Unit and distinct distances in typical norms

Matija Bucić

Institute for Advanced Study and Princeton University
based on joint work with Noga Alon and Lisa Sauermann

Erdős unit distance problem

Question (Erdős, 1946)

What is the maximum number of unit distances defined by n points in $\left(\mathbb{R}^{2},\|\cdot\|_{2}\right)$?

Erdős unit distance problem

Question (Erdős, 1946)

What is the maximum number of unit distances defined by n points in $\left(\mathbb{R}^{2},\|\cdot\|_{2}\right)$?
Let $U_{\|\cdot\|_{2}}(n)$ denote the answer.

Erdős unit distance problem

Question (Erdős, 1946)

What is the maximum number of unit distances defined by n points in $\left(\mathbb{R}^{2},\|\cdot\|_{2}\right)$?
Let $U_{\| \| \cdot \|_{2}}(n)$ denote the answer.

$$
U_{\|\mid \cdot\|_{2}}(n) \underbrace{\leq O\left(n^{4 / 3}\right)}_{\text {Spencer, Szemerédi, Trotter '84 }}
$$

Erdős unit distance problem

Question (Erdős, 1946)

What is the maximum number of unit distances defined by n points in $\left(\mathbb{R}^{2},\|\cdot\|_{2}\right)$?
Let $U_{\| \| \cdot \|_{2}}(n)$ denote the answer.

$$
\underbrace{\Omega\left(n^{1+\frac{1}{\log \log n}}\right) \leq}_{\text {Erdős '46 }} \quad U_{\|\cdot\|_{2}}(n) \underbrace{\leq O\left(n^{4 / 3}\right)}_{\text {Spencer, Szemerédi, Trotter '84 }}
$$

Erdős unit distance problem

Question (Erdős, 1946)

What is the maximum number of unit distances defined by n points in $\left(\mathbb{R}^{2},\|\cdot\|_{2}\right)$?
Let $U_{\| \| \cdot \|_{2}}(n)$ denote the answer.

In 2D:

$$
\underbrace{\Omega\left(n^{1+\frac{1}{\log \log n}}\right) \leq}_{\text {Erdős '46 }} U_{\|\cdot\|_{2}(n)}^{\text {Spencer, Szemerédi, Trotter '84 }}
$$

Erdős unit distance problem

Question (Erdős, 1946)

What is the maximum number of unit distances defined by n points in $\left(\mathbb{R}^{d},\|\cdot\|_{2}\right)$?
Let $U_{\| \| \cdot \|_{2}}(n)$ denote the answer.

In 2D:

Erdős unit distance problem

Question (Erdős, 1946)

What is the maximum number of unit distances defined by n points in $\left(\mathbb{R}^{d},\|\cdot\|_{2}\right)$?
Let $U_{\| \| \cdot \|_{2}}(n)$ denote the answer.

In 2D:

$U_{\|\cdot\|_{2}}(n) \underbrace{\leq O\left(n^{4 / 3}\right)}_{\text {Spencer, Szemerédi, Trotter '84 }}$

In 3D:

$$
U_{\|\cdot\|_{2}}(n) \quad \underbrace{\leq O\left(n^{3 / 2-\varepsilon}\right)}_{\text {Zahl }{ }^{\prime} 19}
$$

Erdős unit distance problem

Question (Erdős, 1946)

What is the maximum number of unit distances defined by n points in $\left(\mathbb{R}^{d},\|\cdot\|_{2}\right)$?
Let $U_{\| \| \cdot \|_{2}}(n)$ denote the answer.

In 2D:

$U_{\|\cdot\|_{2}}(n) \underbrace{\leq O\left(n^{4 / 3}\right)}_{\text {Spencer, Szemerédi, Trotter '84 }}$

In 3D:

$$
\underbrace{n^{4 / 3+o(1)} \leq}_{\text {Erdö́s '60 }} U_{\|\cdot\|_{2} 2}(n) \quad \underbrace{\leq O\left(n^{3 / 2-\varepsilon}\right)}_{\text {Zahl '19 }}
$$

Erdős unit distance problem

Question (Erdős, 1946)

What is the maximum number of unit distances defined by n points in $\left(\mathbb{R}^{d},\|\cdot\|_{2}\right)$?
Let $U_{\| \| \cdot \|_{2}}(n)$ denote the answer.

In 2D:

$$
\underbrace{\Omega\left(n^{1+\frac{1}{\log \log n}}\right) \leq}_{\text {Erdós '46 }} \quad U_{\|\cdot\|_{2}}(n) \underbrace{\leq O\left(n^{4 / 3}\right)}_{\text {Spencer, Szemerédi, Trotter '84 }}
$$

In 3D:

$$
\underbrace{n^{4 / 3+o(1)} \leq \quad U_{\|\cdot\|_{2}}(n) \quad \underbrace{\leq O\left(n^{3 / 2-\varepsilon}\right)}_{\text {Zahl '19 }}, ~}_{\text {Erdós '60 }}
$$

In 4 and more D:

$$
U_{\|\cdot\|_{2}}(n)=\Theta\left(n^{2}\right)
$$

General normed spaces

Question (Erdős, Ulam 1980)

What is the max number $U_{\|\mid\|}(n)$ of unit distances defined by n points in $\left(\mathbb{R}^{d},\|\|.\right)$?

General normed spaces

Question (Erdős, Ulam 1980)

What is the max number $U_{\|\cdot\| \|}(n)$ of unit distances defined by n points in $\left(\mathbb{R}^{d},\|\|.\right)$?

- Erdős 1980: $U_{\ell_{1}}(n)=(1+o(1)) \cdot \frac{n^{2}}{4}$ in \mathbb{R}^{2}.

General normed spaces

Question (Erdős, Ulam 1980)

What is the max number $U_{\|\cdot\|}(n)$ of unit distances defined by n points in $\left(\mathbb{R}^{d},\|\|.\right)$?

- Erdős 1980: $U_{\ell_{1}}(n)=(1+o(1)) \cdot \frac{n^{2}}{4}$ in \mathbb{R}^{2}.
- Brass 1996: $U_{||\cdot||}(n)=(1+o(1)) \cdot \frac{n^{2}}{4}$ for any not strictly convex \mathbb{R}^{2} norm ||.||

General normed spaces

Question (Erdős, Ulam 1980)

What is the max number $U_{\||\cdot| \mid}(n)$ of unit distances defined by n points in $\left(\mathbb{R}^{d},\|\|.\right)$?

- Erdős 1980: $U_{\ell_{1}}(n)=(1+o(1)) \cdot \frac{n^{2}}{4}$ in \mathbb{R}^{2}.
- Brass 1996: $U_{\| \cdot| |}(n)=(1+o(1)) \cdot \frac{n^{2}}{4}$ for any $\underbrace{\text { not strictly convex } \mathbb{R}^{2} \text { norm }}_{\text {has line segment in unit sphere }}\|\cdot\|$

General normed spaces

Question (Erdős, Ulam 1980)

What is the max number $U_{\||\||}(n)$ of unit distances defined by n points in $\left(\mathbb{R}^{d},\|\|.\right)$?

- Erdős 1980: $U_{\ell_{1}}(n)=(1+o(1)) \cdot \frac{n^{2}}{4}$ in \mathbb{R}^{2}.
- Brass 1996: $U_{\|\cdot\| \|}(n)=(1+o(1)) \cdot \frac{n^{2}}{4}$ for any $\underbrace{\text { not strictly convex } \mathbb{R}^{2} \text { norm }}_{\text {has line segment in unit sphere }}\|\cdot\|$
- Brass conjectured that ℓ_{∞} maximizes $U_{||\cdot||}(n)$ among \mathbb{R}^{d} norms $\| .| |$.

General normed spaces

Question (Erdős, Ulam 1980)

What is the max number $U_{\||\cdot| \mid}(n)$ of unit distances defined by n points in $\left(\mathbb{R}^{d},\|\|.\right)$?

- Erdős 1980: $U_{\ell_{1}}(n)=(1+o(1)) \cdot \frac{n^{2}}{4}$ in \mathbb{R}^{2}.
- Brass 1996: $U_{\|\cdot\| \|}(n)=(1+o(1)) \cdot \frac{n^{2}}{4}$ for any $\underbrace{\text { not strictly convex } \mathbb{R}^{2} \text { norm }}_{\text {has line segment in unit sphere }}\|\cdot\|$
- Brass conjectured that ℓ_{∞} maximizes $U_{\||| |}(n)$ among \mathbb{R}^{d} norms $\| .| |$.
- Swanepoel 2018: - $U_{\|\cdot\| \|}(n) \leq(1+o(1)) \cdot\left(1-2^{1-d}\right) \cdot \frac{n^{2}}{2}$ for any \mathbb{R}^{d}-norm $\|\cdot\|$
- Tight for ℓ_{∞} norm in \mathbb{R}^{d}

General normed spaces

Question (Erdős, Ulam 1980)

What is the max number $U_{\||\cdot| \mid}(n)$ of unit distances defined by n points in $\left(\mathbb{R}^{d},\|\|.\right)$?

- Erdős 1980: $U_{\ell_{1}}(n)=(1+o(1)) \cdot \frac{n^{2}}{4}$ in \mathbb{R}^{2}.
- Brass 1996: $U_{\||\cdot| \mid}(n)=(1+o(1)) \cdot \frac{n^{2}}{4}$ for any $\underbrace{\text { not strictly convex } \mathbb{R}^{2} \text { norm }}_{\text {has line segment in unit sphere }}\|\cdot\|$
- Brass conjectured that ℓ_{∞} maximizes $U_{\||| |}(n)$ among \mathbb{R}^{d} norms $\|\| \mid$. .
- Swanepoel 2018: - $U_{\|\cdot\| \|}(n) \leq(1+o(1)) \cdot\left(1-2^{1-d}\right) \cdot \frac{n^{2}}{2}$ for any \mathbb{R}^{d}-norm $\|\cdot\|$
- Tight for ℓ_{∞} norm in \mathbb{R}^{d}
- Klee 1959: "Most" norms on \mathbb{R}^{d} are strictly convex.

Maximization problem among strictly convex norms

Question (Erdős, Ulam 1980)

What is the max number $U_{\||\cdot| \mid}(n)$ of unit distances defined by n points in $\left(\mathbb{R}^{d},\|\|.\right)$?

- Klee 1959: "Most" norms on \mathbb{R}^{d} are strictly convex.

Question (Erdős, Ulam 1980)

What is the max number $U_{\|\cdot\| \mid}(n)$ of unit distances defined by n points in $\left(\mathbb{R}^{d},\|\|.\right)$?

- Klee 1959: "Most" norms on \mathbb{R}^{d} are strictly convex.
- $U_{\|\cdot\| \mid}(n) \leq O\left(n^{4 / 3}\right)$ for any strictly convex \mathbb{R}^{2} norm $\|$.

Maximization problem among strictly convex norms

Question (Erdős, Ulam 1980)

What is the max number $U_{\||\||}(n)$ of unit distances defined by n points in $\left(\mathbb{R}^{d},\|\|.\right)$?

- Klee 1959: "Most" norms on \mathbb{R}^{d} are strictly convex.
- $U_{\|\cdot\| \mid}(n) \leq O\left(n^{4 / 3}\right)$ for any strictly convex \mathbb{R}^{2} norm $\| .| |$
- Brass; Valtr; Solymosi, Szabó: \exists an \mathbb{R}^{2} norm with $U_{\| .| |}(n)=\Theta\left(n^{4 / 3}\right)$

Maximization problem among strictly convex norms

Question (Erdős, Ulam 1980)

What is the max number $U_{\||\||}(n)$ of unit distances defined by n points in $\left(\mathbb{R}^{d},\|\|.\right)$?

- Klee 1959: "Most" norms on \mathbb{R}^{d} are strictly convex.
- $U_{\|\cdot\| \mid}(n) \leq O\left(n^{4 / 3}\right)$ for any strictly convex \mathbb{R}^{2} norm $\| .| |$
- Brass; Valtr; Solymosi, Szabó: \exists an \mathbb{R}^{2} norm with $U_{\| .| |}(n)=\Theta\left(n^{4 / 3}\right)$
- Zahl: \exists an \mathbb{R}^{3} norm with $U_{\| \cdot| |}(n)=\Theta\left(n^{3 / 2}\right)$

Typical normed spaces

Question (Erdős, Ulam 1980)

What is the max number $U_{\|\cdot\| \|}(n)$ of unit distances defined by n points in $\left(\mathbb{R}^{d},\|\cdot\|\right)$?

Typical normed spaces

Question (Erdős, Ulam 1980)

What is the max number $U_{\|\cdot\| \mid}(n)$ of unit distances defined by n points in $\left(\mathbb{R}^{d},\|\cdot\|\right)$?

- Folklore: for any norm $U_{\|\cdot\|}(n) \geq\left(\frac{1}{2}-o(1)\right) n \log _{2} n$.

Question (Erdős, Ulam 1980)

What is the max number $U_{\||\cdot| \mid}(n)$ of unit distances defined by n points in $\left(\mathbb{R}^{d},\|\|.\right)$?

- Folklore: for any norm $U_{\|\cdot\|}(n) \geq\left(\frac{1}{2}-o(1)\right) n \log _{2} n$.
- Let $n=2^{k}$

Question (Erdős, Ulam 1980)

What is the max number $U_{\|\cdot\| \|}(n)$ of unit distances defined by n points in $\left(\mathbb{R}^{d},\|\|.\right)$?

- Folklore: for any norm $U_{\|\cdot\|}(n) \geq\left(\frac{1}{2}-o(1)\right) n \log _{2} n$.
- Let $n=2^{k}$
- Choose k non-parallel unit vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$

Question (Erdős, Ulam 1980)

What is the max number $U_{\|\cdot\| \mid}(n)$ of unit distances defined by n points in $\left(\mathbb{R}^{d},\|\cdot\|\right)$?

- Folklore: for any norm $U_{\|\cdot\|}(n) \geq\left(\frac{1}{2}-o(1)\right) n \log _{2} n$.
- Let $n=2^{k}$
- Choose k non-parallel unit vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$
- Take as the point set $\left\{\sum_{i \in S} \mathbf{v}_{i} \mid S \subseteq[k]\right\}$

Typical normed spaces

Question (Erdős, Ulam 1980)

What is the max number $U_{\|\cdot\| \mid}(n)$ of unit distances defined by n points in $\left(\mathbb{R}^{d},\|\|.\right)$?

- Folklore: for any norm $U_{\|\cdot\|}(n) \geq\left(\frac{1}{2}-o(1)\right) n \log _{2} n$.
- Brass 1996: Is there an \mathbb{R}^{2}-norm for which $U_{\|\cdot\|}(n)=\Theta(n \log n)$?

Typical normed spaces

Question (Erdős, Ulam 1980)

What is the max number $U_{\|\cdot\| \mid}(n)$ of unit distances defined by n points in $\left(\mathbb{R}^{d},\|\|.\right)$?

- Folklore: for any norm $U_{\|\cdot\|}(n) \geq\left(\frac{1}{2}-o(1)\right) n \log _{2} n$.
- Brass 1996: Is there an \mathbb{R}^{2}-norm for which $U_{\|\cdot\|}(n)=\Theta(n \log n)$?
- Matoušek 2011: For "most" \mathbb{R}^{2}-norms $U_{\|\cdot\|}(n) \leq O(n \log n \log \log n)$.

Question (Erdős, Ulam 1980)

What is the max number $U_{\|\cdot\| \mid}(n)$ of unit distances defined by n points in $\left(\mathbb{R}^{d},\|\|.\right)$?

- Folklore: for any norm $U_{\|\cdot\|}(n) \geq\left(\frac{1}{2}-o(1)\right) n \log _{2} n$.
- Brass 1996: Is there an \mathbb{R}^{2}-norm for which $U_{\|\cdot\|}(n)=\Theta(n \log n)$?
- Matoušek 2011: For "most" \mathbb{R}^{2}-norms $U_{\|\cdot\|}(n) \leq O(n \log n \log \log n)$.
- Brass-Moser-Pach 2006: For $d \geq 3$ show that $\forall \mathbb{R}^{d}$-norms $U_{\|\cdot\|}(n) \gg n \log n$

Typical normed spaces

Question (Erdős, Ulam 1980)

What is the max number $U_{\|\cdot\| \mid}(n)$ of unit distances defined by n points in $\left(\mathbb{R}^{d},\|\cdot\|\right)$?

- Folklore: for any norm $U_{\|\cdot\| \mid}(n) \geq\left(\frac{1}{2}-o(1)\right) n \log _{2} n$.
- Brass 1996: Is there an \mathbb{R}^{2}-norm for which $U_{\|\cdot\|}(n)=\Theta(n \log n)$?
- Matoušek 2011: For "most" \mathbb{R}^{2}-norms $U_{\|\cdot\|}(n) \leq O(n \log n \log \log n)$.
- Brass-Moser-Pach 2006: For $d \geq 3$ show that $\forall \mathbb{R}^{d}$-norms $U_{\|\mid\|}(n) \gg n \log n$ For $d \geq 4$ is there an \mathbb{R}^{d}-norm s.t. $U_{\|\cdot\|}(n)=o\left(n^{2}\right)$?

Typical normed spaces

Question (Erdős, Ulam 1980)

What is the max number $U_{\|\cdot\| \mid}(n)$ of unit distances defined by n points in $\left(\mathbb{R}^{d},\|\|.\right)$?

- Folklore: for any norm $U_{\|\cdot\| \mid}(n) \geq\left(\frac{1}{2}-o(1)\right) n \log _{2} n$.
- Brass 1996: Is there an \mathbb{R}^{2}-norm for which $U_{\||\cdot|}(n)=\Theta(n \log n)$?
- Matoušek 2011: For "most" \mathbb{R}^{2}-norms $\quad U_{\|\cdot\|}(n) \leq O(n \log n \log \log n)$.
- Brass-Moser-Pach 2006: For $d \geq 3$ show that $\forall \mathbb{R}^{d}$-norms $U_{\|\mid\|}(n) \gg n \log n$ For $d \geq 4$ is there an \mathbb{R}^{d}-norm s.t. $U_{\|\cdot\|}(n)=o\left(n^{2}\right)$?

Theorem (Alon, B., Sauermann, 2023+)

For "most" \mathbb{R}^{d}-norms $\quad U_{\||| |}(n) \leq \frac{d}{2} \cdot n \log _{2} n$

Typical normed spaces

Question (Erdős, Ulam 1980)

What is the max number $U_{\|\cdot\| \mid}(n)$ of unit distances defined by n points in $\left(\mathbb{R}^{d},\|\cdot\|\right)$?

- Folklore: for any norm $U_{\|\cdot\|}(n) \geq\left(\frac{1}{2}-o(1)\right) n \log _{2} n$.
- Brass 1996: Is there an \mathbb{R}^{2}-norm for which $U_{\|\cdot\|}(n)=\Theta(n \log n)$?
- Matoušek 2011: For "most" \mathbb{R}^{2}-norms $\quad U_{\|\cdot\|}(n) \leq O(n \log n \log \log n)$.
- Brass-Moser-Pach 2006: For $d \geq 3$ show that $\forall \mathbb{R}^{d}$-norms $U_{\|\cdot\|}(n) \gg n \log n$ For $d \geq 4$ is there an \mathbb{R}^{d}-norm s.t. $U_{\|\cdot\|}(n)=o\left(n^{2}\right)$?

Theorem (Alon, B., Sauermann, 2023+)

For "most" \mathbb{R}^{d}-norms $\quad U_{\|\cdot\|}(n) \leq \frac{d}{2} \cdot n \log _{2} n$
For all $\quad \mathbb{R}^{d}$-norms $\quad U_{\|\cdot\| \mid}(n) \geq \frac{d-1-o(1)}{2} \cdot n \log _{2} n$

Erdős distinct distances problem

Question (Erdős, 1946)

What is the min number of distinct distances defined by n points in $\left(\mathbb{R}^{d},\|.\|_{2}\right)$?

Erdős distinct distances problem

Question (Erdős, 1946)

What is the min number of distinct distances defined by n points in $\left(\mathbb{R}^{d},\|\cdot\|_{2}\right)$?
Let $D_{\| \| \|_{2}}(n)$ denote the answer.

Erdős distinct distances problem

Question (Erdős, 1946)

What is the min number of distinct distances defined by n points in $\left(\mathbb{R}^{d},\|\cdot\|_{2}\right)$?
Let $D_{\| \| \cdot \|_{2}}(n)$ denote the answer.

In 2D:

$$
D_{\|\mid \cdot\|_{2}}(n) \underbrace{\leq O\left(\frac{n}{\sqrt{\log n}}\right)}_{\text {Erdós '46 }}
$$

Erdős distinct distances problem

Question (Erdős, 1946)

What is the min number of distinct distances defined by n points in $\left(\mathbb{R}^{d},\|\cdot\|_{2}\right)$?
Let $D_{\| \| \cdot \|_{2}}(n)$ denote the answer.

In 2D:

$$
\underbrace{\Omega\left(\frac{n}{\log n}\right)}_{\text {Guth, Katz '15 }} \leq D_{\|\cdot\| \|_{2}}(n) \underbrace{\leq O\left(\frac{n}{\sqrt{\log n}}\right)}_{\text {Erdös '46 }}
$$

Erdős distinct distances problem

Question (Erdős, 1946)

What is the min number of distinct distances defined by n points in $\left(\mathbb{R}^{d},\|\cdot\|_{2}\right)$?
Let $D_{\| \| \cdot \|_{2}}(n)$ denote the answer.

In 2D:

$$
\underbrace{\Omega\left(\frac{n}{\log n}\right)}_{\text {Guth, Katz '15 }} \leq D_{\|\cdot\| \|_{2}}(n) \underbrace{\leq O\left(\frac{n}{\sqrt{\log n}}\right)}_{\text {Erdö́ '46 }}
$$

In 3 and more D:

$$
D_{\|\cdot\|_{2}}(n) \underbrace{\leq O\left(n^{2 / d}\right)}_{\text {Erdö́s '46 }}
$$

General normed spaces

Question (Swanepoel 1997)

What is the min $\# D_{\|\cdot\|}(n)$ of distinct distances defined by n points in $\left(\mathbb{R}^{d},\|\cdot\|\right)$?

General normed spaces

Question (Swanepoel 1997)

What is the min \# $D_{\|\cdot\|}(n)$ of distinct distances defined by n points in $\left(\mathbb{R}^{d},\|\cdot\|\right)$?

- $D_{\| .| |}(n) \leq n-1$ for any $\|$.$\| .$

General normed spaces

Question (Swanepoel 1997)

What is the min $\# D_{\|\cdot\|}(n)$ of distinct distances defined by n points in $\left(\mathbb{R}^{d},\|\cdot\|\right)$?

- $D_{\| .| |}(n) \leq n-1$ for any $\|$.$\| .$
- Brass conjectured: $D_{\|\cdot\|}(n) \leq o(n)$ for all \mathbb{R}^{d}-norms $\|\cdot\|$

General normed spaces

Question (Swanepoel 1997)

What is the min \# $D_{\|\cdot\|}(n)$ of distinct distances defined by n points in $\left(\mathbb{R}^{d},\|\cdot\|\right)$?

- $D_{\| .| |}(n) \leq n-1$ for any $\|$.$\| .$
- Brass conjectured: $D_{\|\cdot\|}(n) \leq o(n)$ for all \mathbb{R}^{d}-norms $\|\cdot\|$
- Our result on unit distance problem $\Rightarrow D_{\| \cdot| |}(n) \geq \frac{n-1}{d \log n}$ for most \mathbb{R}^{d}-norms $\|$.

General normed spaces

Question (Swanepoel 1997)

What is the min $\# D_{\|\cdot\|}(n)$ of distinct distances defined by n points in $\left(\mathbb{R}^{d},\|\cdot\|\right)$?

- $D_{\||\cdot| \mid}(n) \leq n-1$ for any $\|$.$\| .$
- Brass conjectured: $D_{\|\cdot\|}(n) \leq o(n)$ for all \mathbb{R}^{d}-norms $\|\cdot\|$
- Our result on unit distance problem $\Rightarrow D_{\||| |}(n) \geq \frac{n-1}{d \log n}$ for most \mathbb{R}^{d}-norms $\|$.

Theorem (Alon, B., Sauermann, 2023+)

For most \mathbb{R}^{d}-norms

$$
D_{\|\cdot\|}(n)=n-o(n)
$$

What do we mean by "most"

- A norm on $\mathbb{R}^{d} \longleftrightarrow$ convex, compact, 0-symmetric body in \mathbb{R}^{d}
- A norm on $\mathbb{R}^{d} \longleftrightarrow$ convex, compact, 0-symmetric body in \mathbb{R}^{d}
- Hausdorff distance: maximum distance between a point of one of the bodies to the other

What do we mean by "most"

- A norm on $\mathbb{R}^{d} \longleftrightarrow$ convex, compact, 0-symmetric body in \mathbb{R}^{d}
- Hausdorff distance: maximum distance between a point of one of the bodies to the other
- Defines a metric (and hence a topology) on the space of \mathbb{R}^{d}-norms

What do we mean by "most"

- A norm on $\mathbb{R}^{d} \longleftrightarrow$ convex, compact, 0-symmetric body in \mathbb{R}^{d}
- Hausdorff distance: maximum distance between a point of one of the bodies to the other
- Defines a metric (and hence a topology) on the space of \mathbb{R}^{d}-norms
- "most":= all but a meagre set

What do we mean by "most"

- A norm on $\mathbb{R}^{d} \longleftrightarrow$ convex, compact, 0-symmetric body in \mathbb{R}^{d}
- Hausdorff distance: maximum distance between a point of one of the bodies to the other
- Defines a metric (and hence a topology) on the space of \mathbb{R}^{d}-norms
- "most":= all but a

What do we mean by "most"

- A norm on $\mathbb{R}^{d} \longleftrightarrow$ convex, compact, 0-symmetric body in \mathbb{R}^{d}
- Hausdorff distance: maximum distance between a point of one of the bodies to the other
- Defines a metric (and hence a topology) on the space of \mathbb{R}^{d}-norms
- "most":= all but a

- Klee 1959: the space of norms makes a Baire space

What do we mean by "most"

- A norm on $\mathbb{R}^{d} \longleftrightarrow$ convex, compact, 0-symmetric body in \mathbb{R}^{d}
- Hausdorff distance: maximum distance between a point of one of the bodies to the other
- Defines a metric (and hence a topology) on the space of \mathbb{R}^{d}-norms
- "most":= all but a

- Klee 1959: the space of norms makes a

Proof strategy

- What makes a norm "special"?
- What makes a norm "special"?
- An \mathbb{R}^{d}-norm is special if \exists non-parallel unit vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k d+1}$ s.t. $\forall i$

$$
\mathbf{u}_{i} \in \operatorname{Span}_{\mathbb{Q}}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)
$$

- What makes a norm "special"?
- An \mathbb{R}^{d}-norm is special if \exists non-parallel unit vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k d+1}$ s.t. $\forall i$

$$
\mathbf{u}_{i} \in \operatorname{Span}_{\mathbb{Q}}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)
$$

- Step 1: Show the set of special norms is meagre
- What makes a norm "special"?
- An \mathbb{R}^{d}-norm is special if \exists non-parallel unit vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k d+1}$ s.t. $\forall i$

$$
\mathbf{u}_{i} \in \operatorname{Span}_{\mathbb{Q}}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)
$$

- Step 1: Show the set of special norms is meagre
- Step 2: Show that non-special norms have $U_{\|\cdot\|}(n) \leq \frac{d}{2} n \log n$.

Typical norms have small unit distance function

- An \mathbb{R}^{d}-norm is special if \exists non-parallel unit vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k d+1}$ s.t. $\forall i$

$$
\mathbf{u}_{i} \in \operatorname{Span}_{\mathbb{Q}}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)
$$

Typical norms have small unit distance function

- An \mathbb{R}^{d}-norm is special if \exists non-parallel unit vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k d+1}$ s.t. $\forall i$

$$
\mathbf{u}_{i} \in \operatorname{Span}_{\mathbb{Q}}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)
$$

- Given n points in \mathbb{R}^{d}, suppose $>\frac{d}{2} n \log n$ pairs are at unit distance.

Typical norms have small unit distance function

- An \mathbb{R}^{d}-norm is special if \exists non-parallel unit vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k d+1}$ s.t. $\forall i$

$$
\mathbf{u}_{i} \in \operatorname{Span}_{\mathbb{Q}}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)
$$

- Given n points in \mathbb{R}^{d}, suppose $>\frac{d}{2} n \log n$ pairs are at unit distance.
- Define a graph with points as vertices and unit distance pairs as edges

Typical norms have small unit distance function

- An \mathbb{R}^{d}-norm is special if \exists non-parallel unit vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k d+1}$ s.t. $\forall i$

$$
\mathbf{u}_{i} \in \operatorname{Span}_{\mathbb{Q}}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)
$$

- Given n points in \mathbb{R}^{d}, suppose $>\frac{d}{2} n \log n$ pairs are at unit distance.
- Define a graph with points as vertices and unit distance pairs as edges
- Let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}$ be the unit directions appearing as edges

Typical norms have small unit distance function

- An \mathbb{R}^{d}-norm is special if \exists non-parallel unit vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k d+1}$ s.t. $\forall i$

$$
\mathbf{u}_{i} \in \operatorname{Span}_{\mathbb{Q}}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)
$$

- Given n points in \mathbb{R}^{d}, suppose $>\frac{d}{2} n \log n$ pairs are at unit distance.
- Define a graph with points as vertices and unit distance pairs as edges
- Let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}$ be the unit directions appearing as edges

Typical norms have small unit distance function

- An \mathbb{R}^{d}-norm is special if \exists non-parallel unit vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k d+1}$ s.t. $\forall i$

$$
\mathbf{u}_{i} \in \operatorname{Span}_{\mathbb{Q}}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)
$$

- Given n points in \mathbb{R}^{d}, suppose $>\frac{d}{2} n \log n$ pairs are at unit distance.
- Define a graph with points as vertices and unit distance pairs as edges
- Let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}$ be the unit directions appearing as edges
- Any k of the vectors \mathbf{u}_{i} span (over \mathbb{Q}) at most $k d$ of the vectors

Typical norms have small unit distance function

- An \mathbb{R}^{d}-norm is special if \exists non-parallel unit vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k d+1}$ s.t. $\forall i$

$$
\mathbf{u}_{i} \in \operatorname{Span}_{\mathbb{Q}}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)
$$

- Given n points in \mathbb{R}^{d}, suppose $>\frac{d}{2} n \log n$ pairs are at unit distance.
- Define a graph with points as vertices and unit distance pairs as edges
- Let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}$ be the unit directions appearing as edges
- Any k of the vectors \mathbf{u}_{i} span (over \mathbb{Q}) at most $k d$ of the vectors
- Edmonds matroid decomposition thm \Rightarrow can partition the vectors into $d \mathbb{Q}$-independent sets

Typical norms have small unit distance function

- An \mathbb{R}^{d}-norm is special if \exists non-parallel unit vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k d+1}$ s.t. $\forall i$

$$
\mathbf{u}_{i} \in \operatorname{Span}_{\mathbb{Q}}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)
$$

- Given n points in \mathbb{R}^{d}, suppose $>\frac{d}{2} n \log n$ pairs are at unit distance.
- Define a graph with points as vertices and unit distance pairs as edges
- Let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}$ be the unit directions appearing as edges
- Any k of the vectors \mathbf{u}_{i} span (over \mathbb{Q}) at most $k d$ of the vectors
- Edmonds matroid decomposition thm \Rightarrow can partition the vectors into $d \mathbb{Q}$-independent sets
- There exist $\mathbf{u}_{i_{1}}, \ldots, \mathbf{u}_{i_{t}}$ which are: 1 . \mathbb{Q}-independent and

2. account for $\frac{1}{d}$-fraction of the edges

Typical norms have small unit distance function

- An \mathbb{R}^{d}-norm is special if \exists non-parallel unit vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k d+1}$ s.t. $\forall i$

$$
\mathbf{u}_{i} \in \operatorname{Span}_{\mathbb{Q}}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)
$$

- Given n points in \mathbb{R}^{d}, suppose $>\frac{d}{2} n \log n$ pairs are at unit distance.
- Define a graph with points as vertices and unit distance pairs as edges
- Let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}$ be the unit directions appearing as edges
- Any k of the vectors \mathbf{u}_{i} span (over \mathbb{Q}) at most $k d$ of the vectors
- Edmonds matroid decomposition thm \Rightarrow can partition the vectors into $d \mathbb{Q}$-independent sets
- There exist $\mathbf{u}_{i_{1}}, \ldots, \mathbf{u}_{i_{t}}$ which are: 1 . \mathbb{Q}-independent and

2. account for $\frac{1}{d}$-fraction of the edges

- Relabel so that $\mathbf{u}_{1}, \ldots, \mathbf{u}_{t}$ are: 1 . \mathbb{Q}-independent and

2. account for $\frac{1}{d}$-fraction of the edges

Typical norms have small unit distance function

- An \mathbb{R}^{d}-norm is special if \exists non-parallel unit vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k d+1}$ s.t. $\forall i$

$$
\mathbf{u}_{i} \in \operatorname{Span}_{\mathbb{Q}}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)
$$

- Given n points in \mathbb{R}^{d}, suppose $>\frac{d}{2} n \log n$ pairs are at unit distance.
- Define a graph with points as vertices and unit distance pairs as edges
- Let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}$ be the unit directions appearing as edges
- Any k of the vectors \mathbf{u}_{i} span (over \mathbb{Q}) at most $k d$ of the vectors
- Edmonds matroid decomposition thm \Rightarrow can partition the vectors into $d \mathbb{Q}$-independent sets
- There exist $\mathbf{u}_{i_{1}}, \ldots, \mathbf{u}_{i_{t}}$ which are: 1 . \mathbb{Q}-independent and

2. account for $\frac{1}{d}$-fraction of the edges

- Relabel so that $\mathbf{u}_{1}, \ldots, \mathbf{u}_{t}$ are: 1 . \mathbb{Q}-independent and

2. account for $>\frac{1}{2} n \log n$ edges

Typical norms have small unit distance function

- Given n points in \mathbb{R}^{d} and \mathbb{Q}-independent unit directions $\mathbf{u}_{1}, \ldots, \mathbf{u}_{t}$ s.t.
- there are $>\frac{1}{2} n \log n$ pairs at unit distance along these directions

Typical norms have small unit distance function

- Given n points in \mathbb{R}^{d} and \mathbb{Q}-independent unit directions $\mathbf{u}_{1}, \ldots, \mathbf{u}_{t}$ s.t.
- there are $>\frac{1}{2} n \log n$ pairs at unit distance along these directions

Typical norms have small unit distance function

- Given n points in \mathbb{R}^{d} and \mathbb{Q}-independent unit directions $\mathbf{u}_{1}, \ldots, \mathbf{u}_{t}$ s.t.
- there are $>\frac{1}{2} n \log n$ pairs at unit distance along these directions

Typical norms have small unit distance function

- Given n points in \mathbb{R}^{d} and \mathbb{Q}-independent unit directions $\mathbf{u}_{1}, \ldots, \mathbf{u}_{t}$ s.t.
- there are $>\frac{1}{2} n \log n$ pairs at unit distance along these directions
- Define a graph G with points as vertices and such pairs as edges
- Given n points in \mathbb{R}^{d} and \mathbb{Q}-independent unit directions $\mathbf{u}_{1}, \ldots, \mathbf{u}_{t}$ s.t.
- there are $>\frac{1}{2} n \log n$ pairs at unit distance along these directions
- Define a graph G with points as vertices and such pairs as edges
- Can assume G is connected
- Given n points in \mathbb{R}^{d} and \mathbb{Q}-independent unit directions $\mathbf{u}_{1}, \ldots, \mathbf{u}_{t}$ s.t.
- there are $>\frac{1}{2} n \log n$ pairs at unit distance along these directions
- Define a graph G with points as vertices and such pairs as edges
- Can assume G is connected
- Can embed this graph into the grid graph \mathbb{Z}^{t}
- Given n points in \mathbb{R}^{d} and \mathbb{Q}-independent unit directions $\mathbf{u}_{1}, \ldots, \mathbf{u}_{t}$ s.t.
- there are $>\frac{1}{2} n \log n$ pairs at unit distance along these directions
- Define a graph G with points as vertices and such pairs as edges
- Can assume G is connected
- Can embed this graph into the grid graph \mathbb{Z}^{t}
- Fix a vertex v_{0} and translate it to $\mathbf{0} \in \mathbb{R}^{d}$

Typical norms have small unit distance function

- Given n points in \mathbb{R}^{d} and \mathbb{Q}-independent unit directions $\mathbf{u}_{1}, \ldots, \mathbf{u}_{t}$ s.t.
- there are $>\frac{1}{2} n \log n$ pairs at unit distance along these directions
- Define a graph G with points as vertices and such pairs as edges
- Can assume G is connected
- Can embed this graph into the grid graph \mathbb{Z}^{t}
- Fix a vertex v_{0} and translate it to $\mathbf{0} \in \mathbb{R}^{d}$
- For every vertex $v \exists$ a $v_{0} v$-path which gives $v=a_{1} \mathbf{u}_{1}+\ldots+a_{t} \mathbf{u}_{t}, a_{i} \in \mathbb{Z}$

Typical norms have small unit distance function

- Given n points in \mathbb{R}^{d} and \mathbb{Q}-independent unit directions $\mathbf{u}_{1}, \ldots, \mathbf{u}_{t}$ s.t.
- there are $>\frac{1}{2} n \log n$ pairs at unit distance along these directions
- Define a graph G with points as vertices and such pairs as edges
- Can assume G is connected
- Can embed this graph into the grid graph \mathbb{Z}^{t}
- Fix a vertex v_{0} and translate it to $\mathbf{0} \in \mathbb{R}^{d}$
- For every vertex $v \exists$ a $v_{0} v$-path which gives $v=a_{1} \mathbf{u}_{1}+\ldots+a_{t} \mathbf{u}_{t}, a_{i} \in \mathbb{Z}$ Embed v to $\left(a_{1}, \ldots, a_{t}\right) \in \mathbb{Z}^{t}$

Typical norms have small unit distance function

- Given n points in \mathbb{R}^{d} and \mathbb{Q}-independent unit directions $\mathbf{u}_{1}, \ldots, \mathbf{u}_{t}$ s.t.
- there are $>\frac{1}{2} n \log n$ pairs at unit distance along these directions
- Define a graph G with points as vertices and such pairs as edges
- Can assume G is connected
- Can embed this graph into the grid graph \mathbb{Z}^{t}
- Fix a vertex v_{0} and translate it to $\mathbf{0} \in \mathbb{R}^{d}$
- For every vertex $v \exists$ a $v_{0} v$-path which gives $v=a_{1} \mathbf{u}_{1}+\ldots+a_{t} \mathbf{u}_{t}, a_{i} \in \mathbb{Z}$ Embed v to $\left(a_{1}, \ldots, a_{t}\right) \in \mathbb{Z}^{t}$

Typical norms have small unit distance function

- Given n points in \mathbb{R}^{d} and \mathbb{Q}-independent unit directions $\mathbf{u}_{1}, \ldots, \mathbf{u}_{t}$ s.t.
- there are $>\frac{1}{2} n \log n$ pairs at unit distance along these directions
- Define a graph G with points as vertices and such pairs as edges
- Can assume G is connected
- Can embed this graph into the grid graph \mathbb{Z}^{t}
- Fix a vertex v_{0} and translate it to $\mathbf{0} \in \mathbb{R}^{d}$
- For every vertex $v \exists$ a $v_{0} v$-path which gives $v=a_{1} \mathbf{u}_{1}+\ldots+a_{t} \mathbf{u}_{t}, a_{i} \in \mathbb{Z}$ Embed v to $\left(a_{1}, \ldots, a_{t}\right) \in \mathbb{Z}^{t}$

Typical norms have small unit distance function

- Given n points in \mathbb{R}^{d} and \mathbb{Q}-independent unit directions $\mathbf{u}_{1}, \ldots, \mathbf{u}_{t}$ s.t.
- there are $>\frac{1}{2} n \log n$ pairs at unit distance along these directions
- Define a graph G with points as vertices and such pairs as edges
- Can assume G is connected
- Can embed this graph into the grid graph \mathbb{Z}^{t}
- Fix a vertex v_{0} and translate it to $\mathbf{0} \in \mathbb{R}^{d}$
- For every vertex $v \exists$ a $v_{0} v$-path which gives $v=a_{1} \mathbf{u}_{1}+\ldots+a_{t} \mathbf{u}_{t}, a_{i} \in \mathbb{Z}$ Embed v to $\left(a_{1}, \ldots, a_{t}\right) \in \mathbb{Z}^{t}$

Typical norms have small unit distance function

- Given n points in \mathbb{R}^{d} and \mathbb{Q}-independent unit directions $\mathbf{u}_{1}, \ldots, \mathbf{u}_{t}$ s.t.
- there are $>\frac{1}{2} n \log n$ pairs at unit distance along these directions
- Define a graph G with points as vertices and such pairs as edges
- Can assume G is connected
- Can embed this graph into the grid graph \mathbb{Z}^{t}
- Fix a vertex v_{0} and translate it to $\mathbf{0} \in \mathbb{R}^{d}$
- For every vertex $v \exists$ a $v_{0} v$-path which gives $v=a_{1} \mathbf{u}_{1}+\ldots+a_{t} \mathbf{u}_{t}, a_{i} \in \mathbb{Z}$ Embed v to $\left(a_{1}, \ldots, a_{t}\right) \in \mathbb{Z}^{t}$

Typical norms have small unit distance function

- Given n points in \mathbb{R}^{d} and \mathbb{Q}-independent unit directions $\mathbf{u}_{1}, \ldots, \mathbf{u}_{t}$ s.t.
- there are $>\frac{1}{2} n \log n$ pairs at unit distance along these directions
- Define a graph G with points as vertices and such pairs as edges
- Can assume G is connected
- Can embed this graph into the grid graph \mathbb{Z}^{t}
- Fix a vertex v_{0} and translate it to $\mathbf{0} \in \mathbb{R}^{d}$
- For every vertex $v \exists$ a $v_{0} v$-path which gives $v=a_{1} \mathbf{u}_{1}+\ldots+a_{t} \mathbf{u}_{t}, a_{i} \in \mathbb{Z}$ Embed v to $\left(a_{1}, \ldots, a_{t}\right) \in \mathbb{Z}^{t}$

Typical norms have small unit distance function

- Given n points in \mathbb{R}^{d} and \mathbb{Q}-independent unit directions $\mathbf{u}_{1}, \ldots, \mathbf{u}_{t}$ s.t.
- there are $>\frac{1}{2} n \log n$ pairs at unit distance along these directions
- Define a graph G with points as vertices and such pairs as edges
- Can assume G is connected
- Can embed this graph into the grid graph \mathbb{Z}^{t}
- Fix a vertex v_{0} and translate it to $\mathbf{0} \in \mathbb{R}^{d}$
- For every vertex $v \exists$ a $v_{0} v$-path which gives $v=a_{1} \mathbf{u}_{1}+\ldots+a_{t} \mathbf{u}_{t}, a_{i} \in \mathbb{Z}$ Embed v to $\left(a_{1}, \ldots, a_{t}\right) \in \mathbb{Z}^{t}$
- Well-defined by \mathbb{Q}-independence

Typical norms have small unit distance function

- Given n points in \mathbb{R}^{d} and \mathbb{Q}-independent unit directions $\mathbf{u}_{1}, \ldots, \mathbf{u}_{t}$ s.t.
- there are $>\frac{1}{2} n \log n$ pairs at unit distance along these directions
- Define a graph G with points as vertices and such pairs as edges
- Can assume G is connected
- Can embed this graph into the grid graph \mathbb{Z}^{t}
- Fix a vertex v_{0} and translate it to $\mathbf{0} \in \mathbb{R}^{d}$
- For every vertex $v \exists$ a $v_{0} v$-path which gives $v=a_{1} \mathbf{u}_{1}+\ldots+a_{t} \mathbf{u}_{t}, a_{i} \in \mathbb{Z}$ Embed v to $\left(a_{1}, \ldots, a_{t}\right) \in \mathbb{Z}^{t}$
- Well-defined by \mathbb{Q}-independence
- Any edge of G corresponds to $\pm \mathbf{u}_{i}$ so changes only one coordinate by one

Typical norms have small unit distance function

- Given n points in \mathbb{R}^{d} and \mathbb{Q}-independent unit directions $\mathbf{u}_{1}, \ldots, \mathbf{u}_{t}$ s.t.
- there are $>\frac{1}{2} n \log n$ pairs at unit distance along these directions
- Define a graph G with points as vertices and such pairs as edges
- Can assume G is connected
- Can embed this graph into the grid graph \mathbb{Z}^{t}
- Fix a vertex v_{0} and translate it to $\mathbf{0} \in \mathbb{R}^{d}$
- For every vertex $v \exists$ a $v_{0} v$-path which gives $v=a_{1} \mathbf{u}_{1}+\ldots+a_{t} \mathbf{u}_{t}, a_{i} \in \mathbb{Z}$ Embed v to $\left(a_{1}, \ldots, a_{t}\right) \in \mathbb{Z}^{t}$
- Well-defined by \mathbb{Q}-independence
- Any edge of G corresponds to $\pm \mathbf{u}_{i}$ so changes only one coordinate by one
- Bollobás-Leader edge-isoperimetric inequality for the grid \Longrightarrow G can have at most $\frac{1}{2} n \log n$ edges.

Concluding remarks and open problems

Concluding remarks and open problems

- What happens for typical norms in other classical problems?

Concluding remarks and open problems

- What happens for typical norms in other classical problems?
- For example, Hadwiger-Nelson problem

Concluding remarks and open problems

- What happens for typical norms in other classical problems?
- For example, Hadwiger-Nelson problem

Chromatic number of the unit distance graph of \mathbb{R}^{2} is 4 for most norms.

Concluding remarks and open problems

- What happens for typical norms in other classical problems?
- For example, Hadwiger-Nelson problem

Theorem (Alon, B., Sauermann)
Chromatic number of the unit distance graph of \mathbb{R}^{2} is 4 for most norms.

- $\ln \mathbb{R}^{d}$ we get an upper bound of 2^{d}.

Concluding remarks and open problems

- What happens for typical norms in other classical problems?
- For example, Hadwiger-Nelson problem

Theorem (Alon, B., Sauermann)

Chromatic number of the unit distance graph of \mathbb{R}^{2} is 4 for most norms.

- $\ln \mathbb{R}^{d}$ we get an upper bound of 2^{d}.

Question

Is χ of the unit distance graph of \mathbb{R}^{d} subexponential for most norms?

Special norms are meagre

- An \mathbb{R}^{d}-norm is special if \exists non-parallel unit vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k d+1}$ s.t. $\forall i$

$$
\mathbf{u}_{i} \in \operatorname{Span}_{\mathbb{Q}}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)
$$

Special norms are meagre

- An \mathbb{R}^{d}-norm is special if \exists non-parallel unit vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k d+1}$ s.t. $\forall i$

$$
\mathbf{u}_{i} \in \operatorname{Span}_{\mathbb{Q}}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)
$$

- Fix the "dependencies":

Special norms are meagre

- An \mathbb{R}^{d}-norm is special if \exists non-parallel unit vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k d+1}$ s.t. $\forall i$

$$
\mathbf{u}_{i} \in \operatorname{Span}_{\mathbb{Q}}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)
$$

- Fix the "dependencies": - a $(k d+1) \times k$ rational matrix A and
- a rational angle $\eta>0$

Special norms are meagre

- An \mathbb{R}^{d}-norm is special if \exists non-parallel unit vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k d+1}$ s.t. $\forall i$

$$
\mathbf{u}_{i} \in \operatorname{Span}_{\mathbb{Q}}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)
$$

- Fix the "dependencies" : - a $(k d+1) \times k$ rational matrix A and
- a rational angle $\eta>0$
- An \mathbb{R}^{d}-norm is (A, η)-special if \exists non-parallel unit vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k d+1}$ s.t.

Special norms are meagre

- An \mathbb{R}^{d}-norm is special if \exists non-parallel unit vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k d+1}$ s.t. $\forall i$

$$
\mathbf{u}_{i} \in \operatorname{Span}_{\mathbb{Q}}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)
$$

- Fix the "dependencies": - a $(k d+1) \times k$ rational matrix A and
- a rational angle $\eta>0$
- An \mathbb{R}^{d}-norm is (A, η)-special if \exists non-parallel unit vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k d+1}$ s.t.
- $\mathbf{u}_{j}=\sum_{i=1}^{k} A_{j i} \mathbf{u}_{i}$ for all $j=1, \ldots, d k+1$.

Special norms are meagre

- An \mathbb{R}^{d}-norm is special if \exists non-parallel unit vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k d+1}$ s.t. $\forall i$

$$
\mathbf{u}_{i} \in \operatorname{Span}_{\mathbb{Q}}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)
$$

- Fix the "dependencies": - a $(k d+1) \times k$ rational matrix A and
- a rational angle $\eta>0$
- An \mathbb{R}^{d}-norm is (A, η)-special if \exists non-parallel unit vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k d+1}$ s.t.
- $\mathbf{u}_{j}=\sum_{i=1}^{k} A_{j i} \mathbf{u}_{i}$ for all $j=1, \ldots, d k+1$.
- $\angle\left(\mathbf{u}_{i}, \mathbf{u}_{j}\right)>\eta$, holds for all distinct i and j

Special norms are meagre

- An \mathbb{R}^{d}-norm is special if \exists non-parallel unit vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k d+1}$ s.t. $\forall i$

$$
\mathbf{u}_{i} \in \operatorname{Span}_{\mathbb{Q}}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)
$$

- Fix the "dependencies": - a $(k d+1) \times k$ rational matrix A and
- a rational angle $\eta>0$
- An \mathbb{R}^{d}-norm is (A, η)-special if \exists non-parallel unit vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k d+1}$ s.t.
- $\mathbf{u}_{j}=\sum_{i=1}^{k} A_{j i} \mathbf{u}_{i}$ for all $j=1, \ldots, d k+1$.
- $\angle\left(\mathbf{u}_{i}, \mathbf{u}_{j}\right)>\eta$, holds for all distinct i and j
- Goal: for any fixed A, η the set of (A, η)-special norms is nowhere dense

Special norms are meagre

- An \mathbb{R}^{d}-norm is (A, η)-special if \exists non-parallel unit vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k d+1}$ s.t.
- $\mathbf{u}_{j}=\sum_{i=1}^{k} A_{j i} \mathbf{u}_{i}$ for all $j=1, \ldots, d k+1$.
- $\angle\left(\mathbf{u}_{i}, \mathbf{u}_{j}\right)>\eta$, holds for all distinct i and j
- Goal: for any fixed A, η the set of (A, η)-special norms is nowhere dense
- Fix a norm $\|$.$\| with unit ball B$

Special norms are meagre

- An \mathbb{R}^{d}-norm is (A, η)-special if \exists non-parallel unit vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k d+1}$ s.t.
- $\mathbf{u}_{j}=\sum_{i=1}^{k} A_{j i} \mathbf{u}_{i}$ for all $j=1, \ldots, d k+1$.
- $\angle\left(\mathbf{u}_{i}, \mathbf{u}_{j}\right)>\eta$, holds for all distinct i and j
- Goal: for any fixed A, η the set of (A, η)-special norms is nowhere dense
- Fix a norm ||.|| with unit ball B
- We need to find an open set close to $\|$.$\| not containing any (A, \eta)$-special norm

Special norms are meagre

- An \mathbb{R}^{d}-norm is (A, η)-special if \exists non-parallel unit vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k d+1}$ s.t.
- $\mathbf{u}_{j}=\sum_{i=1}^{k} A_{j i} \mathbf{u}_{i}$ for all $j=1, \ldots, d k+1$.
- $\angle\left(\mathbf{u}_{i}, \mathbf{u}_{j}\right)>\eta$, holds for all distinct i and j
- Fix a norm $\|$.$\| with unit ball B$
- We need to find an open set close to $\|$.$\| not containing any (A, \eta)$-special norm

Special norms are meagre

- An \mathbb{R}^{d}-norm is (A, η)-special if \exists non-parallel unit vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k d+1}$ s.t.
- $\mathbf{u}_{j}=\sum_{i=1}^{k} A_{j i} \mathbf{u}_{i}$ for all $j=1, \ldots, d k+1$.
- $\angle\left(\mathbf{u}_{i}, \mathbf{u}_{j}\right)>\eta$, holds for all distinct i and j
- Fix a norm $\|$.$\| with unit ball B$
- We need to find an open set close to $\|$.$\| not containing any (A, \eta)$-special norm
- Approximate B by a convex 0 -symmetric polytope with small facets

Special norms are meagre

- An \mathbb{R}^{d}-norm is (A, η)-special if \exists non-parallel unit vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k d+1}$ s.t.
- $\mathbf{u}_{j}=\sum_{i=1}^{k} A_{j i} \mathbf{u}_{i}$ for all $j=1, \ldots, d k+1$.
- $\angle\left(\mathbf{u}_{i}, \mathbf{u}_{j}\right)>\eta$, holds for all distinct i and j
- Fix a norm \mid.| | with unit ball B which is convex, 0 -symetric polytope
- We need to find an open set close to $\|$.$\| not containing any (A, \eta)$-special norm
- An \mathbb{R}^{d}-norm is (A, η)-special if \exists non-parallel unit vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k d+1}$ s.t.
- $\mathbf{u}_{j}=\sum_{i=1}^{k} A_{j i} \mathbf{u}_{i}$ for all $j=1, \ldots, d k+1$.
- $\angle\left(\mathbf{u}_{i}, \mathbf{u}_{j}\right)>\eta$, holds for all distinct i and j
- Fix a norm $\|$.$\| with unit ball B$ which is convex, 0-symetric polytope
- We need to find an open set close to $\|$.$\| not containing any (A, \eta)$-special norm
- If there are $2 f$ facets for each $\mathbf{x} \in[-\varepsilon, \varepsilon]^{f}$ we define $B(\mathbf{x})$ to be the polytope obtained by translating i-th facet pair by \mathbf{x}_{i}
- An \mathbb{R}^{d}-norm is (A, η)-special if \exists non-parallel unit vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k d+1}$ s.t.
- $\mathbf{u}_{j}=\sum_{i=1}^{k} A_{j i} \mathbf{u}_{i}$ for all $j=1, \ldots, d k+1$.
- $\angle\left(\mathbf{u}_{i}, \mathbf{u}_{j}\right)>\eta$, holds for all distinct i and j
- Fix a norm $\|$.$\| with unit ball B$ which is convex, 0-symetric polytope
- We need to find an open set close to $\|$.$\| not containing any (A, \eta)$-special norm
- If there are $2 f$ facets for each $\mathbf{x} \in[-\varepsilon, \varepsilon]^{f}$ we define $B(\mathbf{x})$ to be the polytope obtained by translating i-th facet pair by \mathbf{x}_{i}
- An (A, η)-special $B(\mathbf{x})$ must have its bad $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k d+1}$ on different facets.

Special norms are meagre

- An \mathbb{R}^{d}-norm is (A, η)-special if \exists non-parallel unit vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k d+1}$ s.t.
- $\mathbf{u}_{j}=\sum_{i=1}^{k} A_{j i} \mathbf{u}_{i}$ for all $j=1, \ldots, d k+1$.
- $\angle\left(\mathbf{u}_{i}, \mathbf{u}_{j}\right)>\eta$, holds for all distinct i and j
- Fix a norm \mid.| | with unit ball B which is convex, 0 -symetric polytope
- We need to find an open set close to $\|$.$\| not containing any (A, \eta)$-special norm
- If there are $2 f$ facets for each $\mathbf{x} \in[-\varepsilon, \varepsilon]^{f}$ we define $B(\mathbf{x})$ to be the polytope obtained by translating i-th facet pair by \mathbf{x}_{i}
- An (A, η)-special $B(\mathbf{x})$ must have its bad $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k d+1}$ on different facets.
- If we fix which facets they belong to, this allows us to express $k d+1$ of x_{i} 's as linear functions of $d k$ variables given by the coordinates of $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$
- An \mathbb{R}^{d}-norm is (A, η)-special if \exists non-parallel unit vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k d+1}$ s.t.
- $\mathbf{u}_{j}=\sum_{i=1}^{k} A_{j i} \mathbf{u}_{i}$ for all $j=1, \ldots, d k+1$.
- $\angle\left(\mathbf{u}_{i}, \mathbf{u}_{j}\right)>\eta$, holds for all distinct i and j
- Fix a norm $\|$.$\| with unit ball B$ which is convex, 0 -symetric polytope
- We need to find an open set close to $\|$.$\| not containing any (A, \eta)$-special norm
- If there are $2 f$ facets for each $\mathbf{x} \in[-\varepsilon, \varepsilon]^{f}$ we define $B(\mathbf{x})$ to be the polytope obtained by translating i-th facet pair by \mathbf{x}_{i}
- All \mathbf{x} for which $B(\mathbf{x})$ is (A, η)-special lie on finite union of affine hyperplanes.

Special norms are meagre

- An \mathbb{R}^{d}-norm is (A, η)-special if \exists non-parallel unit vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k d+1}$ s.t.
- $\mathbf{u}_{j}=\sum_{i=1}^{k} A_{j i} \mathbf{u}_{i}$ for all $j=1, \ldots, d k+1$.
- $\angle\left(\mathbf{u}_{i}, \mathbf{u}_{j}\right)>\eta$, holds for all distinct i and j
- Fix a norm $\|$.$\| with unit ball B$ which is convex, 0 -symetric polytope
- We need to find an open set close to $\|$.$\| not containing any (A, \eta)$-special norm
- If there are $2 f$ facets for each $\mathbf{x} \in[-\varepsilon, \varepsilon]^{f}$ we define $B(\mathbf{x})$ to be the polytope obtained by translating i-th facet pair by \mathbf{x}_{i}
- All \mathbf{x} for which $B(\mathbf{x})$ is (A, η)-special lie on finite union of affine hyperplanes.
- There exists a subbox of $[-\varepsilon, \varepsilon]^{f}$ with no (A, η)-special $B(\mathbf{x})$
- An \mathbb{R}^{d}-norm is (A, η)-special if \exists non-parallel unit vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k d+1}$ s.t.
- $\mathbf{u}_{j}=\sum_{i=1}^{k} A_{j i} \mathbf{u}_{i}$ for all $j=1, \ldots, d k+1$.
- $\angle\left(\mathbf{u}_{i}, \mathbf{u}_{j}\right)>\eta$, holds for all distinct i and j
- Fix a norm $\|$.$\| with unit ball B$ which is convex, 0 -symetric polytope
- We need to find an open set close to $\|$.$\| not containing any (A, \eta)$-special norm
- If there are $2 f$ facets for each $\mathbf{x} \in[-\varepsilon, \varepsilon]^{f}$ we define $B(\mathbf{x})$ to be the polytope obtained by translating i-th facet pair by \mathbf{x}_{i}
- All \mathbf{x} for which $B(\mathbf{x})$ is (A, η)-special lie on finite union of affine hyperplanes.
- There exists a subbox of $[-\varepsilon, \varepsilon]^{f}$ with no (A, η)-special $B(\mathbf{x})$
- A tiny open ball around the centre of the subbox has no (A, η)-special norms

