \leq \frac{n}{2}$ we have

1°: $|N(U)| > (d + 1) \cdot |U|$ or

2°: $N(U)$ has $\frac{|U|}{\log^2 n}$ vtcs with $\geq d \log^2 n$ neighbours in U.

We prove a number of properties of this weaker notion of expander graphs:

- An (almost) partitioning of an arbitrary graph into expanders lemma.
- An edge-subsampling lemma.
- A very strong connectivity property
 - We can join any collection of disjoint pairs of vtcs with short edge disjoint paths
 - Also true if we insist paths go “through” a random subset of vtcs
- Existence of an expanding “skeleton”.
Robust sublinear expansion

Definition (Robust sublinear expansion)

An n-vertex graph G is a d-robust expander if $\forall U \subseteq V(G): |U| \leq \frac{n}{2}$ we have

1°: $|N(U)| > (d + 1) \cdot |U|$ or

2°: $N(U)$ has $\frac{|U|}{\log^2 n}$ vtcs with $\geq d \log^2 n$ neighbours in U.

- We prove a number of properties of this weaker notion of expander graphs:
 - An (almost) partitioning of an arbitrary graph into expanders lemma.
 - An edge-subsampling lemma.
 - A very strong connectivity property even under vertex subsampling.
 - Existence of an expanding “skeleton”.

Matija Bucić (IAS and Princeton) Towards the Erdős-Gallai Cycle Decomposition Conjecture MIT, November 2022
Theorem (B., Montgomery 2022+)

Any n-vertex graph H can be decomposed into $6n$ cycles and $O(n \log^C n)$ edges.

Proof sketch.

Step 1: Set aside an expanding skeleton A of H.

Step 2: Decompose $H-A$ into paths using the corollary to Lovász' theorem.

Step 3: Use short paths in A to close the paths into cycles.

Step 4: Split A into expanding skeletons A_1, A_2, A_3.

Partition $V(H)$ into V_1, V_2, V_3.

Decompose $H-A$ into H_1, H_2, H_3.

Matija Bucić (IAS and Princeton) Towards the Erdős-Gallai Cycle Decomposition Conjecture MIT, November 2022
Proof sketch.

Theorem (B., Montgomery 2022+)

Any n-vertex graph H can be decomposed into $6n$ cycles and $O(n \log^C n)$ edges.

Proof:

Step 1: Set aside an expanding skeleton A of H.

Step 2: Decompose $H - A$ into paths using the corollary to Lovász' theorem.

Step 3: Use short paths in A to close the paths into cycles.

Split A into expanding skeletons A_1, A_2, A_3.

Partition $V(H)$ into V_1, V_2, V_3 u.a.r.

Decompose $H - A$ into H_1, H_2, H_3.

Matija Bucić (IAS and Princeton)
Towards the Erdős-Gallai Cycle Decomposition Conjecture
MIT, November 2022
Proof sketch.

Theorem (B., Montgomery 2022+)

Any n-vertex graph H can be decomposed into $6n$ cycles and $O(n \log^C n)$ edges.

Proof:

- Step 1: Reduce the proof to the case of H being a robust expander by...
Proof sketch.

Theorem (B., Montgomery 2022+)

Any n-vertex graph H can be decomposed into $6n$ cycles and $O(n \log^C n)$ edges.

Proof:

- Step 1: Reduce the proof to the case of H being a robust expander by
 - Decomposing all but $O(n \log^C n)$ edges into expanders H_1, \ldots, H_t s.t.

 $$|H_1| + \ldots + |H_t| \leq 2n$$

- Step 2: Set aside an expanding skeleton A of H.

- Step 3: Decompose $H - A$ into paths using the corollary to Lovász' theorem.

- Step 4: Use short paths in A to close the paths into cycles.

Split A into expanding skeletons A_1, A_2, A_3.

Partition $V(H)$ into V_1, V_2, V_3 u.a.r.

Decompose $H - A$ into H_1, H_2, H_3.
Proof sketch.

Theorem (B., Montgomery 2022+)

Any n-vertex graph H can be decomposed into $6n$ cycles and $O(n \log^C n)$ edges.

Proof:

- **Step 1:** Reduce the proof to the case of H being a robust expander by
 - Decomposing all but $O(n \log^C n)$ edges into expanders H_1, \ldots, H_t s.t.
 \[|H_1| + \ldots + |H_t| \leq 2n \]
 - Apply the theorem to each H_i to get a decomposition into
Proof sketch.

Theorem (B., Montgomery 2022+)

Any n-vertex graph H can be decomposed into $6n$ cycles and $O(n \log^C n)$ edges.

Proof:

- **Step 1:** Reduce the proof to the case of H being a robust expander by
 - Decomposing all but $O(n \log^C n)$ edges into expanders H_1, \ldots, H_t s.t.
 $$|H_1| + \ldots + |H_t| \leq 2n$$
 - Apply the theorem to each H_i to get a decomposition into
 $$3|H_1| + \ldots + 3|H_t| \leq 6n$$
 cycles and
Proof sketch.

Theorem (B., Montgomery 2022+)

Any n-vertex graph H can be decomposed into $6n$ cycles and $O(n \log^C n)$ edges.

Proof:

- **Step 1:** Reduce the proof to the case of H being a robust expander by
 - Decomposing all but $O(n \log^C n)$ edges into expanders H_1, \ldots, H_t s.t.

 \[|H_1| + \ldots + |H_t| \leq 2n \]

 - Apply the theorem to each H_i to get a decomposition into

 \[3|H_1| + \ldots + 3|H_t| \leq 6n \quad \text{cycles and} \]

 \[O(|H_1| \log^C |H_1|) + \ldots + O(|H_t| \log^C |H_t|) \leq O(n \log^C n) \quad \text{edges.} \]
Proof sketch.

Theorem (B., Montgomery 2022+)

Any n-vertex graph H can be decomposed into $6n$ cycles and $O(n \log^C n)$ edges.

Proof:

1. Step 1: Assume H is a robust sublinear expander.
Proof sketch.

Theorem (B., Montgomery 2022+)

Any n-vertex graph H can be decomposed into $6n$ cycles and $O(n \log^C n)$ edges.

Proof:

- **Step 1:** Assume H is a robust sublinear expander.
- **Step 2:** Set aside an expanding skeleton A of H.

![Graph $H - A$]
Proof sketch.

Theorem (B., Montgomery 2022+)

Any n-vertex graph H can be decomposed into $6n$ cycles and $O(n \log^C n)$ edges.

Proof:

- Step 1: Assume H is a robust sublinear expander.
- Step 2: Set aside an expanding skeleton A of H.
- Step 3: Decompose $H - A$ into paths using the corollary to Lovász’ theorem.
Proof sketch.

**Theorem (B., Montgomery 2022+)

Any n-vertex graph H can be decomposed into $6n$ cycles and $O(n \log^C n)$ edges.

Proof:

- **Step 1:** Assume H is a robust sublinear expander.
- **Step 2:** Set aside an expanding skeleton A of H.
- **Step 3:** Decompose $H - A$ into paths using the corollary to Lovász’ theorem.
Theorem (B., Montgomery 2022+)

Any n-vertex graph H can be decomposed into $6n$ cycles and $O(n \log^{C} n)$ edges.

Proof:

- Step 1: Assume H is a robust sublinear expander.
- Step 2: Set aside an expanding skeleton A of H.
- Step 3: Decompose $H - A$ into paths using the corollary to Lovász’ theorem.
- Step 4: Use short paths in A to close the paths into cycles.
Theorem (B., Montgomery 2022+)

Any n-vertex graph H can be decomposed into $6n$ cycles and $O(n \log^C n)$ edges.

Proof:

- Step 1: Assume H is a robust sublinear expander.
- Step 2: Set aside an expanding skeleton A of H.
- Step 3: Decompose $H - A$ into paths using the corollary to Lovász’ theorem.
- Step 4: Use short paths in A to close the paths into cycles.
Proof sketch.

Theorem (B., Montgomery 2022+)

Any \(n \)-vertex graph \(H \) can be decomposed into \(6n \) cycles and \(O(n \log^C n) \) edges.

Proof:

- **Step 1:** Assume \(H \) is a robust sublinear expander.
- **Step 2:** Set aside an expanding skeleton \(A \) of \(H \).
- **Step 3:** Decompose \(H - A \) into paths using the corollary to Lovász’ theorem.
- **Step 4:** Use short paths in \(A \) to close the paths into cycles.

Split \(A \) into expanding skeletons \(A_1, A_2, A_3 \)
Proof sketch.

Theorem (B., Montgomery 2022+)

Any n-*vertex graph* H *can be decomposed into* $6n$ *cycles and* $O(n \log^C n)$ *edges.*

Proof:

- **Step 1:** Assume H is a robust sublinear expander.
- **Step 2:** Set aside an expanding skeleton A of H.
- **Step 3:** Decompose $H - A$ into paths using the corollary to Lovász’ theorem.
- **Step 4:** Use short paths in A to close the paths into cycles.

- **Split** A into expanding skeletons A_1, A_2, A_3
Proof sketch.

Theorem (B., Montgomery 2022+)

Any n-vertex graph H can be decomposed into $6n$ cycles and $O(n \log^C n)$ edges.

Proof:

- Step 1: Assume H is a robust sublinear expander.
- Step 2: Set aside an expanding skeleton A of H.
- Step 3: Decompose $H - A$ into paths using the corollary to Lovász’ theorem.
- Step 4: Use short paths in A to close the paths into cycles.

Split A into expanding skeletons A_1, A_2, A_3
Proof sketch.

Theorem (B., Montgomery 2022+)

Any n-vertex graph H can be decomposed into $6n$ cycles and $O(n \log^C n)$ edges.

Proof:

1. Step 1: Assume H is a robust sublinear expander.
2. Step 2: Set aside an expanding skeleton A of H.
3. Step 3: Decompose $H - A$ into paths using the corollary to Lovász’ theorem.
4. Step 4: Use short paths in A to close the paths into cycles.

- Split A into expanding skeletons A_1, A_2, A_3
Proof sketch.

Theorem (B., Montgomery 2022+)

Any n-vertex graph H can be decomposed into $6n$ cycles and $O(n \log^C n)$ edges.

Proof:

- Step 1: Assume H is a robust sublinear expander.
- Step 2: Set aside an expanding skeleton A of H.
- Step 3: Decompose $H - A$ into paths using the corollary to Lovász’ theorem.
- Step 4: Use short paths in A to close the paths into cycles.

H - A

Split A into expanding skeletons A_1, A_2, A_3
Proof sketch.

Theorem (B., Montgomery 2022+)

Any n-vertex graph H can be decomposed into $6n$ cycles and $O(n \log^C n)$ edges.

Proof:

- **Step 1:** Assume H is a robust sublinear expander.
- **Step 2:** Set aside an expanding skeleton A of H.
- **Step 3:** Decompose $H - A$ into paths using the corollary to Lovász’ theorem.
- **Step 4:** Use short paths in A to close the paths into cycles.

- Split A into expanding skeletons A_1, A_2, A_3
- Partition $V(H)$ into V_1, V_2, V_3 u.a.r.
Proof sketch.

Theorem (B., Montgomery 2022+)

Any n-vertex graph H *can be decomposed into* $6n$ *cycles and* $O(n \log^C n)$ *edges.*

Proof:

- **Step 1:** Assume H is a robust sublinear expander.
- **Step 2:** Set aside an expanding skeleton A of H.
- **Step 3:** Decompose $H - A$ into paths using the corollary to Lovász’ theorem.
- **Step 4:** Use short paths in A to close the paths into cycles.

- Split A into expanding skeletons A_1, A_2, A_3
- Partition $V(H)$ into V_1, V_2, V_3 u.a.r.
Proof sketch.

Theorem (B., Montgomery 2022+)

Any n-vertex graph H can be decomposed into $6n$ cycles and $O(n \log^C n)$ edges.

Proof:

- Step 1: Assume H is a robust sublinear expander.
- Step 2: Set aside an expanding skeleton A of H.
- Step 3: Decompose $H - A$ into paths using the corollary to Lovász’ theorem.
- Step 4: Use short paths in A to close the paths into cycles.

- Split A into expanding skeletons A_1, A_2, A_3
- Partition $V(H)$ into V_1, V_2, V_3 u.a.r.
- Decompose $H - A$ into H_1, H_2, H_3
Proof sketch.

Theorem (B., Montgomery 2022+)

Any n-vertex graph H can be decomposed into $6n$ cycles and $O(n \log^C n)$ edges.

Proof:

- Step 1: Assume H is a robust sublinear expander.
- Step 2: Set aside an expanding skeleton A of H.
- Step 3: Decompose $H - A$ into paths using the corollary to Lovász’ theorem.
- Step 4: Use short paths in A to close the paths into cycles.

- Split A into expanding skeletons A_1, A_2, A_3
- Partition $V(H)$ into V_1, V_2, V_3 u.a.r.
- Decompose $H - A$ into H_1, H_2, H_3
Proof sketch.

Theorem (B., Montgomery 2022+)

Any n-vertex graph H can be decomposed into $6n$ cycles and $O(n \log^C n)$ edges.

Proof:

- Step 1: Assume H is a robust sublinear expander.
- Step 2: Set aside an expanding skeleton A of H.
- Step 3: Decompose $H - A$ into paths using the corollary to Lovász’ theorem.
- Step 4: Use short paths in A to close the paths into cycles.

Split A into expanding skeletons A_1, A_2, A_3.

Partition $V(H)$ into V_1, V_2, V_3 u.a.r.

Decompose $H - A$ into H_1, H_2, H_3.
Proof sketch.

Theorem (B., Montgomery 2022+)

Any n-vertex graph H can be decomposed into $6n$ cycles and $O(n \log^C n)$ edges.

Proof:

- **Step 1:** Assume H is a robust sublinear expander.
- **Step 2:** Set aside an expanding skeleton A of H.
- **Step 3:** Decompose $H - A$ into paths using the corollary to Lovász’ theorem.
- **Step 4:** Use short paths in A to close the paths into cycles.

- Split A into expanding skeletons A_1, A_2, A_3.
- Partition $V(H)$ into V_1, V_2, V_3 u.a.r.
- Decompose $H - A$ into H_1, H_2, H_3.
Proof sketch.

Theorem (B., Montgomery 2022+)

Any n-vertex graph H can be decomposed into $6n$ cycles and $O(n \log^C n)$ edges.

Proof:

- Step 1: Assume H is a robust sublinear expander.
- Step 2: Set aside an expanding skeleton A of H.
- Step 3: Decompose $H - A$ into paths using the corollary to Lovász’ theorem.
- Step 4: Use short paths in A to close the paths into cycles.

Split A into expanding skeletons A_1, A_2, A_3

Partition $V(H)$ into V_1, V_2, V_3 u.a.r.

Decompose $H - A$ into H_1, H_2, H_3
Proof sketch.

Theorem (B., Montgomery 2022+)

Any n-vertex graph H can be decomposed into $6n$ cycles and $O(n \log^C n)$ edges.

Proof:

- **Step 1:** Assume H is a robust sublinear expander.
- **Step 2:** Set aside an expanding skeleton A of H.
- **Step 3:** Decompose $H - A$ into paths using the corollary to Lovász’ theorem.
- **Step 4:** Use short paths in A to close the paths into cycles.

\[
\begin{array}{c}
V_1 \\
H - A \\
V_2 \\
V_3
\end{array}
\]

- Split A into expanding skeletons A_1, A_2, A_3
- Partition $V(H)$ into V_1, V_2, V_3 u.a.r.
- Decompose $H - A$ into H_1, H_2, H_3
Theorem (B., Montgomery 2022+)

Any \(n \)-vertex graph \(H \) can be decomposed into \(6n \) cycles and \(O(n \log^C n) \) edges.

Proof:

- Step 1: Assume \(H \) is a robust sublinear expander.
- Step 2: Set aside an expanding skeleton \(A \) of \(H \).
- Step 3: Decompose \(H - A \) into paths using the corollary to Lovász’ theorem.
- Step 4: Use short paths in \(A \) to close the paths into cycles.

- Split \(A \) into expanding skeletons \(A_1, A_2, A_3 \)
- Partition \(V(H) \) into \(V_1, V_2, V_3 \) u.a.r.
- Decompose \(H - A \) into \(H_1, H_2, H_3 \)
Theorem 1

Any n-vertex graph can be decomposed into $6n$ cycles and $O(n \log^C n)$ edges.
Theorem 1

Any n-vertex graph can be decomposed into $6n$ cycles and $O(n \log^C n)$ edges.

Theorem 2

Any n-vertex graph with average degree d can be decomposed into $13n$ cycles and $O(n \log^C d)$ edges.
Theorem 1

Any n-vertex graph can be decomposed into $6n$ cycles and $O(n \log^C n)$ edges.

Theorem 2

Any n-vertex graph with average degree d can be decomposed into $13n$ cycles and $O(n \log^C d)$ edges.

- Step 1: Remove any cycle of length $\geq d$.
Theorem 1

Any n-vertex graph can be decomposed into $6n$ cycles and $O(n \log^C n)$ edges.

Theorem 2

Any n-vertex graph with average degree d can be decomposed into $13n$ cycles and $O(n \log^C d)$ edges.

- Step 1: Remove any cycle of length $\geq d$.
 - removes at most n cycles.
Theorem 1

Any n-vertex graph can be decomposed into $6n$ cycles and $O(n \log^C n)$ edges.

Theorem 2

Any n-vertex graph with average degree d can be decomposed into $13n$ cycles and $O(n \log^C d)$ edges.

- Step 1: Remove any cycle of length $\geq d$.
 - removes at most n cycles.
- Step 2: **Fully** decompose the remainder into sublinear expanders H_1, \ldots, H_t.
Theorem 1

Any n-vertex graph can be decomposed into $6n$ cycles and $O(n \log^C n)$ edges.

Theorem 2

Any n-vertex graph with average degree d can be decomposed into $13n$ cycles and $O(n \log^C d)$ edges.

- **Step 1:** Remove any cycle of length $\geq d$.
 - removes at most n cycles.
- **Step 2:** **Fully** decompose the remainder into sublinear expanders H_1, \ldots, H_t.
 - $|H_1| + \ldots + |H_t| \leq 2n$
Theorem 1

Any n-vertex graph can be decomposed into $6n$ cycles and $O(n \log^C n)$ edges.

Theorem 2

Any n-vertex graph with average degree d can be decomposed into $13n$ cycles and $O(n \log^C d)$ edges.

- **Step 1:** Remove any cycle of length $\geq d$.
 - Removes at most n cycles.

- **Step 2:** **Fully** decompose the remainder into sublinear expanders H_1, \ldots, H_t.
 - $|H_1| + \ldots + |H_t| \leq 2n$
 - $\forall i \ |H_i| \leq d \log^4 d$
Iteration.

Theorem 1

Any n-vertex graph can be decomposed into $6n$ cycles and $O(n \log^C n)$ edges.

Theorem 2

Any n-vertex graph with average degree d can be decomposed into $13n$ cycles and $O(n \log^C d)$ edges.

- **Step 1:** Remove any cycle of length $\geq d$.
 - Removes at most n cycles.
- **Step 2:** **Fully** decompose the remainder into sublinear expanders H_1, \ldots, H_t.
 - $|H_1| + \ldots + |H_t| \leq 2n$
 - $\forall i \ |H_i| \leq d \log^4 d$
 - Use Theorem 1 to decompose each H_i to get a decomposition into at most:

 $6|H_1| + \ldots + 6|H_t| \leq 12n$ cycles and

 $\sum O(|H_i| \log^C |H_i|) \leq \sum O(|H_i| \log^C d) \leq O(n \log^C d)$ edges.
Concluding remarks

Theorem

Any n-vertex graph of average degree d can be decomposed into $O(n)$ cycles and $O(n \log^{O(1)} d)$ edges.

Conjecture (Erdős-Gallai, 1960s)

Every n-vertex graph can be decomposed into $O(n)$ cycles and edges.
Concluding remarks

Theorem

Any \(n \)-vertex graph of average degree \(d \) can be decomposed into \(O(n) \) cycles and \(O(n \log^{O(1)} d) \) edges.

Theorem

For any constant \(k \) any \(n \)-vertex graph of average degree \(d \) can be decomposed into \(O(kn) \) cycles and \(O(n \log \log \ldots \log d) \) edges.

\(k \)
Theorem
Any n-vertex graph of average degree d can be decomposed into $O(n)$ cycles and $O(n \log^{O(1)} d)$ edges.

Theorem
For any constant k any n-vertex graph of average degree d can be decomposed into $O(kn)$ cycles and $O(n \log \log \ldots \log d)$ edges.

Theorem
Any n-vertex graph of average degree d can be decomposed into $O(n \log^* d)$ cycles and edges.
Concluding remarks

Theorem

Any n-vertex graph of average degree d can be decomposed into $O(n)$ cycles and $O(n \log^{O(1)} d)$ edges.

Theorem

For any constant k any n-vertex graph of average degree d can be decomposed into $O(kn)$ cycles and $O(n \log \log \ldots \log d)$ edges.

Theorem

Any n-vertex graph of average degree d can be decomposed into $O(n \log^* d)$ cycles and edges.

Conjecture (Erdős-Gallai, 1960s)

Every n-vertex graph can be decomposed into $O(n)$ cycles and edges.
Thank you