Unit and distinct distances in typical norms

Matija Bucić

Institute for Advanced Study and Princeton University

based on joint work with Noga Alon and Lisa Sauermann
Question (Erdős, 1946)

What is the maximum number of unit distances defined by n points in $(\mathbb{R}^2, \| \cdot \|_2)$?
Question (Erdős, 1946)

What is the maximum number of unit distances defined by \(n \) points in \(\mathbb{R}^2 \)?

Let \(U_{\|\cdot\|_2}(n) \) denote the answer.
Question (Erdős, 1946)

What is the maximum number of unit distances defined by \(n \) points in \((\mathbb{R}^2, \|\cdot\|_2)\)?

Let \(U_{\|\cdot\|_2}(n) \) denote the answer.

\[
U_{\|\cdot\|_2}(n) \leq O(n^{4/3})
\]

Spencer, Szemerédi, Trotter ’84
Question (Erdős, 1946)

What is the maximum number of unit distances defined by n points in $(\mathbb{R}^2, \|\cdot\|_2)$?

Let $U_{\|\cdot\|_2}(n)$ denote the answer.

\[
\Omega \left(n^{1 + \frac{1}{\log \log n}} \right) \leq U_{\|\cdot\|_2}(n) \leq O(n^{4/3})
\]

- Erdős ’46
- Spencer, Szemerédi, Trotter ’84
Question (Erdős, 1946)

What is the maximum number of unit distances defined by n points in \((\mathbb{R}^2, \|\cdot\|_2)\)?

Let \(U_{\|\cdot\|_2}(n)\) denote the answer.

In 2D:

\[
\Omega \left(n^{1 + \frac{1}{\log \log n}} \right) \leq U_{\|\cdot\|_2}(n) \leq O(n^{4/3})
\]

Erdős ’46

Spencer, Szemerédi, Trotter ’84

In 3D:

\[
\frac{n^4}{3} + o(1) \leq U_{\|\cdot\|_2}(n) \leq O(n^{3/2 - \varepsilon})
\]

Zahl ’19

In 4 and more D:

\[U_{\|\cdot\|_2}(n) = \Theta(n^2)\]
Erdős unit distance problem

Question (Erdős, 1946)

What is the maximum number of unit distances defined by \(n \) points in \((\mathbb{R}^d, \| \cdot \|_2)\)?

Let \(U_{\| \cdot \|_2}(n) \) denote the answer.

In 2D:

\[
\Omega \left(n^{1+\frac{1}{\log \log n}} \right) \leq U_{\| \cdot \|_2}(n) \leq O(n^{4/3})
\]

Erdős ’46

Spencer, Szemerédi, Trotter ’84
Erdős unit distance problem

Question (Erdős, 1946)

What is the maximum number of unit distances defined by n points in $(\mathbb{R}^d, \|\cdot\|_2)$?

Let $U_{\|\cdot\|_2}(n)$ denote the answer.

In 2D:

$$
\Omega \left(n^{1 + \frac{1}{\log \log n}} \right) \leq U_{\|\cdot\|_2}(n) \leq O\left(n^{4/3} \right)
$$

- Erdős '46
- Spencer, Szemerédi, Trotter '84

In 3D:

$$
U_{\|\cdot\|_2}(n) \leq O\left(n^{3/2 - \varepsilon} \right)
$$

- Zahl '19
Question (Erdős, 1946)

What is the maximum number of unit distances defined by n points in $(\mathbb{R}^d, \|\cdot\|_2)$?

Let $U_{\|\cdot\|_2}(n)$ denote the answer.

In 2D: \[\Omega \left(n^{1 + \frac{1}{\log \log n}} \right) \leq U_{\|\cdot\|_2}(n) \leq O(\sqrt[3]{n^4}) \]

Erdős ’46

Spencer, Szemerédi, Trotter ’84

In 3D: \[n^{4/3 + o(1)} \leq U_{\|\cdot\|_2}(n) \leq O(n^{3/2 - \varepsilon}) \]

Erdős ’60

Zahl ’19
Erdős unit distance problem

Question (Erdős, 1946)

What is the maximum number of unit distances defined by n points in \((\mathbb{R}^d, \|\cdot\|_2)\)?

Let \(U_{\|\cdot\|_2}(n)\) denote the answer.

In 2D:

\[
\Omega \left(n^{1+\frac{1}{\log \log n}} \right) \leq U_{\|\cdot\|_2}(n) \leq O(n^{4/3})
\]

- Erdős ’46
- Spencer, Szemerédi, Trotter ’84

In 3D:

\[
\frac{n^{4/3} + o(1)}{\text{Erdős ’60}} \leq U_{\|\cdot\|_2}(n) \leq O(n^{3/2-\varepsilon})
\]

- Zahl ’19

In 4 and more D:

\(U_{\|\cdot\|_2}(n) = \Theta(n^2)\)
General normed spaces

Question (Erdős, Ulam 1980)

What is the max number $U_{||.||}(n)$ of unit distances defined by n points in $(\mathbb{R}^d, ||.||)$?
General normed spaces

Question (Erdős, Ulam 1980)

What is the max number $U_{||\cdot||}(n)$ of unit distances defined by n points in $(\mathbb{R}^d, ||\cdot||)$?

- Erdős 1980: $U_{\ell_1}(n) = (1 + o(1)) \cdot \frac{n^2}{4}$ in \mathbb{R}^2.

Matija Bucić (IAS and Princeton) Unit and distinct distances in typical norms Budapest, April 2023
Question (Erdős, Ulam 1980)

What is the max number \(U_{\|\cdot\|}(n) \) of unit distances defined by \(n \) points in \((\mathbb{R}^d, \|\cdot\|) \)?

- Erdős 1980: \(U_{\ell_1}(n) = (1 + o(1)) \cdot \frac{n^2}{4} \) in \(\mathbb{R}^2 \).
- Brass 1996: \(U_{\|\cdot\|}(n) = (1 + o(1)) \cdot \frac{n^2}{4} \) for any not strictly convex \(\mathbb{R}^2 \) norm \(\|\cdot\| \).
Question (Erdős, Ulam 1980)

What is the max number \(U_{|| \cdot ||}(n) \) of unit distances defined by \(n \) points in \((\mathbb{R}^d, || \cdot ||)\)?

- Erdős 1980: \(U_{\ell_1}(n) = (1 + o(1)) \cdot \frac{n^2}{4} \) in \(\mathbb{R}^2 \).
- Brass 1996: \(U_{|| \cdot ||}(n) = (1 + o(1)) \cdot \frac{n^2}{4} \) for any not strictly convex \(\mathbb{R}^2 \) norm \(|| \cdot || \) has line segment in unit sphere.
General normed spaces

Question (Erdős, Ulam 1980)

What is the max number $U_{||.||} (n)$ of unit distances defined by n points in $(\mathbb{R}^d, ||.||)$?

- Erdős 1980: $U_{\ell_1} (n) = (1 + o(1)) \cdot \frac{n^2}{4}$ in \mathbb{R}^2.

- Brass 1996: $U_{||.||} (n) = (1 + o(1)) \cdot \frac{n^2}{4}$ for any not strictly convex \mathbb{R}^2 norm $||.||$ has line segment in unit sphere.

- Brass conjectured that ℓ_∞ maximizes $U_{||.||} (n)$ among \mathbb{R}^d norms $||.||$.
Question (Erdős, Ulam 1980)

What is the max number $U_{\| \cdot \|}(n)$ of unit distances defined by n points in $(\mathbb{R}^d, \| \cdot \|)$?

- Erdős 1980: $U_{\ell_1}(n) = (1 + o(1)) \cdot \frac{n^2}{4}$ in \mathbb{R}^2.
- Brass 1996: $U_{\| \cdot \|}(n) = (1 + o(1)) \cdot \frac{n^2}{4}$ for any not strictly convex \mathbb{R}^2 norm $\| \cdot \|$

Brass conjectured that ℓ_∞ maximizes $U_{\| \cdot \|}(n)$ among \mathbb{R}^d norms $\| \cdot \|$.

- Swanepoel 2018: $U_{\| \cdot \|}(n) \leq (1 + o(1)) \cdot (1 - 2^{1-d}) \cdot \frac{n^2}{2}$ for any \mathbb{R}^d-norm $\| \cdot \|$

 - Tight for ℓ_∞ norm in \mathbb{R}^d
General normed spaces

Question (Erdős, Ulam 1980)

What is the max number $U_{||\cdot||}(n)$ of unit distances defined by n points in $(\mathbb{R}^d, ||\cdot||)$?

- Erdős 1980: $U_{\ell_1}(n) = (1 + o(1)) \cdot \frac{n^2}{4}$ in \mathbb{R}^2.
- Brass 1996: $U_{||\cdot||}(n) = (1 + o(1)) \cdot \frac{n^2}{4}$ for any not strictly convex \mathbb{R}^2 norm $||\cdot||$ has line segment in unit sphere.
- Brass conjectured that ℓ_∞ maximizes $U_{||\cdot||}(n)$ among \mathbb{R}^d norms $||\cdot||$.
- Swanepoel 2018: - $U_{||\cdot||}(n) \leq (1 + o(1)) \cdot (1 - 2^{1-d}) \cdot \frac{n^2}{2}$ for any \mathbb{R}^d-norm $||\cdot||$
 - Tight for ℓ_∞ norm in \mathbb{R}^d
- Klee 1959: “Most” norms on \mathbb{R}^d are strictly convex.
Maximization problem among strictly convex norms

Question (Erdős, Ulam 1980)

What is the max number $U_{\|\cdot\|}(n)$ of unit distances defined by n points in $(\mathbb{R}^d, \|\cdot\|)$?

- Klee 1959: “Most” norms on \mathbb{R}^d are strictly convex.
Maximization problem among strictly convex norms

Question (Erdős, Ulam 1980)

What is the max number $U_{||.||}(n)$ of unit distances defined by n points in $(\mathbb{R}^d, ||.||)$?

- Klee 1959: “Most” norms on \mathbb{R}^d are strictly convex.

- $U_{||.||}(n) \leq O(n^{4/3})$ for any strictly convex \mathbb{R}^2 norm $||.||$
Maximization problem among strictly convex norms

Question (Erdős, Ulam 1980)

What is the max number $U_{\| \cdot \|}(n)$ of unit distances defined by n points in $(\mathbb{R}^d, \| \cdot \|)$?

- Klee 1959: “Most” norms on \mathbb{R}^d are strictly convex.

- $U_{\| \cdot \|}(n) \leq O(n^{4/3})$ for any strictly convex \mathbb{R}^2 norm $\| \cdot \|$

- Brass; Valtr; Solymosi, Szabó: \exists an \mathbb{R}^2 norm with $U_{\| \cdot \|}(n) = \Theta(n^{4/3})$
Maximization problem among strictly convex norms

Question (Erdős, Ulam 1980)

What is the max number $U_{\|\cdot\|}(n)$ of unit distances defined by n points in $(\mathbb{R}^d, \|\cdot\|)$?

- Klee 1959: “Most” norms on \mathbb{R}^d are strictly convex.

- $U_{\|\cdot\|}(n) \leq O(n^{4/3})$ for any strictly convex \mathbb{R}^2 norm $\|\cdot\|$.

- Brass; Valtr; Solymosi, Szabó: \exists an \mathbb{R}^2 norm with $U_{\|\cdot\|}(n) = \Theta(n^{4/3})$.

- Zahl: \exists an \mathbb{R}^3 norm with $U_{\|\cdot\|}(n) = \Theta(n^{3/2})$.
Question (Erdős, Ulam 1980)

What is the max number $U_{\|\cdot\|}(n)$ of unit distances defined by n points in $(\mathbb{R}^d, \|\cdot\|)$?
Typical normed spaces

Question (Erdős, Ulam 1980)

What is the max number $U_{||.||}(n)$ of unit distances defined by n points in $(\mathbb{R}^d, ||.||)$?

- Folklore: for any norm $U_{||.||}(n) \geq (\frac{1}{2} - o(1))n \log_2 n$.

Matija Bucić (IAS and Princeton) Unit and distinct distances in typical norms Budapest, April 2023
Question (Erdős, Ulam 1980)

What is the max number $U_{\|\cdot\|}(n)$ of unit distances defined by n points in $(\mathbb{R}^d, \|\cdot\|)$?

- Folklore: for any norm $U_{\|\cdot\|}(n) \geq (\frac{1}{2} - o(1))n \log_2 n$.
 - Let $n = 2^k$
Question (Erdős, Ulam 1980)

What is the max number $U_{\|\cdot\|}(n)$ of unit distances defined by n points in $(\mathbb{R}^d, \|\cdot\|)$?

- **Folklore:** for any norm $U_{\|\cdot\|}(n) \geq (\frac{1}{2} - o(1))n \log_2 n$.
 - Let $n = 2^k$
 - Choose k non-parallel unit vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$
Question (Erdős, Ulam 1980)

What is the max number $U_{\|\cdot\|}(n)$ of unit distances defined by n points in $(\mathbb{R}^d, \|\cdot\|)$?

- Folklore: for any norm $U_{\|\cdot\|}(n) \geq (\frac{1}{2} - o(1))n \log_2 n$.
 - Let $n = 2^k$
 - Choose k non-parallel unit vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$
 - Take as the point set $\{\sum_{i \in S} \mathbf{v}_i \mid S \subseteq [k]\}$
Typical normed spaces

Question (Erdős, Ulam 1980)

What is the max number $U_{||.||}(n)$ of unit distances defined by n points in $(\mathbb{R}^d, ||.||)$?

- **Folklore**: for any norm $U_{||.||}(n) \geq (\frac{1}{2} - o(1))n \log_2 n$.

- **Brass 1996**: Is there an \mathbb{R}^2-norm for which $U_{||.||}(n) = \Theta(n \log n)$?
Typical normed spaces

Question (Erdős, Ulam 1980)

What is the max number $U_{\|\cdot\|}(n)$ of unit distances defined by n points in $(\mathbb{R}^d, \|\cdot\|)$?

- **Folklore**: for any norm $U_{\|\cdot\|}(n) \geq (\frac{1}{2} - o(1))n \log_2 n$.
- **Brass 1996**: Is there an \mathbb{R}^2-norm for which $U_{\|\cdot\|}(n) = \Theta(n \log n)$?
- **Matoušek 2011**: For “most” \mathbb{R}^2-norms $U_{\|\cdot\|}(n) \leq O(n \log n \log \log n)$.
Typical normed spaces

Question (Erdős, Ulam 1980)

What is the max number $U_{\| \cdot \|}(n)$ of unit distances defined by n points in $(\mathbb{R}^d, \| \cdot \|)$?

- **Folklore**: for any norm $U_{\| \cdot \|}(n) \geq \left(\frac{1}{2} - o(1) \right) n \log_2 n$.

- **Brass 1996**: Is there an \mathbb{R}^2-norm for which $U_{\| \cdot \|}(n) = \Theta(n \log n)$?

- **Matoušek 2011**: For “most” \mathbb{R}^2-norms $U_{\| \cdot \|}(n) \leq O(n \log n \log \log n)$.

- **Brass-Moser-Pach 2006**: For $d \geq 3$ show that $\forall \mathbb{R}^d$-norms $U_{\| \cdot \|}(n) \gg n \log n$.
Typical normed spaces

Question (Erdős, Ulam 1980)

What is the max number \(U_{\|\cdot\|}(n) \) of unit distances defined by \(n \) points in \((\mathbb{R}^d, \|\cdot\|)\)?

- Folklore: for any norm \(U_{\|\cdot\|}(n) \geq (\frac{1}{2} - o(1))n \log_2 n \).
- Brass 1996: Is there an \(\mathbb{R}^2 \)-norm for which \(U_{\|\cdot\|}(n) = \Theta(n \log n) \)?
- Matoušek 2011: For “most” \(\mathbb{R}^2 \)-norms \(U_{\|\cdot\|}(n) \leq O(n \log n \log \log n) \).
- Brass-Moser-Pach 2006: For \(d \geq 3 \) show that \(\forall \mathbb{R}^d \)-norms \(U_{\|\cdot\|}(n) \gg n \log n \)

 For \(d \geq 4 \) is there an \(\mathbb{R}^d \)-norm s.t. \(U_{\|\cdot\|}(n) = o(n^2) \)?
Typical normed spaces

Question (Erdős, Ulam 1980)

What is the max number $U_{\|\|}(n)$ of unit distances defined by n points in $(\mathbb{R}^d, \|\|)$?

- Folklore: for any norm $U_{\|\|}(n) \geq (\frac{1}{2} - o(1))n \log_2 n$.
- Brass 1996: Is there an \mathbb{R}^2-norm for which $U_{\|\|}(n) = \Theta(n \log n)$?
- Matoušek 2011: For “most” \mathbb{R}^2-norms $U_{\|\|}(n) \leq O(n \log n \log \log n)$.
- Brass-Moser-Pach 2006: For $d \geq 3$ show that $\forall \mathbb{R}^d$-norms $U_{\|\|}(n) \gg n \log n$.

 For $d \geq 4$ is there an \mathbb{R}^d-norm s.t. $U_{\|\|}(n) = o(n^2)$?

Theorem (Alon, B., Sauermann, 2023+)

For “most” \mathbb{R}^d-norms $U_{\|\|}(n) \leq \frac{d}{2} \cdot n \log_2 n$
Typical normed spaces

Question (Erdős, Ulam 1980)

What is the max number $U_{\| \cdot \|}(n)$ of unit distances defined by n points in $(\mathbb{R}^d, \| \cdot \|)$?

- Folklore: for any norm $U_{\| \cdot \|}(n) \geq (\frac{1}{2} - o(1)) n \log_2 n$.
- **Brass** 1996: Is there an \mathbb{R}^2-norm for which $U_{\| \cdot \|}(n) = \Theta(n \log n)$?
- **Matoušek** 2011: For “most” \mathbb{R}^2-norms $U_{\| \cdot \|}(n) \leq O(n \log n \log \log n)$.
- **Brass-Moser-Pach** 2006: For $d \geq 3$ show that \forall \mathbb{R}^d-norms $U_{\| \cdot \|}(n) \gg n \log n$

 For $d \geq 4$ is there an \mathbb{R}^d-norm s.t. $U_{\| \cdot \|}(n) = o(n^2)$?

Theorem (Alon, B., Sauermann, 2023+)

For “most” \mathbb{R}^d-norms $U_{\| \cdot \|}(n) \leq \frac{d}{2} \cdot n \log_2 n$

For all \mathbb{R}^d-norms $U_{\| \cdot \|}(n) \geq \frac{d - 1 - o(1)}{2} \cdot n \log_2 n$
Question (Erdős, 1946)

What is the min number of distinct distances defined by n points in \((\mathbb{R}^d, \|\cdot\|_2)\)?
Question (Erdős, 1946)

What is the min number of distinct distances defined by n points in\((\mathbb{R}^d, \|\cdot\|_2)\)?

Let \(D_{\|\cdot\|_2}(n)\) denote the answer.
Erdős distinct distances problem

Question (Erdős, 1946)

What is the min number of distinct distances defined by \(n \) points in \((\mathbb{R}^d, \| . \|_2) \)?

Let \(D_{\| . \|_2}(n) \) denote the answer.

In 2D:

\[
D_{\| . \|_2}(n) \leq O \left(\frac{n}{\sqrt{\log n}} \right)
\]

Erdős ’46
Erdős distinct distances problem

Question (Erdős, 1946)

What is the min number of distinct distances defined by \(n \) points in \((\mathbb{R}^d, \| \cdot \|_2) \)?

Let \(D_{\| \cdot \|_2}(n) \) denote the answer.

In 2D:

\[
\Omega \left(\frac{n}{\log n} \right) \leq D_{\| \cdot \|_2}(n) \leq O \left(\frac{n}{\sqrt{\log n}} \right)
\]

Guth, Katz ’15

Erdős ’46

Matija Bucić (IAS and Princeton) Unit and distinct distances in typical norms Budapest, April 2023
Erdős distinct distances problem

Question (Erdős, 1946)

What is the min number of distinct distances defined by n points in $(\mathbb{R}^d, \| \cdot \|_2)$?

Let $D_{\| \cdot \|_2}(n)$ denote the answer.

In 2D:

\[
\Omega \left(\frac{n}{\log n} \right) \leq D_{\| \cdot \|_2}(n) \leq O \left(\frac{n}{\sqrt{\log n}} \right)
\]

Guth, Katz '15

Erdős '46

In 3 and more D:

\[
D_{\| \cdot \|_2}(n) \leq O(n^{2/d})
\]

Erdős '46
Question (Swanepoel 1997)

What is the min $\# D_{\|\cdot\|}(n)$ of distinct distances defined by n points in $(\mathbb{R}^d, \|\cdot\|)$?
General normed spaces

Question (Swanepoel 1997)

What is the min \(\# D_{||\cdot||}(n) \) of distinct distances defined by \(n \) points in \((\mathbb{R}^d, ||\cdot||) \)?

- \(D_{||\cdot||}(n) \leq n - 1 \) for any \(||\cdot|| \).

Matija Bucić (IAS and Princeton) Unit and distinct distances in typical norms Budapest, April 2023
Question (Swanepoel 1997)

What is the min \# \(D_{\| \|}(n) \) of distinct distances defined by \(n \) points in \((\mathbb{R}^d, \| \|)\)?

- \(D_{\| \|}(n) \leq n - 1 \) for any \(\| \| \).

- Brass conjectured: \(D_{\| \|}(n) \leq o(n) \) for all \(\mathbb{R}^d \)-norms \(\| \| \).
General normed spaces

Question (Swanepoel 1997)

What is the min $\# D_{\|\cdot\|}(n)$ of distinct distances defined by n points in $(\mathbb{R}^d, \|\cdot\|)$?

- $D_{\|\cdot\|}(n) \leq n - 1$ for any $\|\cdot\|$.

- Brass conjectured: $D_{\|\cdot\|}(n) \leq o(n)$ for all \mathbb{R}^d-norms $\|\cdot\|$.

- Our result on unit distance problem $\Rightarrow D_{\|\cdot\|}(n) \geq \frac{n-1}{d \log n}$ for most \mathbb{R}^d-norms $\|\cdot\|$.
General normed spaces

Question (Swanepoel 1997)

What is the min \(\# D_{\| \cdot \|}(n) \) of distinct distances defined by \(n \) points in \((\mathbb{R}^d, \| \cdot \|)\)?

- \(D_{\| \cdot \|}(n) \leq n - 1 \) for any \(\| \cdot \| \).
- Brass conjectured: \(D_{\| \cdot \|}(n) \leq o(n) \) for all \(\mathbb{R}^d \)-norms \(\| \cdot \| \).
- Our result on unit distance problem \(\Rightarrow D_{\| \cdot \|}(n) \geq \frac{n-1}{d \log n} \) for most \(\mathbb{R}^d \)-norms \(\| \cdot \| \).

Theorem (Alon, B., Sauermann, 2023+)

For most \(\mathbb{R}^d \)-norms

\[
D_{\| \cdot \|}(n) = n - o(n)
\]
What do we mean by “most”
What do we mean by “most”

- A norm on \mathbb{R}^d \leftrightarrow convex, compact, 0-symmetric body in \mathbb{R}^d
What do we mean by “most”

- A norm on \mathbb{R}^d \leftrightarrow convex, compact, 0-symmetric body in \mathbb{R}^d

- Hausdorff distance: maximum distance between a point of one of the bodies to the other
What do we mean by “most”

- A norm on \mathbb{R}^d corresponds to a convex, compact, 0-symmetric body in \mathbb{R}^d

- Hausdorff distance: maximum distance between a point of one of the bodies to the other

- Defines a metric (and hence a topology) on the space of \mathbb{R}^d-norms
What do we mean by “most”

- A norm on $\mathbb{R}^d \leftrightarrow$ convex, compact, 0-symmetric body in \mathbb{R}^d

- Hausdorff distance: maximum distance between a point of one of the bodies to the other

- Defines a metric (and hence a topology) on the space of \mathbb{R}^d-norms

- “most” := all but a meagre set
What do we mean by “most”

- A norm on $\mathbb{R}^d \iff$ convex, compact, 0-symmetric body in \mathbb{R}^d

- Hausdorff distance: maximum distance between a point of one of the bodies to the other

- Defines a metric (and hence a topology) on the space of \mathbb{R}^d-norms

- “most” := all but a countable union of nowhere dense sets
What do we mean by “most”

- A norm on $\mathbb{R}^d \leftrightarrow$ convex, compact, 0-symmetric body in \mathbb{R}^d
- Hausdorff distance: maximum distance between a point of one of the bodies to the other
- Defines a metric (and hence a topology) on the space of \mathbb{R}^d-norms
- “most” := all but a meagre set

 countable union of nowhere dense sets

- Klee 1959: the space of norms makes a Baire space
What do we mean by “most”

- A norm on $\mathbb{R}^d \leftrightarrow$ convex, compact, 0-symmetric body in \mathbb{R}^d

- Hausdorff distance: maximum distance between a point of one of the bodies to the other

- Defines a metric (and hence a topology) on the space of \mathbb{R}^d-norms

- “most” := all but a meagre set
 countable union of nowhere dense sets

- Klee 1959: the space of norms makes a Baire space
 complements of meagre sets are dense
Proof strategy

What makes a norm "special"?

An \mathbb{R}^d-norm is special if \exists non-parallel unit vectors u_1, \ldots, u_{kd+1} s.t. $\forall i, u_i \in \text{Span}(u_1, \ldots, u_k)$.

Step 1: Show the set of special norms is meagre

Step 2: Show that non-special norms have $U\parallel .\parallel(\mathbb{n}) \leq d^2 n \log n$.

Matija Bucić (IAS and Princeton)

Unit and distinct distances in typical norms

Budapest, April 2023
What makes a norm “special”?

An R^d-norm is special if there exist non-parallel unit vectors $u_1, \ldots, u_{kd + 1}$ such that for all i:

$$u_i \in \text{Span}(u_1, \ldots, u_k)$$

Step 1: Show the set of special norms is meagre

Step 2: Show that non-special norms have

$$\|U\|_\infty(n) \leq d^2 n \log n.$$
Proof strategy

- What makes a norm “special”?
- An \mathbb{R}^d-norm is special if \exists non-parallel unit vectors u_1, \ldots, u_{kd+1} s.t. $\forall i$
 \[u_i \in \text{Span}_\mathbb{Q}(u_1, \ldots, u_k) \]
What makes a norm “special”?

An \mathbb{R}^d-norm is special if \exists non-parallel unit vectors u_1, \ldots, u_{kd+1} s.t. $\forall i$

$$u_i \in \text{Span}_{\mathbb{Q}}(u_1, \ldots, u_k)$$

Step 1: Show the set of special norms is meagre
Proof strategy

- What makes a norm “special”?

 An \mathbb{R}^d-norm is special if \exists non-parallel unit vectors u_1, \ldots, u_{kd+1} s.t. $\forall i$

 $u_i \in \text{Span}_\mathbb{Q}(u_1, \ldots, u_k)$

- **Step 1:** Show the set of special norms is meagre

- **Step 2:** Show that non-special norms have $U_{\|\cdot\|}(n) \leq \frac{d}{2} n \log n.$
Typical norms have small unit distance function

- An \mathbb{R}^d-norm is special if \exists non-parallel unit vectors u_1, \ldots, u_{kd+1} s.t. $\forall i$

 $u_i \in \text{Span}_\mathbb{Q}(u_1, \ldots, u_k)$
Typical norms have small unit distance function

- An \mathbb{R}^d-norm is special if \exists non-parallel unit vectors u_1, \ldots, u_{kd+1} s.t. $\forall i$
 \[u_i \in \text{Span}_Q(u_1, \ldots, u_k) \]

- Given n points in \mathbb{R}^d, suppose $> \frac{d}{2} n \log n$ pairs are at unit distance.
Typical norms have small unit distance function

- An \mathbb{R}^d-norm is special if \exists non-parallel unit vectors u_1, \ldots, u_{kd+1} s.t. $\forall i$

 $$u_i \in \text{Span}_\mathbb{Q}(u_1, \ldots, u_k)$$

- Given n points in \mathbb{R}^d, suppose $> \frac{d}{2} n \log n$ pairs are at unit distance.

- Define a graph with points as vertices and unit distance pairs as edges
An \mathbb{R}^d-norm is special if \exists non-parallel unit vectors $\mathbf{u}_1, \ldots, \mathbf{u}_{kd+1}$ s.t. $\forall i$

$$\mathbf{u}_i \in \text{Span}_\mathbb{Q}(\mathbf{u}_1, \ldots, \mathbf{u}_k)$$

Given n points in \mathbb{R}^d, suppose $> \frac{d}{2} n \log n$ pairs are at unit distance.

Define a graph with points as vertices and unit distance pairs as edges

Let $\mathbf{u}_1, \ldots, \mathbf{u}_m$ be the unit directions appearing as edges
Typical norms have small unit distance function

- An \mathbb{R}^d-norm is special if \exists non-parallel unit vectors u_1, \ldots, u_{kd+1} s.t. $\forall i$
 $$u_i \in \text{Span}_\mathbb{Q}(u_1, \ldots, u_k)$$
- Given n points in \mathbb{R}^d, suppose $> \frac{d^2}{2} n \log n$ pairs are at unit distance.
- Define a graph with points as vertices and unit distance pairs as edges.
- Let u_1, \ldots, u_m be the unit directions appearing as edges.
Typical norms have small unit distance function

- An \mathbb{R}^d-norm is special if \exists non-parallel unit vectors u_1, \ldots, u_{kd+1} s.t. $\forall i$
 $$\quad u_i \in \text{Span}_\mathbb{Q}(u_1, \ldots, u_k)$$

- Given n points in \mathbb{R}^d, suppose $> \frac{d}{2} n \log n$ pairs are at unit distance.

- Define a graph with points as vertices and unit distance pairs as edges

- Let u_1, \ldots, u_m be the unit directions appearing as edges

- Any k of the vectors u_i span (over \mathbb{Q}) at most kd of the vectors
Typical norms have small unit distance function

- An \mathbb{R}^d-norm is special if \exists non-parallel unit vectors u_1, \ldots, u_{kd+1} s.t. $\forall i$

$$u_i \in \text{Span}_\mathbb{Q}(u_1, \ldots, u_k)$$

- Given n points in \mathbb{R}^d, suppose $> \frac{d}{2} n \log n$ pairs are at unit distance.
- Define a graph with points as vertices and unit distance pairs as edges
- Let u_1, \ldots, u_m be the unit directions appearing as edges
- Any k of the vectors u_i span (over \mathbb{Q}) at most kd of the vectors
- Edmonds matroid decomposition thm \Rightarrow can partition the vectors into d \mathbb{Q}-independent sets
An \mathbb{R}^d-norm is special if \exists non-parallel unit vectors u_1, \ldots, u_{kd+1} s.t. $\forall i$

$$u_i \in \text{Span}_\mathbb{Q}(u_1, \ldots, u_k)$$

Given n points in \mathbb{R}^d, suppose $> \frac{d}{2} n \log n$ pairs are at unit distance.

Define a graph with points as vertices and unit distance pairs as edges.

Let u_1, \ldots, u_m be the unit directions appearing as edges.

Any k of the vectors u_i span (over \mathbb{Q}) at most kd of the vectors.

Edmonds matroid decomposition thm \Rightarrow can partition the vectors into d \mathbb{Q}-independent sets.

There exist u_{i_1}, \ldots, u_{i_t} which are: 1. \mathbb{Q}-independent and 2. account for $\frac{1}{d}$-fraction of the edges.
An \mathbb{R}^d-norm is special if \exists non-parallel unit vectors u_1, \ldots, u_{kd+1} s.t. $\forall i$

$$u_i \in \text{Span}_\mathbb{Q}(u_1, \ldots, u_k)$$

Given n points in \mathbb{R}^d, suppose $\frac{d}{2} \cdot n \log n$ pairs are at unit distance.

Define a graph with points as vertices and unit distance pairs as edges.

Let u_1, \ldots, u_m be the unit directions appearing as edges.

Any k of the vectors u_i span (over \mathbb{Q}) at most kd of the vectors.

Edmonds matroid decomposition thm \Rightarrow can partition the vectors into d \mathbb{Q}-independent sets.

There exist u_{i_1}, \ldots, u_{i_t} which are: 1. \mathbb{Q}-independent and

2. account for $\frac{1}{d}$-fraction of the edges.

Relabel so that u_1, \ldots, u_t are: 1. \mathbb{Q}-independent and

2. account for $\frac{1}{d}$-fraction of the edges.
Typical norms have small unit distance function

- An \mathbb{R}^d-norm is special if \exists non-parallel unit vectors $\mathbf{u}_1, \ldots, \mathbf{u}_{kd+1}$ s.t. $\forall i$
 \[\mathbf{u}_i \in \text{Span}_\mathbb{Q}(\mathbf{u}_1, \ldots, \mathbf{u}_k) \]

- Given n points in \mathbb{R}^d, suppose $\frac{d}{2} n \log n$ pairs are at unit distance.
- Define a graph with points as vertices and unit distance pairs as edges
- Let $\mathbf{u}_1, \ldots, \mathbf{u}_m$ be the unit directions appearing as edges
- Any k of the vectors \mathbf{u}_i span (over \mathbb{Q}) at most kd of the vectors
- Edmonds matroid decomposition thm \Rightarrow can partition the vectors into d \mathbb{Q}-independent sets
- There exist $\mathbf{u}_{i_1}, \ldots, \mathbf{u}_{i_t}$ which are: 1. \mathbb{Q}-independent and
 2. account for $\frac{1}{d}$-fraction of the edges
- Relabel so that $\mathbf{u}_1, \ldots, \mathbf{u}_t$ are: 1. \mathbb{Q}-independent and
 2. account for $\geq \frac{1}{2} n \log n$ edges
Typical norms have small unit distance function

Given n points in \mathbb{R}^d and \mathbb{Q}-independent unit directions u_1, \ldots, u_t s.t.

- there are $\frac{1}{2} n \log n$ pairs at unit distance along these directions
Typical norms have small unit distance function

- Given n points in \mathbb{R}^d and \mathbb{Q}-independent unit directions u_1, \ldots, u_t s.t.
 - there are $\frac{1}{2} n \log n$ pairs at unit distance along these directions
Typical norms have small unit distance function

- Given n points in \mathbb{R}^d and \mathbb{Q}-independent unit directions u_1, \ldots, u_t s.t.
 - there are $> \frac{1}{2} n \log n$ pairs at unit distance along these directions
Typical norms have small unit distance function

- Given n points in \mathbb{R}^d and \mathbb{Q}-independent unit directions u_1, \ldots, u_t s.t.
 - there are $> \frac{1}{2} n \log n$ pairs at unit distance along these directions
- Define a graph G with points as vertices and such pairs as edges
Given n points in \mathbb{R}^d and \mathbb{Q}-independent unit directions u_1, \ldots, u_t s.t.
- there are $\frac{1}{2} n \log n$ pairs at unit distance along these directions

Define a graph G with points as vertices and such pairs as edges

Can assume G is connected
• Given n points in \mathbb{R}^d and \mathbb{Q}-independent unit directions u_1, \ldots, u_t s.t.
 ▶ there are $> \frac{1}{2} n \log n$ pairs at unit distance along these directions

• Define a graph G with points as vertices and such pairs as edges

• Can assume G is connected

• Can embed this graph into the grid graph \mathbb{Z}^t
Typical norms have small unit distance function

- Given n points in \mathbb{R}^d and \mathbb{Q}-independent unit directions u_1, \ldots, u_t s.t.
 - there are $> \frac{1}{2} n \log n$ pairs at unit distance along these directions
- Define a graph G with points as vertices and such pairs as edges
- Can assume G is connected
- Can embed this graph into the grid graph \mathbb{Z}^t
 - Fix a vertex v_0 and translate it to $0 \in \mathbb{R}^d$
Typical norms have small unit distance function

- Given n points in \mathbb{R}^d and \mathbb{Q}-independent unit directions $\mathbf{u}_1, \ldots, \mathbf{u}_t$ s.t.
 - there are $> \frac{1}{2} n \log n$ pairs at unit distance along these directions
- Define a graph G with points as vertices and such pairs as edges
- Can assume G is connected
- Can embed this graph into the grid graph \mathbb{Z}^t
 - Fix a vertex v_0 and translate it to $0 \in \mathbb{R}^d$
 - For every vertex v \exists a v_0v-path which gives $v = a_1 \mathbf{u}_1 + \ldots + a_t \mathbf{u}_t, a_i \in \mathbb{Z}$
Given \(n \) points in \(\mathbb{R}^d \) and \(\mathbb{Q} \)-independent unit directions \(u_1, \ldots, u_t \) s.t.

- there are \(> \frac{1}{2} n \log n \) pairs at unit distance along these directions

Define a graph \(G \) with points as vertices and such pairs as edges

Can assume \(G \) is connected

Can embed this graph into the grid graph \(\mathbb{Z}^t \)

- Fix a vertex \(v_0 \) and translate it to \(0 \in \mathbb{R}^d \)
- For every vertex \(v \) \(\exists \) a \(v_0v \)-path which gives \(v = a_1u_1 + \ldots + a_tu_t, a_i \in \mathbb{Z} \)
 Embed \(v \) to \((a_1, \ldots, a_t) \in \mathbb{Z}^t \)
Typical norms have small unit distance function

- Given \(n \) points in \(\mathbb{R}^d \) and \(\mathbb{Q} \)-independent unit directions \(u_1, \ldots, u_t \) s.t.
 - there are \(> \frac{1}{2} n \log n \) pairs at unit distance along these directions
- Define a graph \(G \) with points as vertices and such pairs as edges
- Can assume \(G \) is connected
- Can embed this graph into the grid graph \(\mathbb{Z}^t \)
 - Fix a vertex \(v_0 \) and translate it to \(0 \in \mathbb{R}^d \)
 - For every vertex \(v \) \(\exists \) a \(v_0 \nu \)-path which gives \(v = a_1u_1 + \ldots + a_tu_t, a_i \in \mathbb{Z} \)
 Embed \(v \) to \((a_1, \ldots, a_t) \in \mathbb{Z}^t \)
Typical norms have small unit distance function

- Given n points in \mathbb{R}^d and \mathbb{Q}-independent unit directions u_1, \ldots, u_t s.t.
 - there are $> \frac{1}{2} n \log n$ pairs at unit distance along these directions
- Define a graph G with points as vertices and such pairs as edges
- Can assume G is connected
- Can embed this graph into the grid graph \mathbb{Z}^t
 - Fix a vertex v_0 and translate it to $0 \in \mathbb{R}^d$
 - For every vertex v \exists a v_0v-path which gives $v = a_1u_1 + \ldots + a_tu_t$, $a_i \in \mathbb{Z}$
 Embed v to $(a_1, \ldots, a_t) \in \mathbb{Z}^t$
Typical norms have small unit distance function

- Given n points in \mathbb{R}^d and \mathbb{Q}-independent unit directions u_1, \ldots, u_t s.t.
 - there are $> \frac{1}{2} n \log n$ pairs at unit distance along these directions
- Define a graph G with points as vertices and such pairs as edges
- Can assume G is connected
- Can embed this graph into the grid graph \mathbb{Z}^t
 - Fix a vertex v_0 and translate it to $0 \in \mathbb{R}^d$
 - For every vertex v \exists a v_0v-path which gives $v = a_1u_1 + \ldots + a_tu_t$, $a_i \in \mathbb{Z}$
 - Embed v to $(a_1, \ldots, a_t) \in \mathbb{Z}^t$
Typical norms have small unit distance function

- Given n points in \mathbb{R}^d and \mathbb{Q}-independent unit directions u_1, \ldots, u_t s.t.
 - there are $> \frac{1}{2} n \log n$ pairs at unit distance along these directions
- Define a graph G with points as vertices and such pairs as edges
- Can assume G is connected
- Can embed this graph into the grid graph \mathbb{Z}^t
 - Fix a vertex v_0 and translate it to $0 \in \mathbb{R}^d$
 - For every vertex $v \exists$ a v_0v-path which gives $v = a_1u_1 + \ldots + a_tu_t$, $a_i \in \mathbb{Z}$
 Embed v to $(a_1, \ldots, a_t) \in \mathbb{Z}^t$
Typical norms have small unit distance function

- Given \(n \) points in \(\mathbb{R}^d \) and \(\mathbb{Q} \)-independent unit directions \(u_1, \ldots, u_t \) s.t.
 - there are \(> \frac{1}{2} n \log n \) pairs at unit distance along these directions
- Define a graph \(G \) with points as vertices and such pairs as edges
- Can assume \(G \) is connected
- Can embed this graph into the grid graph \(\mathbb{Z}^t \)
 - Fix a vertex \(v_0 \) and translate it to \(0 \in \mathbb{R}^d \)
 - For every vertex \(v \) \(\exists \) a \(v_0 \nu \)-path which gives \(v = a_1 u_1 + \ldots + a_t u_t, a_i \in \mathbb{Z} \)
 Embed \(v \) to \((a_1, \ldots, a_t) \in \mathbb{Z}^t \)
Typical norms have small unit distance function

- Given n points in \mathbb{R}^d and \mathbb{Q}-independent unit directions u_1, \ldots, u_t s.t.
 - there are $\frac{1}{2} n \log n$ pairs at unit distance along these directions
- Define a graph G with points as vertices and such pairs as edges
- Can assume G is connected
- Can embed this graph into the grid graph \mathbb{Z}^t
 - Fix a vertex v_0 and translate it to $0 \in \mathbb{R}^d$
 - For every vertex $v \exists$ a v_0-v-path which gives $v = a_1 u_1 + \ldots + a_t u_t, a_i \in \mathbb{Z}$
 - Embed v to $(a_1, \ldots, a_t) \in \mathbb{Z}^t$
 - Well-defined by \mathbb{Q}-independence
Typical norms have small unit distance function

- Given n points in \mathbb{R}^d and \mathbb{Q}-independent unit directions u_1, \ldots, u_t s.t.
 - there are $> \frac{1}{2} n \log n$ pairs at unit distance along these directions
- Define a graph G with points as vertices and such pairs as edges
- Can assume G is connected
- Can embed this graph into the grid graph \mathbb{Z}^t
 - Fix a vertex v_0 and translate it to $0 \in \mathbb{R}^d$
 - For every vertex $v \exists$ a v_0-v-path which gives $v = a_1u_1 + \ldots + a_tu_t, a_i \in \mathbb{Z}$
 Embed v to $(a_1, \ldots, a_t) \in \mathbb{Z}^t$
 - Well-defined by \mathbb{Q}-independence
 - Any edge of G corresponds to $\pm u_i$ so changes only one coordinate by one

Matija Bucić (IAS and Princeton) Unit and distinct distances in typical norms Budapest, April 2023
Typical norms have small unit distance function

- Given \(n \) points in \(\mathbb{R}^d \) and \(\mathbb{Q} \)-independent unit directions \(u_1, \ldots, u_t \) s.t.
 - there are \(> \frac{1}{2}n \log n \) pairs at unit distance along these directions

- Define a graph \(G \) with points as vertices and such pairs as edges

- Can assume \(G \) is connected

- Can embed this graph into the grid graph \(\mathbb{Z}^t \)
 - Fix a vertex \(v_0 \) and translate it to \(0 \in \mathbb{R}^d \)
 - For every vertex \(v \) \(\exists \) a \(v_0 \)-path which gives \(v = a_1 u_1 + \ldots + a_t u_t, a_i \in \mathbb{Z} \)
 Embed \(v \) to \((a_1, \ldots, a_t) \in \mathbb{Z}^t \)
 - Well-defined by \(\mathbb{Q} \)-independence
 - Any edge of \(G \) corresponds to \(\pm u_i \), so changes only one coordinate by one

- Bollobás-Leader edge-isoperimetric inequality for the grid \(\Rightarrow \)
 \(G \) can have at most \(\frac{1}{2}n \log n \) edges.
Concluding remarks and open problems

What happens for typical norms in other classical problems?

For example, Hadwiger-Nelson problem

Theorem (Alon, B., Sauermann)

Chromatic number of the unit distance graph of \mathbb{R}^2 is 4 for most norms.

In \mathbb{R}^d we get an upper bound of 2^d.

Question

Is χ of the unit distance graph of \mathbb{R}^d subexponential for most norms?
Concluding remarks and open problems

- What happens for typical norms in other classical problems?

For example, Hadwiger-Nelson problem

Theorem (Alon, B., Sauermann)

Chromatic number of the unit distance graph of \mathbb{R}^2 is 4 for most norms.

In \mathbb{R}^d we get an upper bound of 2^d.

Question

Is χ of the unit distance graph of \mathbb{R}^d subexponential for most norms?
Concluding remarks and open problems

- What happens for typical norms in other classical problems?
- For example, Hadwiger-Nelson problem
Concluding remarks and open problems

- What happens for typical norms in other classical problems?
- For example, Hadwiger-Nelson problem

Theorem (Alon, B., Sauermann)

Chromatic number of the unit distance graph of \mathbb{R}^2 is 4 for most norms.
Concluding remarks and open problems

- What happens for typical norms in other classical problems?
- For example, Hadwiger-Nelson problem

Theorem (Alon, B., Sauermann)

Chromatic number of the unit distance graph of \mathbb{R}^2 is 4 for most norms.

- In \mathbb{R}^d we get an upper bound of 2^d.
Concluding remarks and open problems

- What happens for typical norms in other classical problems?
- For example, Hadwiger-Nelson problem

Theorem (Alon, B., Sauermann)

Chromatic number of the unit distance graph of \mathbb{R}^2 is 4 for most norms.

- In \mathbb{R}^d we get an upper bound of 2^d.

Question

Is χ of the unit distance graph of \mathbb{R}^d subexponential for most norms?
Matija Bucić (IAS and Princeton)

Unit and distinct distances in typical norms

Budapest, April 2023
Special norms are meagre

- An \mathbb{R}^d-norm is special if \exists non-parallel unit vectors u_1, \ldots, u_{kd+1} s.t. $\forall i$
 $$u_i \in \text{Span}_\mathbb{Q}(u_1, \ldots, u_k)$$
Special norms are meagre

- An \mathbb{R}^d-norm is special if \exists non-parallel unit vectors u_1, \ldots, u_{kd+1} s.t. $\forall i$
 $$u_i \in \text{Span}_\mathbb{Q}(u_1, \ldots, u_k)$$
- Fix the “dependencies”:
Special norms are meagre

- An \mathbb{R}^d-norm is special if \exists non-parallel unit vectors u_1, \ldots, u_{kd+1} s.t. $\forall i$

 \[u_i \in \text{Span}_\mathbb{Q}(u_1, \ldots, u_k) \]

- Fix the “dependencies”: - a $(kd + 1) \times k$ rational matrix A and
 - a rational angle $\eta > 0$
Special norms are meagre

- An \(\mathbb{R}^d \)-norm is special if \(\exists \) non-parallel unit vectors \(u_1, \ldots, u_{kd+1} \) s.t. \(\forall i \)
 \[u_i \in \text{Span}_\mathbb{Q}(u_1, \ldots, u_k) \]

- Fix the “dependencies”: - a \((kd + 1) \times k\) rational matrix \(A \) and
 - a rational angle \(\eta > 0 \)

- An \(\mathbb{R}^d \)-norm is \((A, \eta)\)-special if \(\exists \) non-parallel unit vectors \(u_1, \ldots, u_{kd+1} \) s.t.
Special norms are meagre

- An \mathbb{R}^d-norm is special if \exists non-parallel unit vectors u_1, \ldots, u_{kd+1} s.t. $\forall i$

 \[u_i \in \text{Span}_\mathbb{Q}(u_1, \ldots, u_k) \]

- Fix the “dependencies”: - a $(kd + 1) \times k$ rational matrix A and
 - a rational angle $\eta > 0$

- An \mathbb{R}^d-norm is (A, η)-special if \exists non-parallel unit vectors u_1, \ldots, u_{kd+1} s.t.

 - $u_j = \sum_{i=1}^{k} A_{ji}u_i$ for all $j = 1, \ldots, dk + 1$.

Matija Bucić (IAS and Princeton) Unit and distinct distances in typical norms Budapest, April 2023
Special norms are meagre

- An \mathbb{R}^d-norm is special if \exists non-parallel unit vectors u_1, \ldots, u_{kd+1} s.t. $\forall i$
 $$u_i \in \text{Span}_\mathbb{Q}(u_1, \ldots, u_k)$$

- Fix the “dependencies”: - a $(kd + 1) \times k$ rational matrix A and
 - a rational angle $\eta > 0$

- An \mathbb{R}^d-norm is (A, η)-special if \exists non-parallel unit vectors u_1, \ldots, u_{kd+1} s.t.
 - $u_j = \sum_{i=1}^{k} A_{ji} u_i$ for all $j = 1, \ldots, dk + 1$.
 - $\angle(u_i, u_j) > \eta$, holds for all distinct i and j
An \mathbb{R}^d-norm is special if \exists non-parallel unit vectors $\mathbf{u}_1, \ldots, \mathbf{u}_{kd+1}$ s.t. $\forall i$

$$\mathbf{u}_i \in \text{Span}_\mathbb{Q} (\mathbf{u}_1, \ldots, \mathbf{u}_k)$$

Fix the “dependencies”: - a $(kd + 1) \times k$ rational matrix A and

- a rational angle $\eta > 0$

An \mathbb{R}^d-norm is (A, η)-special if \exists non-parallel unit vectors $\mathbf{u}_1, \ldots, \mathbf{u}_{kd+1}$ s.t.

- $\mathbf{u}_j = \sum_{i=1}^{k} A_{ji} \mathbf{u}_i$ for all $j = 1, \ldots, dk + 1$.
- $\angle (\mathbf{u}_i, \mathbf{u}_j) > \eta$, holds for all distinct i and j

Goal: for any fixed A, η the set of (A, η)-special norms is nowhere dense
Special norms are meagre

- An \mathbb{R}^d-norm is (A, η)-special if \exists non-parallel unit vectors u_1, \ldots, u_{kd+1} s.t.
 - $u_j = \sum_{i=1}^{k} A_{ji} u_i$ for all $j = 1, \ldots, dk + 1$.
 - $\angle(u_i, u_j) > \eta$, holds for all distinct i and j

- **Goal**: for any fixed A, η the set of (A, η)-special norms is nowhere dense

- Fix a norm $\| \cdot \|$ with unit ball B
Special norms are meagre

- An \mathbb{R}^d-norm is (A, η)-special if \exists non-parallel unit vectors u_1, \ldots, u_{kd+1} s.t.
 - $u_j = \sum_{i=1}^{k} A_{ji} u_i$ for all $j = 1, \ldots, dk + 1$.
 - $\angle(u_i, u_j) > \eta$, holds for all distinct i and j.

- **Goal**: for any fixed A, η the set of (A, η)-special norms is nowhere dense.

- Fix a norm $\|\cdot\|$ with unit ball B.

- We need to find an open set close to $\|\cdot\|$ not containing any (A, η)-special norm.
Special norms are meagre

- An \mathbb{R}^d-norm is (A, η)-special if \exists non-parallel unit vectors u_1, \ldots, u_{kd+1} s.t.
 - $u_j = \sum_{i=1}^k A_{ji}u_i$ for all $j = 1, \ldots, dk + 1$.
 - $\angle(u_i, u_j) > \eta$, holds for all distinct i and j.

- Fix a norm $\| \cdot \|$ with unit ball B

- We need to find an open set close to $\| \cdot \|$ not containing any (A, η)-special norm.
Special norms are meagre

- An \mathbb{R}^d-norm is (A, η)-special if \exists non-parallel unit vectors u_1, \ldots, u_{kd+1} s.t.

 - $u_j = \sum_{i=1}^{k} A_{ji} u_i$ for all $j = 1, \ldots, dk + 1$.
 - $\angle(u_i, u_j) > \eta$, holds for all distinct i and j

- Fix a norm $\|\cdot\|$ with unit ball B

- We need to find an open set close to $\|\cdot\|$ not containing any (A, η)-special norm

- Approximate B by a convex 0-symmetric polytope with small facets
Special norms are meagre

- An \mathbb{R}^d-norm is (A, η)-special if \exists non-parallel unit vectors u_1, \ldots, u_{kd+1} s.t.
 - $u_j = \sum_{i=1}^{k} A_{ji} u_i$ for all $j = 1, \ldots, dk + 1$.
 - $\angle(u_i, u_j) > \eta$, holds for all distinct i and j

- Fix a norm $\|\cdot\|$ with unit ball B which is convex, 0-symmetric polytope

- We need to find an open set close to $\|\cdot\|$ not containing any (A, η)-special norm
Special norms are meagre

- An \mathbb{R}^d-norm is (A, η)-special if \exists non-parallel unit vectors u_1, \ldots, u_{kd+1} s.t.
 - $u_j = \sum_{i=1}^{k} A_{ji} u_i$ for all $j = 1, \ldots, dk + 1$.
 - $\angle(u_i, u_j) > \eta$, holds for all distinct i and j

- Fix a norm $\|\cdot\|$ with unit ball B which is convex, 0-symmetric polytope

- We need to find an open set close to $\|\cdot\|$ not containing any (A, η)-special norm

- If there are $2f$ facets for each $x \in [-\varepsilon, \varepsilon]^f$ we define $B(x)$ to be the polytope obtained by translating i-th facet pair by x_i
Special norms are meagre

- An \mathbb{R}^d-norm is (A, η)-special if \exists non-parallel unit vectors u_1, \ldots, u_{kd+1} s.t.
 - $u_j = \sum_{i=1}^{k} A_{ji} u_i$ for all $j = 1, \ldots, dk + 1$.
 - $\angle(u_i, u_j) > \eta$, holds for all distinct i and j.

- Fix a norm $\| \cdot \|$ with unit ball B which is convex, 0-symmetric polytope.

- We need to find an open set close to $\| \cdot \|$ not containing any (A, η)-special norm.

- If there are $2f$ facets for each $x \in [-\varepsilon, \varepsilon]^f$ we define $B(x)$ to be the polytope obtained by translating i-th facet pair by x_i.

- An (A, η)-special $B(x)$ must have its bad u_1, \ldots, u_{kd+1} on different facets.
Special norms are meagre

- An \mathbb{R}^d-norm is (A, η)-special if \exists non-parallel unit vectors u_1, \ldots, u_{kd+1} s.t.
 - $u_j = \sum_{i=1}^{k} A_{ji} u_i$ for all $j = 1, \ldots, dk + 1$.
 - $\langle u_i, u_j \rangle > \eta$, holds for all distinct i and j.

- Fix a norm $\|\cdot\|$ with unit ball B which is convex, 0-symmetric polytope.

- We need to find an open set close to $\|\cdot\|$ not containing any (A, η)-special norm.

- If there are $2f$ facets for each $x \in [-\varepsilon, \varepsilon]^f$ we define $B(x)$ to be the polytope obtained by translating i-th facet pair by x_i.

- An (A, η)-special $B(x)$ must have its bad u_1, \ldots, u_{kd+1} on different facets.

- If we fix which facets they belong to, this allows us to express $kd + 1$ of x_i’s as linear functions of dk variables given by the coordinates of u_1, \ldots, u_k.

Matija Bucić (IAS and Princeton)
Special norms are meagre

- An \mathbb{R}^d-norm is (A, η)-special if \exists non-parallel unit vectors u_1, \ldots, u_{kd+1} s.t.
 - $u_j = \sum_{i=1}^k A_{ji}u_i$ for all $j = 1, \ldots, dk + 1$.
 - $\angle(u_i, u_j) > \eta$, holds for all distinct i and j.

- Fix a norm $\|\cdot\|$ with unit ball B which is convex, 0-symmetric polytope.

- We need to find an open set close to $\|\cdot\|$ not containing any (A, η)-special norm.

- If there are $2f$ facets for each $x \in [-\varepsilon, \varepsilon]^f$ we define $B(x)$ to be the polytope obtained by translating i-th facet pair by x_i.

- All x for which $B(x)$ is (A, η)-special lie on finite union of affine hyperplanes.
Special norms are meagre

- An \mathbb{R}^d-norm is (A, η)-special if \exists non-parallel unit vectors u_1, \ldots, u_{kd+1} s.t.
 - $u_j = \sum_{i=1}^{k} A_{ji} u_i$ for all $j = 1, \ldots, dk + 1$.
 - $\angle(u_i, u_j) > \eta$, holds for all distinct i and j.

- Fix a norm $\| \cdot \|$ with unit ball B which is convex, 0-symmetric polytope.

- We need to find an open set close to $\| \cdot \|$ not containing any (A, η)-special norm.

- If there are $2f$ facets for each $x \in [-\varepsilon, \varepsilon]^f$ we define $B(x)$ to be the polytope obtained by translating i-th facet pair by x_i.

- All x for which $B(x)$ is (A, η)-special lie on finite union of affine hyperplanes.

- There exists a subbox of $[-\varepsilon, \varepsilon]^f$ with no (A, η)-special $B(x)$.
Special norms are meagre

- An \mathbb{R}^d-norm is (A, η)-special if \exists non-parallel unit vectors u_1, \ldots, u_{kd+1} s.t.
 - $u_j = \sum_{i=1}^{k} A_{ji}u_i$ for all $j = 1, \ldots, dk + 1$.
 - $\angle(u_i, u_j) > \eta$, holds for all distinct i and j.

- Fix a norm $\| \cdot \|$ with unit ball B which is convex, 0-symetric polytope.

- We need to find an open set close to $\| \cdot \|$ not containing any (A, η)-special norm.

- If there are $2f$ facets for each $x \in [-\varepsilon, \varepsilon]^f$ we define $B(x)$ to be the polytope obtained by translating i-th facet pair by x_i.

- All x for which $B(x)$ is (A, η)-special lie on finite union of affine hyperplanes.

- There exists a subbox of $[-\varepsilon, \varepsilon]^f$ with no (A, η)-special $B(x)$.

- A tiny open ball around the centre of the subbox has no (A, η)-special norms.