Decomposition problems

Matija Bucić

Institute for Advanced Study and Princeton University
General question: Can you decompose a large structure into few substructures with some “useful” properties.
General question: Can you decompose a large structure into few substructures with some “useful” properties.

Such problems occur naturally across mathematics and beyond:

- Design theory
- Geometry
- Group theory
- Error-correcting codes
- Distributed computing
General question: Can you decompose a large structure into few substructures with some “useful” properties.

- Such problems occur naturally across mathematics and beyond:
 - Design theory
 - Geometry
 - Group theory
 - Error-correcting codes
 - Distributed computing

- Scientific study dates back to the work of Euler in the 18th century.
Rota’s basis conjecture

- Given n bases of an n-dimensional vector space a basis which intersects each of them in exactly one element is called a transversal basis.
Rota’s basis conjecture

- Given \(n \) bases of an \(n \)-dimensional vector space a basis which intersects each of them in exactly one element is called a **transversal** basis.

| \(B_1 \) | \(b_{1,1} \) | \(b_{1,2} \) | \(b_{1,3} \) | \(b_{1,4} \) | \(b_{1,5} \) | \(b_{1,6} \) |
|\hline|
| \(B_2 \) | \(b_{2,1} \) | \(b_{2,2} \) | \(b_{2,3} \) | \(b_{2,4} \) | \(b_{2,5} \) | \(b_{2,6} \) |
|\hline|
| \(B_3 \) | \(b_{3,1} \) | \(b_{3,2} \) | \(b_{3,3} \) | \(b_{3,4} \) | \(b_{3,5} \) | \(b_{3,6} \) |
|\hline|
| \(B_4 \) | \(b_{4,1} \) | \(b_{4,2} \) | \(b_{4,3} \) | \(b_{4,4} \) | \(b_{4,5} \) | \(b_{4,6} \) |
|\hline|
| \(B_5 \) | \(b_{5,1} \) | \(b_{5,2} \) | \(b_{5,3} \) | \(b_{5,4} \) | \(b_{5,5} \) | \(b_{5,6} \) |
|\hline|
| \(B_6 \) | \(b_{6,1} \) | \(b_{6,2} \) | \(b_{6,3} \) | \(b_{6,4} \) | \(b_{6,5} \) | \(b_{6,6} \) |
Rota’s basis conjecture

Given n bases of an n-dimensional vector space a basis which intersects each of them in exactly one element is called a **transversal basis**.

<table>
<thead>
<tr>
<th></th>
<th>B_1</th>
<th>$b_{1,1}$</th>
<th>$b_{1,2}$</th>
<th>$b_{1,3}$</th>
<th>$b_{1,4}$</th>
<th>$b_{1,5}$</th>
<th>$b_{1,6}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_2</td>
<td>$b_{2,1}$</td>
<td>$b_{2,2}$</td>
<td>$b_{2,3}$</td>
<td>$b_{2,4}$</td>
<td>$b_{2,5}$</td>
<td>$b_{2,6}$</td>
<td></td>
</tr>
<tr>
<td>B_3</td>
<td>$b_{3,1}$</td>
<td>$b_{3,2}$</td>
<td>$b_{3,3}$</td>
<td>$b_{3,4}$</td>
<td>$b_{3,5}$</td>
<td>$b_{3,6}$</td>
<td></td>
</tr>
<tr>
<td>B_4</td>
<td>$b_{4,1}$</td>
<td>$b_{4,2}$</td>
<td>$b_{4,3}$</td>
<td>$b_{4,4}$</td>
<td>$b_{4,5}$</td>
<td>$b_{4,6}$</td>
<td></td>
</tr>
<tr>
<td>B_5</td>
<td>$b_{5,1}$</td>
<td>$b_{5,2}$</td>
<td>$b_{5,3}$</td>
<td>$b_{5,4}$</td>
<td>$b_{5,5}$</td>
<td>$b_{5,6}$</td>
<td></td>
</tr>
<tr>
<td>B_6</td>
<td>$b_{6,1}$</td>
<td>$b_{6,2}$</td>
<td>$b_{6,3}$</td>
<td>$b_{6,4}$</td>
<td>$b_{6,5}$</td>
<td>$b_{6,6}$</td>
<td></td>
</tr>
</tbody>
</table>
Rota’s basis conjecture

Given \(n \) bases of an \(n \)-dimensional vector space a basis which intersects each of them in exactly one element is called a **transversal** basis.

<table>
<thead>
<tr>
<th>(B_1)</th>
<th>(b_{1,1})</th>
<th>(b_{1,2})</th>
<th>(b_{1,3})</th>
<th>(b_{1,4})</th>
<th>(b_{1,5})</th>
<th>(b_{1,6})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B_2)</td>
<td>(b_{2,1})</td>
<td>(b_{2,2})</td>
<td>(b_{2,3})</td>
<td>(b_{2,4})</td>
<td>(b_{2,5})</td>
<td>(b_{2,6})</td>
</tr>
<tr>
<td>(B_3)</td>
<td>(b_{3,1})</td>
<td>(b_{3,2})</td>
<td>(b_{3,3})</td>
<td>(b_{3,4})</td>
<td>(b_{3,5})</td>
<td>(b_{3,6})</td>
</tr>
<tr>
<td>(B_4)</td>
<td>(b_{4,1})</td>
<td>(b_{4,2})</td>
<td>(b_{4,3})</td>
<td>(b_{4,4})</td>
<td>(b_{4,5})</td>
<td>(b_{4,6})</td>
</tr>
<tr>
<td>(B_5)</td>
<td>(b_{5,1})</td>
<td>(b_{5,2})</td>
<td>(b_{5,3})</td>
<td>(b_{5,4})</td>
<td>(b_{5,5})</td>
<td>(b_{5,6})</td>
</tr>
<tr>
<td>(B_6)</td>
<td>(b_{6,1})</td>
<td>(b_{6,2})</td>
<td>(b_{6,3})</td>
<td>(b_{6,4})</td>
<td>(b_{6,5})</td>
<td>(b_{6,6})</td>
</tr>
</tbody>
</table>

Conjecture (Rota, 1989)

One can decompose elements of any \(n \) disjoint bases of an \(n \)-dimensional vector space into \(n \) transversal bases.
Rota’s basis conjecture

Given n bases of an n-dimensional vector space a basis which intersects each of them in exactly one element is called a transversal basis.

Conjecture (Rota, 1989)

One can decompose elements of any n disjoint bases of an n-dimensional vector space into n transversal bases.
Rota’s basis conjecture

- Given \(n \) bases of an \(n \)-dimensional vector space a basis which intersects each of them in exactly one element is called a transversal basis.

Conjecture (Rota, 1989)

One can decompose elements of any \(n \) disjoint bases of an \(n \)-dimensional vector space into \(n \) transversal bases.

- Subject of Polymath project number 12
Rota’s basis conjecture

Given n bases of an n-dimensional vector space a basis which intersects each of them in exactly one element is called a transversal basis.

Conjecture (Rota, 1989)

One can decompose elements of any n disjoint bases of an n-dimensional vector space into n transversal bases.

Subject of Polymath project number 12

Connections with quite diverse other topics e.g.
Rota’s basis conjecture

- Given n bases of an n-dimensional vector space a basis which intersects each of them in exactly one element is called a **transversal basis**.

Conjecture (Rota, 1989)

One can decompose elements of any n disjoint bases of an n-dimensional vector space into n transversal bases.

- Subject of Polymath project number 12

- Connections with quite diverse other topics e.g.
 - Rota’s bracket theoretic approach to representation theory
Rota’s basis conjecture

Given n bases of an n-dimensional vector space a basis which intersects each of them in exactly one element is called a transversal basis.

Conjecture (Rota, 1989)

One can decompose elements of any n disjoint bases of an n-dimensional vector space into n transversal bases.

Subject of Polymath project number 12

Connections with quite diverse other topics e.g.

- Rota's bracket theoretic approach to representation theory
- Alon-Tarsi conjecture concerning enumeration of even and odd Latin squares
Rota’s basis conjecture

- Given n bases of an n-dimensional vector space a basis which intersects each of them in exactly one element is called a transversal basis.

Conjecture (Rota, 1989)

One can decompose elements of any n disjoint bases of an n-dimensional vector space into n transversal bases.

- Subject of Polymath project number 12

- Connections with quite diverse other topics e.g.
 - Rota’s bracket theoretic approach to representation theory
 - Alon-Tarsi conjecture concerning enumeration of even and odd Latin squares
 - Lies just beyond the boundary of what we know about matroids
Conjecture (Rota, 1989)

One can decompose elements of any n disjoint bases of an n-dimensional vector space into n transversal bases.
Conjecture (Rota, 1989)

One can decompose elements of any n disjoint bases of an n-dimensional vector space into n transversal bases.

What is known?

True for many special classes of matroids.
True for vector spaces over characteristic zero when dimension is $p \pm 1$ for any prime $p > 2$.

Aharoni-Berger 2006: decomposition into 2^n "partial" transversals.
Conjecture (Rota, 1989)

One can decompose elements of any n disjoint bases of an n-dimensional vector space into n transversal bases.

What is known?

- True for many special classes of matroids.
Conjecture (Rota, 1989)

One can decompose elements of any n disjoint bases of an n-dimensional vector space into n transversal bases.

What is known?

- True for many special classes of matroids.
- True for vector spaces over characteristic zero when dimension is $p \pm 1$ for any prime $p > 2$.
Conjecture (Rota, 1989)

One can decompose elements of any n disjoint bases of an n-dimensional vector space into n transversal bases.

What is known?

- True for many special classes of matroids.
- True for vector spaces over characteristic zero when dimension is $p \pm 1$ for any prime $p > 2$.
- Aharoni-Berger 2006: decomposition into $2n$ “partial” transversals.
Conjecture (Rota, 1989)

One can decompose elements of any n disjoint bases of an n-dimensional vector space into n transversal bases.

How many disjoint transversal bases can we find?
Conjecture (Rota, 1989)

One can decompose elements of any n disjoint bases of an n-dimensional vector space into n transversal bases.

How many disjoint transversal bases can we find?
Conjecture (Rota, 1989)

One can decompose elements of any \(n \) disjoint bases of an \(n \)-dimensional vector space into \(n \) transversal bases.

How many disjoint transversal bases can we find?

Conjecture (Rota, 1989)

One can decompose elements of any n disjoint bases of an n-dimensional vector space into n transversal bases.

How many disjoint transversal bases can we find?

- Geelen and Webb 2007: $\Omega(\sqrt{n})$
Conjecture (Rota, 1989)

One can decompose elements of any n disjoint bases of an n-dimensional vector space into n transversal bases.

How many disjoint transversal bases can we find?

- Geelen and Webb 2007: $\Omega(\sqrt{n})$
- Dong and Geelen 2017: $\Omega\left(\frac{n}{\log n}\right)$
Conjecture (Rota, 1989)

One can decompose elements of any n disjoint bases of an n-dimensional vector space into n transversal bases.

How many disjoint transversal bases can we find?

- Geelen and Webb 2007: $\Omega(\sqrt{n})$
- Dong and Geelen 2017: $\Omega\left(\frac{n}{\log n}\right)$

Theorem (B., Kwan, Pokrovskiy, Sudakov 2020)

Given any n bases in an n-dimensional vector space there exist $(1/2 - o(1))n$ disjoint transversal bases.
Proof ideas

- We develop a new “algorithmic” approach.
Proof ideas

- We develop a new “algorithmic” approach.
- We use a local switching idea.
Proof ideas

- We develop a new “algorithmic” approach.
- We use a local switching idea with cascades.
Proof ideas

- We develop a new “algorithmic” approach.
- We use a local switching idea with cascades.
- Key part is a density increment argument.
Proof ideas

- We develop a new “algorithmic” approach.
- We use a local switching idea with cascades.
- Key part is a density increment argument.
 - Used to prove asymptotically a conjecture of Chvátal and Komlós from 1971.
We develop a new "algorithmic" approach.

We use a local switching idea with cascades.

Key part is a density increment argument.

- Used to prove asymptotically a conjecture of Chvátal and Komlós from 1971.
- Used to prove a conjecture of Erdős and Lovász from 1973.
General graph decomposition question:

- Walecki 1883: K_{2n+1} can be decomposed into n cycles.

- Veblen 1912: Any graph with all degrees even decomposes into cycles.
General graph decomposition question:

Can we decompose a graph into few graphs with some “nice” properties?

Walecki 1883: $K_{2^n} + 1$ can be decomposed into n cycles.

Veblen 1912: Any graph with all degrees even decomposes into cycles.
General graph decomposition question:

Can we decompose a graph into few graphs with some “nice” properties?

Walecki 1883: K_{2n+1} can be decomposed into n cycles.

Veblen 1912: Any graph with all degrees even decomposes into cycles.
General graph decomposition question:

Can we decompose a graph into few graphs with some “nice” properties?

Walecki 1883: K_{2n+1} can be decomposed into n cycles.

Veblen 1912: Any graph with all degrees even decomposes into cycles.
General graph decomposition question:

Can we decompose a graph into few graphs with some “nice” properties?
General graph decomposition question:

Can we decompose a graph into few graphs with some “nice” properties?

Walecki 1883: K_{2n+1} can be decomposed into n cycles.

Veblen 1912: Any graph with all degrees even decomposes into cycles.
Graph decomposition problems

- General graph decomposition question:
 Can we decompose a graph into few graphs with some “nice” properties?

- Walecki 1883: K_{2n+1} can be decomposed into n cycles.

Veblen 1912: Any graph with all degrees even decomposes into cycles.
Graph decomposition problems

- General graph decomposition question:

 Can we decompose a graph into few graphs with some “nice” properties?

- Walecki 1883: K_{2n+1} can be decomposed into n cycles.
General graph decomposition question:

Can we decompose a graph into few graphs with some “nice” properties?

Walecki 1883: K_{2n+1} can be decomposed into n cycles.

Can we decompose any graph into cycles?
Graph decomposition problems

General graph decomposition question:

Can we decompose a graph into few graphs with some “nice” properties?

Walecki 1883: K_{2n+1} can be decomposed into n cycles.

Can we decompose any graph into cycles? No if \exists an odd degree vertex.
Graph decomposition problems

- General graph decomposition question:
 Can we decompose a graph into few graphs with some “nice” properties?

- Walecki 1883: K_{2n+1} can be decomposed into n cycles.

- Can we decompose any graph into cycles? No if \exists an odd degree vertex.

- Veblen 1912: Any graph with all degrees even decomposes into cycles.
Conjecture (Erdős-Gallai 1960s)

Every n-vertex graph can be decomposed into $O(n)$ cycles and edges.

Erdős 1983: one needs at least $(\frac{3}{2} - o(1))n$ cycles and edges.

Lovász 1968: True for paths in place of cycles.

Pyber 1985: Precise solution for the covering version.
Conjecture (Erdős-Gallai 1960s)

Every n-vertex graph can be decomposed into $O(n)$ cycles and edges.

- Tight if true.
Conjecture (Erdős-Gallai 1960s)

Every n-vertex graph can be decomposed into $O(n)$ cycles and edges.

- Tight if true.
 - Erdős 1983: one needs at least $(3/2 - o(1))n$ cycles and edges.
Erdős-Gallai Conjecture: related work

Conjecture (Erdős-Gallai 1960s)

Every n-vertex graph can be decomposed into $O(n)$ cycles and edges.

- Tight if true.
 - Erdős 1983: one needs at least $(3/2 - o(1))n$ cycles and edges.

- Lovász 1968: True for paths in place of cycles
Erdős-Gallai Conjecture: related work

Conjecture (Erdős-Gallai 1960s)

Every n-*vertex graph* can be decomposed into $O(n)$ cycles and edges.

- Tight if true.
 - Erdős 1983: one needs at least $(3/2 - o(1))n$ cycles and edges.

- Lovász 1968: True for paths in place of cycles

- Pyber 1985: Precise solution for the covering version.
Conjecture (Erdős-Gallai 1960s)

Every n-vertex graph can be decomposed into $O(n)$ cycles and edges.
Conjecture (Erdős-Gallai 1960s)

Every n-vertex graph can be decomposed into $O(n)$ cycles and edges.

- Proved for graphs with linear minimum degree.
Conjecture (Erdős-Gallai 1960s)

Every n-vertex graph can be decomposed into $O(n)$ cycles and edges.

- Proved for graphs with linear minimum degree.
- Proved for random graphs.
Conjecture (Erdős-Gallai 1960s)

Every n-vertex graph can be decomposed into $O(n)$ cycles and edges.

- Proved for graphs with linear minimum degree.
- Proved for random graphs.
- Folklore: $O(n \log n)$ cycles and edges always suffice.
Conjecture (Erdős-Gallai 1960s)

Every n-vertex graph can be decomposed into $O(n)$ cycles and edges.

- Proved for graphs with linear minimum degree.
- Proved for random graphs.
- Folklore: $O(n \log n)$ cycles and edges always suffice.
- Conlon, Fox and Sudakov: $O(n \log \log n)$ cycles and edges always suffice.
What do we know?

Conjecture (Erdős-Gallai 1960s)

Every n-vertex graph can be decomposed into $O(n)$ cycles and edges.

- Proved for graphs with linear minimum degree.
- Proved for random graphs.
- Folklore: $O(n \log n)$ cycles and edges always suffice.
- Conlon, Fox and Sudakov: $O(n \log \log n)$ cycles and edges always suffice.

Theorem (B., Montgomery 2022+)

Any n-vertex graph can be decomposed into $O(n \log^* n)$ cycles and edges.
Some proof ideas

- Expander graphs: “robustly well-connected graphs”
Some proof ideas

- Expander graphs: “robustly well-connected graphs”
- We use a new “weaker” notion of expander graphs.
Some proof ideas

- Expander graphs: “robustly well-connected graphs”
- We use a new “weaker” notion of expander graphs.
- We prove a key new “subsampling lemma” for weak expansion.
Some proof ideas

- Expander graphs: “robustly well-connected graphs”

- We use a new “weaker” notion of expander graphs.

- We prove a key new “subsampling lemma” for weak expansion.

- Absorption method.
Concluding remarks

- Decomposition problems make some of the most classical well-studied problems with many interesting connections and applications.
Concluding remarks

- Decomposition problems make some of the most classical well-studied problems with many interesting connections and applications.

Conjecture (Rota 1989)

One can decompose elements of any n disjoint bases of a dimension-n vector space into n transversal bases.

Conjecture (Erdős-Gallai 1960s)

Every n-vertex graph can be decomposed into $O(n)$ cycles and edges.
Concluding remarks

- Decomposition problems make some of the most classical well-studied problems with many interesting connections and applications.

Conjecture (Rota 1989)

One can decompose elements of any n disjoint bases of a dimension-n vector space into n transversal bases.

Conjecture (Erdős-Gallai 1960s)

Every n-vertex graph can be decomposed into $O(n)$ cycles and edges.