Unit and distinct distances in typical norms

Matija Bucić

Institute for Advanced Study and Princeton University

based on joint work with Noga Alon and Lisa Sauermann

What is the maximum number of unit distances defined by n points in $(\mathbb{R}^2, \|.\|_2)$?

What is the maximum number of unit distances defined by n points in $(\mathbb{R}^2, \|.\|_2)$?

Let $U_{\parallel,\parallel_2}(n)$ denote the answer.

What is the maximum number of unit distances defined by n points in $(\mathbb{R}^2, \|.\|_2)$?

Let $U_{\parallel,\parallel_2}(n)$ denote the answer.

 $U_{||.||_2}(n) \leq O(n^{4/3})$

Spencer, Szemerédi, Trotter '84

What is the maximum number of unit distances defined by n points in $(\mathbb{R}^2, \|.\|_2)$?

Let $U_{\parallel,\parallel_2}(n)$ denote the answer.

What is the maximum number of unit distances defined by n points in $(\mathbb{R}^2, \|.\|_2)$?

Let $U_{\parallel,\parallel_2}(n)$ denote the answer.

In 2D: $\underbrace{\Omega\left(n^{1+\frac{1}{\log \log n}}\right)}_{\text{Erdős '46}} \qquad \underbrace{U_{||.||_2}(n)}_{\text{Spencer, Szemerédi, Trotter '84}}$

What is the maximum number of unit distances defined by n points in $(\mathbb{R}^d, \|.\|_2)$?

Let $U_{\|.\|_2}(n)$ denote the answer.

In 2D: $\underbrace{\Omega\left(n^{1+\frac{1}{\log \log n}}\right)}_{\text{Erdős '46}} \qquad \underbrace{U_{||.||_2}(n)}_{\text{Spencer, Szemerédi, Trotter '84}}$

What is the maximum number of unit distances defined by n points in $(\mathbb{R}^d, \|.\|_2)$?

Let $U_{\|.\|_2}(n)$ denote the answer.

In 2D: $\underbrace{\Omega\left(n^{1+\frac{1}{\log\log n}}\right) \leq}_{\text{Erdős '46}} \qquad \underbrace{U_{||.||_2}(n)}_{\text{Spencer, Szemerédi, Trotter '84}}$ In 3D: $\underbrace{O\left(n^{4/3}\right)}_{||.||_2}(n) \qquad \underline{\leq O(n^{3/2-\varepsilon})}_{\text{Spencer, Szemerédi, Trotter '84}}$

Zahİ '19

What is the maximum number of unit distances defined by n points in $(\mathbb{R}^d, \|.\|_2)$?

Let $U_{\|.\|_2}(n)$ denote the answer.

In 2D:

$$\underbrace{\Omega\left(n^{1+\frac{1}{\log\log n}}\right)}_{\text{Erdős '46}} \qquad \underbrace{U_{||.||_{2}}(n)}_{\text{Spencer, Szemerédi, Trotter '84}}$$
In 3D:

$$\underbrace{n^{4/3+o(1)}_{\text{Erdős '60}}}_{\text{Erdős '60}} \qquad \underbrace{U_{||.||_{2}}(n)}_{\text{Zahl '19}} \leq \underbrace{O(n^{3/2-\varepsilon})}_{\text{Zahl '19}}$$

What is the maximum number of unit distances defined by n points in $(\mathbb{R}^d, \|.\|_2)$?

Let $U_{\|.\|_2}(n)$ denote the answer.

In 2D:

$$\underbrace{\Omega\left(n^{1+\frac{1}{\log\log n}}\right) \leq}_{\text{Erdős '46}} \qquad \underbrace{U_{||.||_{2}}(n)}_{\text{Spencer, Szemerédi, Trotter '84}} \\
\text{In 3D:} \qquad \underbrace{n^{4/3+o(1)} \leq}_{\text{Erdős '60}} \qquad \underbrace{U_{||.||_{2}}(n)}_{\text{Zahl '19}} \leq \underbrace{O(n^{3/2-\varepsilon})}_{\text{Zahl '19}} \\
\text{In 4 and more D:} \qquad \underbrace{U_{||.||_{2}}(n) = \Theta(n^{2})} \\$$

What is the max number $U_{||.||}(n)$ of unit distances defined by n points in $(\mathbb{R}^d, ||.||)$?

• Erdős 1980: $U_{\ell_1}(n) = (1 + o(1)) \cdot \frac{n^2}{4}$ in \mathbb{R}^2 .

- Erdős 1980: $U_{\ell_1}(n) = (1 + o(1)) \cdot \frac{n^2}{4}$ in \mathbb{R}^2 .
- Brass 1996: $U_{||\cdot||}(n) = (1 + o(1)) \cdot \frac{n^2}{4}$ for any not strictly convex \mathbb{R}^2 norm $||\cdot||$

What is the max number $U_{||.||}(n)$ of unit distances defined by n points in $(\mathbb{R}^d, \|.\|)$?

- Erdős 1980: $U_{\ell_1}(n) = (1 + o(1)) \cdot \frac{n^2}{4}$ in \mathbb{R}^2 .
- Brass 1996: $U_{||\cdot||}(n) = (1 + o(1)) \cdot \frac{n^2}{4}$ for any not strictly convex \mathbb{R}^2 norm $||\cdot||$

has line segment in unit sphere

What is the max number $U_{||.||}(n)$ of unit distances defined by n points in $(\mathbb{R}^d, \|.\|)$?

- Erdős 1980: $U_{\ell_1}(n) = (1 + o(1)) \cdot \frac{n^2}{4}$ in \mathbb{R}^2 .
- Brass 1996: $U_{||.||}(n) = (1 + o(1)) \cdot \frac{n^2}{4}$ for any not strictly convex \mathbb{R}^2 norm ||.||

has line segment in unit sphere

• Brass conjectured that ℓ_∞ maximizes $U_{||.||}(n)$ among \mathbb{R}^d norms ||.||.

- Erdős 1980: $U_{\ell_1}(n) = (1 + o(1)) \cdot \frac{n^2}{4}$ in \mathbb{R}^2 .
- Brass 1996: $U_{||.||}(n) = (1 + o(1)) \cdot \frac{n^2}{4}$ for any not strictly convex \mathbb{R}^2 norm ||.||has line segment in unit sphere
- Brass conjectured that ℓ_∞ maximizes $U_{||.||}(n)$ among \mathbb{R}^d norms ||.||.
- Swanepoel 2018: $U_{||.||}(n) \leq (1 + o(1)) \cdot (1 2^{1-d}) \cdot \frac{n^2}{2}$ for any \mathbb{R}^d -norm ||.||- Tight for ℓ_{∞} norm in \mathbb{R}^d

- Erdős 1980: $U_{\ell_1}(n) = (1 + o(1)) \cdot \frac{n^2}{4}$ in \mathbb{R}^2 .
- Brass 1996: $U_{||.||}(n) = (1 + o(1)) \cdot \frac{n^2}{4}$ for any not strictly convex \mathbb{R}^2 norm ||.||has line segment in unit sphere
- Brass conjectured that ℓ_∞ maximizes $U_{||.||}(n)$ among \mathbb{R}^d norms ||.||.
- Swanepoel 2018: $U_{||.||}(n) \le (1 + o(1)) \cdot (1 2^{1-d}) \cdot \frac{n^2}{2}$ for any \mathbb{R}^d -norm ||.||- Tight for ℓ_{∞} norm in \mathbb{R}^d
- Klee 1959: "Most" norms on \mathbb{R}^d are strictly convex.

What is the max number $U_{||.||}(n)$ of unit distances defined by n points in $(\mathbb{R}^d, \|.\|)$?

• Klee 1959: "Most" norms on \mathbb{R}^d are strictly convex.

- Klee 1959: "Most" norms on \mathbb{R}^d are strictly convex.
- $U_{||.||}(n) \leq O(n^{4/3})$ for any strictly convex \mathbb{R}^2 norm ||.||

- Klee 1959: "Most" norms on \mathbb{R}^d are strictly convex.
- $U_{||.||}(n) \leq O(n^{4/3})$ for any strictly convex \mathbb{R}^2 norm ||.||
- Brass; Valtr; Solymosi, Szabó: \exists an \mathbb{R}^2 norm with $U_{||.||}(n) = \Theta(n^{4/3})$

- Klee 1959: "Most" norms on \mathbb{R}^d are strictly convex.
- $U_{||.||}(n) \leq O(n^{4/3})$ for any strictly convex \mathbb{R}^2 norm ||.||
- Brass; Valtr; Solymosi, Szabó: \exists an \mathbb{R}^2 norm with $U_{||.||}(n) = \Theta(n^{4/3})$

• Zahl:
$$\exists$$
 an \mathbb{R}^3 norm with $U_{||.||}(n) = \Theta(n^{3/2})$

Question (Erdős, Ulam 1980)

What is the max number $U_{\|\cdot\|}(n)$ of unit distances defined by n points in $(\mathbb{R}^d, \|\cdot\|)$?

• Folklore: for any norm $U_{\|.\|}(n) \ge (\frac{1}{2} - o(1))n \log_2 n$.

Question (Erdős, Ulam 1980)

- Folklore: for any norm $U_{\|.\|}(n) \ge (\frac{1}{2} o(1))n \log_2 n$.
 - Let $n = 2^k$

Question (Erdős, Ulam 1980)

- Folklore: for any norm $U_{\|\cdot\|}(n) \ge (\frac{1}{2} o(1))n \log_2 n$.
 - Let $n = 2^k$
 - Choose k non-parallel unit vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$

Question (Erdős, Ulam 1980)

- Folklore: for any norm $U_{\|.\|}(n) \ge (\frac{1}{2} o(1))n \log_2 n$.
 - Let $n = 2^k$
 - Choose k non-parallel unit vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$
 - Take as the point set $\left\{\sum_{i \in S} \mathbf{v}_i \mid S \subseteq [k]\right\}$

Question (Erdős, Ulam 1980)

- Folklore: for any norm $U_{\|.\|}(n) \ge (\frac{1}{2} o(1))n \log_2 n$.
- Brass 1996: Is there an \mathbb{R}^2 -norm for which $U_{\|.\|}(n) = \Theta(n \log n)$?

Question (Erdős, Ulam 1980)

- Folklore: for any norm $U_{\|.\|}(n) \ge (\frac{1}{2} o(1))n\log_2 n$.
- **Brass** 1996: Is there an \mathbb{R}^2 -norm for which $U_{\|.\|}(n) = \Theta(n \log n)$?
- Matoušek 2011: For "most" \mathbb{R}^2 -norms $U_{\|\cdot\|}(n) \leq O(n \log n \log \log n)$.

Question (Erdős, Ulam 1980)

- Folklore: for any norm $U_{\|.\|}(n) \ge (\frac{1}{2} o(1))n \log_2 n$.
- **Brass** 1996: Is there an \mathbb{R}^2 -norm for which $U_{\|.\|}(n) = \Theta(n \log n)$?
- Matoušek 2011: For "most" \mathbb{R}^2 -norms $U_{\|\cdot\|}(n) \leq O(n \log n \log \log n)$.
- **Brass-Moser-Pach** 2006: For $d \ge 3$ show that $\forall \mathbb{R}^d$ -norms $U_{\parallel,\parallel}(n) \gg n \log n$

Question (Erdős, Ulam 1980)

- Folklore: for any norm $U_{\|.\|}(n) \ge (\frac{1}{2} o(1))n \log_2 n$.
- **Brass** 1996: Is there an \mathbb{R}^2 -norm for which $U_{\|.\|}(n) = \Theta(n \log n)$?
- Matoušek 2011: For "most" \mathbb{R}^2 -norms $U_{\|\cdot\|}(n) \leq O(n \log n \log \log n)$.
- Brass-Moser-Pach 2006: For $d \ge 3$ show that $\forall \mathbb{R}^d$ -norms $U_{\|.\|}(n) \gg n \log n$ For $d \ge 4$ is there an \mathbb{R}^d -norm s.t. $U_{\|.\|}(n) = o(n^2)$?

Question (Erdős, Ulam 1980)

What is the max number $U_{||.||}(n)$ of unit distances defined by n points in $(\mathbb{R}^d, \|.\|)$?

- Folklore: for any norm $U_{\|.\|}(n) \ge (\frac{1}{2} o(1))n \log_2 n$.
- **Brass** 1996: Is there an \mathbb{R}^2 -norm for which $U_{\|.\|}(n) = \Theta(n \log n)$?
- Matoušek 2011: For "most" \mathbb{R}^2 -norms $U_{\|\cdot\|}(n) \leq O(n \log n \log \log n)$.
- Brass-Moser-Pach 2006: For $d \ge 3$ show that $\forall \mathbb{R}^d$ -norms $U_{\|.\|}(n) \gg n \log n$ For $d \ge 4$ is there an \mathbb{R}^d -norm s.t. $U_{\|.\|}(n) = o(n^2)$?

Theorem (Alon, B., Sauermann, 2023+)

For "most"
$$\mathbb{R}^d$$
-norms $U_{\parallel,\parallel}(n) \leq \frac{d}{2} \cdot n \log_2 n$

Question (Erdős, Ulam 1980)

- Folklore: for any norm $U_{\|.\|}(n) \ge (\frac{1}{2} o(1))n\log_2 n$.
- **Brass** 1996: Is there an \mathbb{R}^2 -norm for which $U_{\|.\|}(n) = \Theta(n \log n)$?
- Matoušek 2011: For "most" \mathbb{R}^2 -norms $U_{\|\cdot\|}(n) \leq O(n \log n \log \log n)$.
- Brass-Moser-Pach 2006: For $d \ge 3$ show that $\forall \mathbb{R}^d$ -norms $U_{\|.\|}(n) \gg n \log n$ For $d \ge 4$ is there an \mathbb{R}^d -norm s.t. $U_{\|.\|}(n) = o(n^2)$?

Theorem (Alon, B., Sauermann, 2023+)
For "most"
$$\mathbb{R}^d$$
-norms $U_{\|.\|}(n) \leq \frac{d}{2} \cdot n \log_2 n$
For all \mathbb{R}^d -norms $U_{\|.\|}(n) \geq \frac{d-1-o(1)}{2} \cdot n \log_2 n$

What is the min number of distinct distances defined by n points in $(\mathbb{R}^d, \|.\|_2)$?

What is the min number of distinct distances defined by n points in $(\mathbb{R}^d, \|.\|_2)$?

Let $D_{\|.\|_2}(n)$ denote the answer.

What is the min number of distinct distances defined by n points in $(\mathbb{R}^d, \|.\|_2)$?

Let $D_{\|.\|_2}(n)$ denote the answer.

In 2D:

$$D_{||.||_2}(n) \quad \underbrace{\leq \quad O\left(\frac{n}{\sqrt{\log n}}\right)}_{\text{Erdős '46}}$$

What is the min number of distinct distances defined by n points in $(\mathbb{R}^d, \|.\|_2)$?

Let $D_{\|.\|_2}(n)$ denote the answer.

In 2D:

$$\underbrace{\Omega\left(\frac{n}{\log n}\right)}_{\text{Guth, Katz '15}} \leq D_{||.||_2}(n) \quad \underbrace{\leq O\left(\frac{n}{\sqrt{\log n}}\right)}_{\text{Erdős '46}}$$

Question (Erdős, 1946)

What is the min number of distinct distances defined by n points in $(\mathbb{R}^d, \|.\|_2)$?

Let $D_{\|.\|_2}(n)$ denote the answer.

In 2D:

$$\underbrace{\Omega\left(\frac{n}{\log n}\right)}_{\text{Guth, Katz '15}} \leq D_{||.||_2}(n) \quad \underbrace{\leq O\left(\frac{n}{\sqrt{\log n}}\right)}_{\text{Erdős '46}}$$
In 3 and more D:

$$D_{||.||_2}(n) \quad \underbrace{\leq O(n^{2/d})}_{\text{Erdős '46}}$$

What is the min $\# D_{||.||}(n)$ of distinct distances defined by n points in $(\mathbb{R}^d, \|.\|)$?

What is the min $\# D_{||.||}(n)$ of distinct distances defined by n points in $(\mathbb{R}^d, ||.||)$?

• $D_{||.||}(n) \le n-1$ for any ||.||.

What is the min $\# D_{||.||}(n)$ of distinct distances defined by n points in $(\mathbb{R}^d, \|.\|)$?

- $D_{||.||}(n) \le n-1$ for any ||.||.
- Brass conjectured: $D_{\|.\|}(n) \leq o(n)$ for all \mathbb{R}^d -norms $\|.\|$

What is the min $\# D_{||.||}(n)$ of distinct distances defined by n points in $(\mathbb{R}^d, \|.\|)$?

- $D_{||.||}(n) \le n-1$ for any ||.||.
- Brass conjectured: $D_{\|.\|}(n) \leq o(n)$ for all \mathbb{R}^d -norms $\|.\|$
- Our result on unit distance problem $\Rightarrow D_{||.||}(n) \ge \frac{n-1}{d \log n}$ for most \mathbb{R}^d -norms ||.||

What is the min $\# D_{||.||}(n)$ of distinct distances defined by n points in $(\mathbb{R}^d, \|.\|)$?

- $D_{||.||}(n) \le n-1$ for any ||.||.
- Brass conjectured: $D_{\|.\|}(n) \leq o(n)$ for all \mathbb{R}^d -norms $\|.\|$
- Our result on unit distance problem $\Rightarrow D_{||.||}(n) \ge \frac{n-1}{d \log n}$ for most \mathbb{R}^d -norms ||.||

Theorem (Alon, B., Sauermann, 2023+)

For most \mathbb{R}^d -norms

$$D_{\parallel \cdot \parallel}(n) = n - o(n)$$

• A norm on $\mathbb{R}^d \quad \longleftrightarrow \quad$ convex, compact, 0-symmetric body in \mathbb{R}^d

- A norm on $\mathbb{R}^d \quad \longleftrightarrow$ convex, compact, 0-symmetric body in \mathbb{R}^d
- Hausdorff distance: maximum distance between a point of one of the bodies to the other

- A norm on $\mathbb{R}^d \quad \longleftrightarrow$ convex, compact, 0-symmetric body in \mathbb{R}^d
- Hausdorff distance: maximum distance between a point of one of the bodies to the other
- Defines a metric (and hence a topology) on the space of \mathbb{R}^d -norms

- A norm on $\mathbb{R}^d \quad \longleftrightarrow$ convex, compact, 0-symmetric body in \mathbb{R}^d
- Hausdorff distance: maximum distance between a point of one of the bodies to the other
- Defines a metric (and hence a topology) on the space of \mathbb{R}^d -norms
- "most" := all but a meagre set

- A norm on $\mathbb{R}^d \quad \longleftrightarrow$ convex, compact, 0-symmetric body in \mathbb{R}^d
- Hausdorff distance: maximum distance between a point of one of the bodies to the other
- Defines a metric (and hence a topology) on the space of \mathbb{R}^d -norms
- "most" := all but a

meagre set

countable union of nowhere dense sets

- A norm on $\mathbb{R}^d \quad \longleftrightarrow$ convex, compact, 0-symmetric body in \mathbb{R}^d
- Hausdorff distance: maximum distance between a point of one of the bodies to the other
- Defines a metric (and hence a topology) on the space of \mathbb{R}^d -norms
- "most" := all but a <u>meagre set</u> countable union of nowhere dense sets
- Klee 1959: the space of norms makes a Baire space

- A norm on $\mathbb{R}^d \quad \longleftrightarrow$ convex, compact, 0-symmetric body in \mathbb{R}^d
- Hausdorff distance: maximum distance between a point of one of the bodies to the other
- Defines a metric (and hence a topology) on the space of \mathbb{R}^d -norms
- "most" := all but a meagre set countable union of nowhere dense sets
- Klee 1959: the space of norms makes a

Baire space

complements of meagre sets are dense

• What makes a norm "special"?

- What makes a norm "special"?
- An \mathbb{R}^d -norm is special if \exists non-parallel unit vectors $\mathbf{u}_1, \ldots, \mathbf{u}_{kd+1}$ s.t. $\forall i$

 $u_i \in \mathsf{Span}_\mathbb{Q}(u_1, \dots, u_k)$

- What makes a norm "special"?
- An \mathbb{R}^d -norm is special if \exists non-parallel unit vectors $\mathbf{u}_1, \ldots, \mathbf{u}_{kd+1}$ s.t. $\forall i$

 $u_i \in \mathsf{Span}_\mathbb{Q}(u_1,\ldots,u_k)$

• Step 1: Show the set of special norms is meagre

- What makes a norm "special"?
- An \mathbb{R}^d -norm is special if \exists non-parallel unit vectors $\mathbf{u}_1, \ldots, \mathbf{u}_{kd+1}$ s.t. $\forall i$

 $u_i \in \mathsf{Span}_\mathbb{Q}(u_1,\ldots,u_k)$

- Step 1: Show the set of special norms is meagre
- Step 2: Show that non-special norms have $U_{\|.\|}(n) \leq \frac{d}{2}n \log n$.

• An \mathbb{R}^d -norm is special if \exists non-parallel unit vectors $\mathbf{u}_1, \ldots, \mathbf{u}_{kd+1}$ s.t. $\forall i$

 $\textbf{u}_i \in \mathsf{Span}_\mathbb{Q}(\textbf{u}_1,\ldots,\textbf{u}_k)$

• An \mathbb{R}^d -norm is special if \exists non-parallel unit vectors $\mathbf{u}_1, \dots, \mathbf{u}_{kd+1}$ s.t. $\forall i$

 $\textbf{u}_i \in \mathsf{Span}_\mathbb{Q}(\textbf{u}_1,\ldots,\textbf{u}_k)$

• Given *n* points in \mathbb{R}^d , suppose $> \frac{d}{2}n \log n$ pairs are at unit distance.

• An \mathbb{R}^d -norm is special if \exists non-parallel unit vectors $\mathbf{u}_1, \ldots, \mathbf{u}_{kd+1}$ s.t. $\forall i$

$$\textbf{u}_i \in \mathsf{Span}_\mathbb{Q}(\textbf{u}_1,\ldots,\textbf{u}_k)$$

- Given *n* points in \mathbb{R}^d , suppose $> \frac{d}{2}n \log n$ pairs are at unit distance.
- Define a graph with points as vertices and unit distance pairs as edges

• An \mathbb{R}^d -norm is special if \exists non-parallel unit vectors $\mathbf{u}_1, \ldots, \mathbf{u}_{kd+1}$ s.t. $\forall i$

$$\textbf{u}_i \in \mathsf{Span}_\mathbb{Q}(\textbf{u}_1,\ldots,\textbf{u}_k)$$

- Given *n* points in \mathbb{R}^d , suppose $> \frac{d}{2}n \log n$ pairs are at unit distance.
- Define a graph with points as vertices and unit distance pairs as edges
- Let $\mathbf{u}_1, \ldots, \mathbf{u}_m$ be the unit directions appearing as edges

• An \mathbb{R}^d -norm is special if \exists non-parallel unit vectors $\mathbf{u}_1, \ldots, \mathbf{u}_{kd+1}$ s.t. $\forall i$

 $\mathbf{u}_i \in \mathsf{Span}_{\mathbb{Q}}(\mathbf{u}_1, \dots, \mathbf{u}_k)$

- Given *n* points in \mathbb{R}^d , suppose $> \frac{d}{2}n \log n$ pairs are at unit distance.
- Define a graph with points as vertices and unit distance pairs as edges
- Let $\mathbf{u}_1, \ldots, \mathbf{u}_m$ be the unit directions appearing as edges

• An \mathbb{R}^d -norm is special if \exists non-parallel unit vectors $\mathbf{u}_1, \ldots, \mathbf{u}_{kd+1}$ s.t. $\forall i$

 $u_i \in \mathsf{Span}_{\mathbb{Q}}(u_1, \dots, u_k)$

- Given *n* points in \mathbb{R}^d , suppose $> \frac{d}{2}n \log n$ pairs are at unit distance.
- Define a graph with points as vertices and unit distance pairs as edges
- Let $\mathbf{u}_1, \ldots, \mathbf{u}_m$ be the unit directions appearing as edges
- Any k of the vectors \mathbf{u}_i span (over \mathbb{Q}) at most kd of the vectors

• An \mathbb{R}^d -norm is special if \exists non-parallel unit vectors $\mathbf{u}_1, \ldots, \mathbf{u}_{kd+1}$ s.t. $\forall i$

 $\mathbf{u}_i \in \mathsf{Span}_{\mathbb{Q}}(\mathbf{u}_1, \dots, \mathbf{u}_k)$

- Given *n* points in \mathbb{R}^d , suppose $> \frac{d}{2}n \log n$ pairs are at unit distance.
- Define a graph with points as vertices and unit distance pairs as edges
- Let $\mathbf{u}_1, \ldots, \mathbf{u}_m$ be the unit directions appearing as edges
- Any k of the vectors \mathbf{u}_i span (over \mathbb{Q}) at most kd of the vectors
- Edmonds matroid decomposition thm \Rightarrow can partition the vectors into $d~\mathbb{Q}\text{-independent sets}$

• An \mathbb{R}^d -norm is special if \exists non-parallel unit vectors $\mathbf{u}_1, \ldots, \mathbf{u}_{kd+1}$ s.t. $\forall i$

 $u_i \in \mathsf{Span}_\mathbb{Q}(u_1,\ldots,u_k)$

- Given *n* points in \mathbb{R}^d , suppose $> \frac{d}{2}n \log n$ pairs are at unit distance.
- Define a graph with points as vertices and unit distance pairs as edges
- Let $\mathbf{u}_1, \ldots, \mathbf{u}_m$ be the unit directions appearing as edges
- Any k of the vectors \mathbf{u}_i span (over \mathbb{Q}) at most kd of the vectors
- Edmonds matroid decomposition thm \Rightarrow can partition the vectors into $d~{\mathbb Q}\text{-independent sets}$
- There exist $\mathbf{u}_{i_1}, \ldots, \mathbf{u}_{i_t}$ which are: 1. \mathbb{Q} -independent and 2. account for $\frac{1}{d}$ -fraction of the edges

• An \mathbb{R}^d -norm is special if \exists non-parallel unit vectors $\mathbf{u}_1, \ldots, \mathbf{u}_{kd+1}$ s.t. $\forall i$

$$u_i \in \mathsf{Span}_\mathbb{Q}(u_1,\ldots,u_k)$$

- Given *n* points in \mathbb{R}^d , suppose $> \frac{d}{2}n \log n$ pairs are at unit distance.
- Define a graph with points as vertices and unit distance pairs as edges
- Let $\mathbf{u}_1, \ldots, \mathbf{u}_m$ be the unit directions appearing as edges
- Any k of the vectors \mathbf{u}_i span (over \mathbb{Q}) at most kd of the vectors
- Edmonds matroid decomposition thm \Rightarrow can partition the vectors into $d~\mathbb{Q}\text{-independent sets}$
- There exist $\mathbf{u}_{i_1}, \ldots, \mathbf{u}_{i_t}$ which are: 1. \mathbb{Q} -independent and 2. account for $\frac{1}{d}$ -fraction of the edges

• Relabel so that $\mathbf{u}_1, \dots, \mathbf{u}_t$ are: 1. Q-independent and 2. account for $\frac{1}{d}$ -fraction of the edges

• An \mathbb{R}^d -norm is special if \exists non-parallel unit vectors $\mathbf{u}_1, \ldots, \mathbf{u}_{kd+1}$ s.t. $\forall i$

$$u_i \in \mathsf{Span}_\mathbb{Q}(u_1,\ldots,u_k)$$

- Given *n* points in \mathbb{R}^d , suppose $> \frac{d}{2}n \log n$ pairs are at unit distance.
- Define a graph with points as vertices and unit distance pairs as edges
- Let $\mathbf{u}_1, \ldots, \mathbf{u}_m$ be the unit directions appearing as edges
- Any k of the vectors \mathbf{u}_i span (over \mathbb{Q}) at most kd of the vectors
- Edmonds matroid decomposition thm \Rightarrow can partition the vectors into $d~\mathbb{Q}\text{-independent sets}$
- There exist $\mathbf{u}_{i_1}, \ldots, \mathbf{u}_{i_t}$ which are: 1. \mathbb{Q} -independent and 2. account for $\frac{1}{d}$ -fraction of the edges

• Relabel so that $\mathbf{u}_1, \dots, \mathbf{u}_t$ are: 1. \mathbb{Q} -independent and 2. account for $> \frac{1}{2}n \log n$ edges

- Given *n* points in \mathbb{R}^d and \mathbb{Q} -independent unit directions $\mathbf{u}_1, \ldots, \mathbf{u}_t$ s.t.
 - there are $> \frac{1}{2}n \log n$ pairs at unit distance along these directions

- Given *n* points in \mathbb{R}^d and \mathbb{Q} -independent unit directions $\mathbf{u}_1, \ldots, \mathbf{u}_t$ s.t.
 - there are $> \frac{1}{2}n \log n$ pairs at unit distance along these directions

- Given *n* points in \mathbb{R}^d and \mathbb{Q} -independent unit directions $\mathbf{u}_1, \ldots, \mathbf{u}_t$ s.t.
 - there are $> \frac{1}{2}n \log n$ pairs at unit distance along these directions

- Given *n* points in \mathbb{R}^d and \mathbb{Q} -independent unit directions $\mathbf{u}_1, \ldots, \mathbf{u}_t$ s.t.
 - there are $> \frac{1}{2}n \log n$ pairs at unit distance along these directions
- Define a graph G with points as vertices and such pairs as edges

- Given *n* points in \mathbb{R}^d and \mathbb{Q} -independent unit directions $\mathbf{u}_1, \ldots, \mathbf{u}_t$ s.t.
 - there are $> \frac{1}{2}n \log n$ pairs at unit distance along these directions
- Define a graph G with points as vertices and such pairs as edges
- Can assume G is connected

- Given *n* points in \mathbb{R}^d and \mathbb{Q} -independent unit directions $\mathbf{u}_1, \ldots, \mathbf{u}_t$ s.t.
 - there are $> \frac{1}{2}n \log n$ pairs at unit distance along these directions
- Define a graph G with points as vertices and such pairs as edges
- Can assume G is connected
- Can embed this graph into the grid graph \mathbb{Z}^t

- Given *n* points in \mathbb{R}^d and \mathbb{Q} -independent unit directions $\mathbf{u}_1, \ldots, \mathbf{u}_t$ s.t.
 - there are $> \frac{1}{2}n \log n$ pairs at unit distance along these directions
- Define a graph G with points as vertices and such pairs as edges
- Can assume G is connected
- Can embed this graph into the grid graph \mathbb{Z}^t
 - Fix a vertex v_0 and translate it to $\mathbf{0} \in \mathbb{R}^d$

- Given *n* points in \mathbb{R}^d and \mathbb{Q} -independent unit directions $\mathbf{u}_1, \ldots, \mathbf{u}_t$ s.t.
 - there are $> \frac{1}{2}n \log n$ pairs at unit distance along these directions
- Define a graph G with points as vertices and such pairs as edges
- Can assume G is connected
- Can embed this graph into the grid graph \mathbb{Z}^t
 - Fix a vertex v_0 and translate it to $\mathbf{0} \in \mathbb{R}^d$
 - ▶ For every vertex $v \exists a v_0 v$ -path which gives $v = a_1 \mathbf{u}_1 + \ldots + a_t \mathbf{u}_t, a_i \in \mathbb{Z}$

- Given *n* points in \mathbb{R}^d and \mathbb{Q} -independent unit directions $\mathbf{u}_1, \ldots, \mathbf{u}_t$ s.t.
 - there are $> \frac{1}{2}n \log n$ pairs at unit distance along these directions
- Define a graph G with points as vertices and such pairs as edges
- Can assume G is connected
- Can embed this graph into the grid graph \mathbb{Z}^t
 - Fix a vertex v_0 and translate it to $\mathbf{0} \in \mathbb{R}^d$
 - ▶ For every vertex $v \exists a v_0 v$ -path which gives $v = a_1 \mathbf{u}_1 + \ldots + a_t \mathbf{u}_t, a_i \in \mathbb{Z}$ Embed v to $(a_1, \ldots, a_t) \in \mathbb{Z}^t$

- Given *n* points in \mathbb{R}^d and \mathbb{Q} -independent unit directions $\mathbf{u}_1, \ldots, \mathbf{u}_t$ s.t.
 - there are $> \frac{1}{2}n \log n$ pairs at unit distance along these directions
- Define a graph G with points as vertices and such pairs as edges
- Can assume G is connected
- $\bullet\,$ Can embed this graph into the grid graph \mathbb{Z}^t
 - Fix a vertex v_0 and translate it to $\mathbf{0} \in \mathbb{R}^d$
 - ▶ For every vertex $v \exists a v_0 v$ -path which gives $v = a_1 \mathbf{u}_1 + \ldots + a_t \mathbf{u}_t, a_i \in \mathbb{Z}$ Embed v to $(a_1, \ldots, a_t) \in \mathbb{Z}^t$

- Given *n* points in \mathbb{R}^d and \mathbb{Q} -independent unit directions $\mathbf{u}_1, \ldots, \mathbf{u}_t$ s.t.
 - there are $> \frac{1}{2}n \log n$ pairs at unit distance along these directions
- Define a graph G with points as vertices and such pairs as edges
- Can assume G is connected
- Can embed this graph into the grid graph \mathbb{Z}^t
 - Fix a vertex v_0 and translate it to $\mathbf{0} \in \mathbb{R}^d$
 - ▶ For every vertex $v \exists a v_0 v$ -path which gives $v = a_1 \mathbf{u}_1 + \ldots + a_t \mathbf{u}_t, a_i \in \mathbb{Z}$ Embed v to $(a_1, \ldots, a_t) \in \mathbb{Z}^t$

Matija Bucić (IAS and Princeton)

Unit and distinct distances in typical norms

- Given *n* points in \mathbb{R}^d and \mathbb{Q} -independent unit directions $\mathbf{u}_1, \ldots, \mathbf{u}_t$ s.t.
 - there are $> \frac{1}{2}n \log n$ pairs at unit distance along these directions
- Define a graph G with points as vertices and such pairs as edges
- Can assume G is connected
- $\bullet\,$ Can embed this graph into the grid graph \mathbb{Z}^t
 - Fix a vertex v_0 and translate it to $\mathbf{0} \in \mathbb{R}^d$
 - ▶ For every vertex $v \exists a v_0 v$ -path which gives $v = a_1 \mathbf{u}_1 + \ldots + a_t \mathbf{u}_t, a_i \in \mathbb{Z}$ Embed v to $(a_1, \ldots, a_t) \in \mathbb{Z}^t$

- Given *n* points in \mathbb{R}^d and \mathbb{Q} -independent unit directions $\mathbf{u}_1, \ldots, \mathbf{u}_t$ s.t.
 - there are $> \frac{1}{2}n \log n$ pairs at unit distance along these directions
- Define a graph G with points as vertices and such pairs as edges
- Can assume G is connected
- Can embed this graph into the grid graph \mathbb{Z}^t
 - Fix a vertex v_0 and translate it to $\mathbf{0} \in \mathbb{R}^d$
 - ▶ For every vertex $v \exists a v_0 v$ -path which gives $v = a_1 \mathbf{u}_1 + \ldots + a_t \mathbf{u}_t, a_i \in \mathbb{Z}$ Embed v to $(a_1, \ldots, a_t) \in \mathbb{Z}^t$

- Given *n* points in \mathbb{R}^d and \mathbb{Q} -independent unit directions $\mathbf{u}_1, \ldots, \mathbf{u}_t$ s.t.
 - there are $> \frac{1}{2}n \log n$ pairs at unit distance along these directions
- Define a graph G with points as vertices and such pairs as edges
- Can assume G is connected
- $\bullet\,$ Can embed this graph into the grid graph \mathbb{Z}^t
 - Fix a vertex v_0 and translate it to $\mathbf{0} \in \mathbb{R}^d$
 - ▶ For every vertex $v \exists a v_0 v$ -path which gives $v = a_1 \mathbf{u}_1 + \ldots + a_t \mathbf{u}_t, a_i \in \mathbb{Z}$ Embed v to $(a_1, \ldots, a_t) \in \mathbb{Z}^t$

- Given *n* points in \mathbb{R}^d and \mathbb{Q} -independent unit directions $\mathbf{u}_1, \ldots, \mathbf{u}_t$ s.t.
 - there are $> \frac{1}{2}n \log n$ pairs at unit distance along these directions
- Define a graph G with points as vertices and such pairs as edges
- Can assume G is connected
- $\bullet\,$ Can embed this graph into the grid graph \mathbb{Z}^t
 - Fix a vertex v_0 and translate it to $\mathbf{0} \in \mathbb{R}^d$
 - ▶ For every vertex $v \exists a v_0 v$ -path which gives $v = a_1 \mathbf{u}_1 + \ldots + a_t \mathbf{u}_t, a_i \in \mathbb{Z}$ Embed v to $(a_1, \ldots, a_t) \in \mathbb{Z}^t$
 - ► Well-defined by Q-independence

- Given *n* points in \mathbb{R}^d and \mathbb{Q} -independent unit directions $\mathbf{u}_1, \ldots, \mathbf{u}_t$ s.t.
 - there are $> \frac{1}{2}n \log n$ pairs at unit distance along these directions
- Define a graph G with points as vertices and such pairs as edges
- Can assume G is connected
- $\bullet\,$ Can embed this graph into the grid graph \mathbb{Z}^t
 - Fix a vertex v_0 and translate it to $\mathbf{0} \in \mathbb{R}^d$
 - ▶ For every vertex $v \exists a v_0 v$ -path which gives $v = a_1 \mathbf{u}_1 + \ldots + a_t \mathbf{u}_t, a_i \in \mathbb{Z}$ Embed v to $(a_1, \ldots, a_t) \in \mathbb{Z}^t$
 - ► Well-defined by Q-independence
 - Any edge of G corresponds to $\pm \mathbf{u}_i$ so changes only one coordinate by one

- Given *n* points in \mathbb{R}^d and \mathbb{Q} -independent unit directions $\mathbf{u}_1, \ldots, \mathbf{u}_t$ s.t.
 - there are $> \frac{1}{2}n \log n$ pairs at unit distance along these directions
- Define a graph G with points as vertices and such pairs as edges
- Can assume G is connected
- $\bullet\,$ Can embed this graph into the grid graph \mathbb{Z}^t
 - Fix a vertex v_0 and translate it to $\mathbf{0} \in \mathbb{R}^d$
 - ▶ For every vertex $v \exists a v_0 v$ -path which gives $v = a_1 \mathbf{u}_1 + \ldots + a_t \mathbf{u}_t, a_i \in \mathbb{Z}$ Embed v to $(a_1, \ldots, a_t) \in \mathbb{Z}^t$
 - ► Well-defined by ℚ-independence
 - Any edge of G corresponds to $\pm \mathbf{u}_i$ so changes only one coordinate by one
- Bollobás-Leader edge-isoperimetric inequality for the grid \implies G can have at most $\frac{1}{2}n \log n$ edges.

• What happens for typical norms in other classical problems?

- What happens for typical norms in other classical problems?
- For example, Hadwiger-Nelson problem

- What happens for typical norms in other classical problems?
- For example, Hadwiger-Nelson problem

Theorem (Alon, B., Sauermann)

Chromatic number of the unit distance graph of \mathbb{R}^2 is 4 for most norms.

- What happens for typical norms in other classical problems?
- For example, Hadwiger-Nelson problem

Theorem (Alon, B., Sauermann)

Chromatic number of the unit distance graph of \mathbb{R}^2 is 4 for most norms.

• In \mathbb{R}^d we get an upper bound of 2^d .

- What happens for typical norms in other classical problems?
- For example, Hadwiger-Nelson problem

Theorem (Alon, B., Sauermann)

Chromatic number of the unit distance graph of \mathbb{R}^2 is 4 for most norms.

• In \mathbb{R}^d we get an upper bound of 2^d .

Question

Is χ of the unit distance graph of \mathbb{R}^d subexponential for most norms?

An ℝ^d-norm is special if ∃ non-parallel unit vectors u₁,..., u_{kd+1} s.t. ∀i
 u_i ∈ Span_Q(u₁,..., u_k)

- An ℝ^d-norm is special if ∃ non-parallel unit vectors u₁,..., u_{kd+1} s.t. ∀i
 u_i ∈ Span_Q(u₁,..., u_k)
- Fix the "dependencies":

- An ℝ^d-norm is special if ∃ non-parallel unit vectors u₁,..., u_{kd+1} s.t. ∀i
 u_i ∈ Span_Q(u₁,..., u_k)
- Fix the "dependencies": a (kd + 1) imes k rational matrix A and

- a rational angle $\eta > 0$

- An \mathbb{R}^d -norm is special if \exists non-parallel unit vectors $\mathbf{u}_1, \dots, \mathbf{u}_{kd+1}$ s.t. $\forall i$ $\mathbf{u}_i \in \operatorname{Span}_{\mathbb{Q}}(\mathbf{u}_1, \dots, \mathbf{u}_k)$
- Fix the "dependencies": a $(kd+1)\times k$ rational matrix A and a rational angle $\eta>0$
- An \mathbb{R}^d -norm is (A, η) -special if \exists non-parallel unit vectors $\mathbf{u}_1, \ldots, \mathbf{u}_{kd+1}$ s.t.

- An ℝ^d-norm is special if ∃ non-parallel unit vectors u₁,..., u_{kd+1} s.t. ∀i
 u_i ∈ Span_Q(u₁,..., u_k)
- Fix the "dependencies": a $(kd+1)\times k$ rational matrix A and a rational angle $\eta>0$
- An \mathbb{R}^d -norm is (A, η) -special if \exists non-parallel unit vectors $\mathbf{u}_1, \ldots, \mathbf{u}_{kd+1}$ s.t.

•
$$\mathbf{u}_j = \sum_{i=1}^k A_{ji} \mathbf{u}_i$$
 for all $j = 1, ..., dk + 1$.

- An ℝ^d-norm is special if ∃ non-parallel unit vectors u₁,..., u_{kd+1} s.t. ∀i
 u_i ∈ Span_Q(u₁,..., u_k)
- Fix the "dependencies": a $(kd+1)\times k$ rational matrix A and a rational angle $\eta>0$
- An \mathbb{R}^d -norm is (A, η) -special if \exists non-parallel unit vectors $\mathbf{u}_1, \ldots, \mathbf{u}_{kd+1}$ s.t.

•
$$\mathbf{u}_j = \sum_{i=1}^k A_{ji} \mathbf{u}_i$$
 for all $j = 1, ..., dk + 1$.

• \angle (**u**_{*i*}, **u**_{*j*}) > η , holds for all distinct *i* and *j*

- An \mathbb{R}^d -norm is special if \exists non-parallel unit vectors $\mathbf{u}_1, \ldots, \mathbf{u}_{kd+1}$ s.t. $\forall i$ $\mathbf{u}_i \in \operatorname{Span}_{\mathbb{Q}}(\mathbf{u}_1, \ldots, \mathbf{u}_k)$
- Fix the "dependencies": a $(kd+1)\times k$ rational matrix A and a rational angle $\eta>0$
- An \mathbb{R}^d -norm is (A, η) -special if \exists non-parallel unit vectors $\mathbf{u}_1, \ldots, \mathbf{u}_{kd+1}$ s.t.

•
$$\mathbf{u}_j = \sum_{i=1}^k A_{ji} \mathbf{u}_i$$
 for all $j = 1, \dots, dk + 1$.

• \angle (**u**_{*i*}, **u**_{*j*}) > η , holds for all distinct *i* and *j*

• Goal: for any fixed A, η the set of (A, η) -special norms is nowhere dense

•
$$\mathbf{u}_j = \sum_{i=1}^k A_{ji} \mathbf{u}_i$$
 for all $j = 1, ..., dk + 1$.

- \angle (**u**_{*i*}, **u**_{*j*}) > η , holds for all distinct *i* and *j*
- Goal: for any fixed A, η the set of (A, η) -special norms is nowhere dense
- Fix a norm $\|.\|$ with unit ball B

•
$$\mathbf{u}_j = \sum_{i=1}^k A_{ji} \mathbf{u}_i$$
 for all $j = 1, ..., dk + 1$.

- \angle (**u**_{*i*}, **u**_{*j*}) > η , holds for all distinct *i* and *j*
- Goal: for any fixed A, η the set of (A, η) -special norms is nowhere dense
- Fix a norm $\|.\|$ with unit ball B
- We need to find an open set close to $\|.\|$ not containing any (A,η) -special norm

•
$$\mathbf{u}_j = \sum_{i=1}^k A_{ji} \mathbf{u}_i$$
 for all $j = 1, \dots, dk + 1$.

- \angle (**u**_{*i*}, **u**_{*j*}) > η , holds for all distinct *i* and *j*
- Fix a norm $\|.\|$ with unit ball B
- We need to find an open set close to $\|.\|$ not containing any (A,η) -special norm

•
$$\mathbf{u}_j = \sum_{i=1}^k A_{ji} \mathbf{u}_i$$
 for all $j = 1, ..., dk + 1$.

- \angle (**u**_{*i*}, **u**_{*j*}) > η , holds for all distinct *i* and *j*
- Fix a norm $\|.\|$ with unit ball B
- We need to find an open set close to $\|.\|$ not containing any (A,η) -special norm
- Approximate B by a convex 0-symmetric polytope with small facets

•
$$\mathbf{u}_j = \sum_{i=1}^k A_{ji} \mathbf{u}_i$$
 for all $j = 1, \dots, dk + 1$.

- \angle (**u**_{*i*}, **u**_{*j*}) > η , holds for all distinct *i* and *j*
- Fix a norm $\|.\|$ with unit ball B which is convex, 0-symetric polytope
- We need to find an open set close to $\|.\|$ not containing any (A,η) -special norm

•
$$\mathbf{u}_j = \sum_{i=1}^k A_{ji} \mathbf{u}_i$$
 for all $j = 1, \dots, dk + 1$.

- \angle (**u**_{*i*}, **u**_{*j*}) > η , holds for all distinct *i* and *j*
- Fix a norm $\|.\|$ with unit ball B which is convex, 0-symetric polytope
- We need to find an open set close to $\|.\|$ not containing any (A,η) -special norm
- If there are 2f facets for each x ∈ [-ε, ε]^f we define B(x) to be the polytope obtained by translating i-th facet pair by x_i

•
$$\mathbf{u}_j = \sum_{i=1}^k A_{ji} \mathbf{u}_i$$
 for all $j = 1, \dots, dk + 1$.

- \angle (**u**_{*i*}, **u**_{*j*}) > η , holds for all distinct *i* and *j*
- Fix a norm $\|.\|$ with unit ball B which is convex, 0-symetric polytope
- We need to find an open set close to $\|.\|$ not containing any (A, η) -special norm
- If there are 2f facets for each x ∈ [-ε, ε]^f we define B(x) to be the polytope obtained by translating i-th facet pair by x_i
- An (A, η) -special $B(\mathbf{x})$ must have its bad $\mathbf{u}_1, \ldots, \mathbf{u}_{kd+1}$ on different facets.

•
$$\mathbf{u}_j = \sum_{i=1}^k A_{ji} \mathbf{u}_i$$
 for all $j = 1, \dots, dk + 1$.

- \angle ($\mathbf{u}_i, \mathbf{u}_j$) > η , holds for all distinct i and j
- Fix a norm $\|.\|$ with unit ball B which is convex, 0-symetric polytope
- We need to find an open set close to $\|.\|$ not containing any (A,η) -special norm
- If there are 2f facets for each x ∈ [-ε, ε]^f we define B(x) to be the polytope obtained by translating i-th facet pair by x_i
- An (A, η) -special $B(\mathbf{x})$ must have its bad $\mathbf{u}_1, \ldots, \mathbf{u}_{kd+1}$ on different facets.
- If we fix which facets they belong to, this allows us to express kd + 1 of x_i's as linear functions of dk variables given by the coordinates of u₁,..., u_k

•
$$\mathbf{u}_j = \sum_{i=1}^k A_{ji} \mathbf{u}_i$$
 for all $j = 1, ..., dk + 1$.

- \angle (**u**_{*i*}, **u**_{*j*}) > η , holds for all distinct *i* and *j*
- Fix a norm $\|.\|$ with unit ball B which is convex, 0-symetric polytope
- We need to find an open set close to $\|.\|$ not containing any (A,η) -special norm
- If there are 2f facets for each x ∈ [-ε, ε]^f we define B(x) to be the polytope obtained by translating i-th facet pair by x_i
- All **x** for which $B(\mathbf{x})$ is (A, η) -special lie on finite union of affine hyperplanes.

•
$$\mathbf{u}_j = \sum_{i=1}^k A_{ji} \mathbf{u}_i$$
 for all $j = 1, ..., dk + 1$.

- \angle ($\mathbf{u}_i, \mathbf{u}_j$) > η , holds for all distinct *i* and *j*
- Fix a norm $\|.\|$ with unit ball B which is convex, 0-symetric polytope
- We need to find an open set close to $\|.\|$ not containing any (A, η) -special norm
- If there are 2f facets for each x ∈ [-ε,ε]^f we define B(x) to be the polytope obtained by translating *i*-th facet pair by x_i
- All **x** for which $B(\mathbf{x})$ is (A, η) -special lie on finite union of affine hyperplanes.
- There exists a subbox of $[-\varepsilon, \varepsilon]^f$ with no (A, η) -special $B(\mathbf{x})$

•
$$\mathbf{u}_j = \sum_{i=1}^k A_{ji} \mathbf{u}_i$$
 for all $j = 1, ..., dk + 1$.

- \angle (**u**_{*i*}, **u**_{*j*}) > η , holds for all distinct *i* and *j*
- Fix a norm $\|.\|$ with unit ball B which is convex, 0-symetric polytope
- We need to find an open set close to $\|.\|$ not containing any (A, η) -special norm
- If there are 2f facets for each x ∈ [-ε, ε]^f we define B(x) to be the polytope obtained by translating i-th facet pair by x_i
- All **x** for which $B(\mathbf{x})$ is (A, η) -special lie on finite union of affine hyperplanes.
- There exists a subbox of $[-\varepsilon, \varepsilon]^f$ with no (A, η) -special $B(\mathbf{x})$
- A tiny open ball around the centre of the subbox has no (A, η) -special norms