Strength of polynomials via polynomial functors

Arthur Bik

Student/Postdoc Working Geometry Seminar
Texas A&M
30 December 2020
The strength of polynomials

Let f be a homogeneous polynomial of degree $d \geq 2$.

Definition

The *strength* of f is the minimal number $\text{str}(f) := r \geq 0$ such that

$$f = g_1 \cdot h_1 + \ldots + g_r \cdot h_r$$

with $g_1, h_1, \ldots, g_r, h_r$ homogeneous polynomials of degree $\leq d - 1$.

Defined by Ananyan and Hochster in order to prove Stillman’s Conjecture. Used by Erman, Sam and Snowden in their work on big polynomial rings. Plays a big role when studying the geometry of polynomial functors. Has also been defined for sections of line bundles over algebraic varieties by Ballico and Ventura.
The strength of polynomials

Let \(f \) be a homogeneous polynomial of degree \(d \geq 2 \).

Definition

The *strength* of \(f \) is the minimal number \(\text{str}(f) := r \geq 0 \) such that

\[
 f = g_1 \cdot h_1 + \ldots + g_r \cdot h_r
\]

with \(g_1, h_1, \ldots, g_r, h_r \) homogeneous polynomials of degree \(\leq d - 1 \).

Theorem (Ballico-B-Oneto-Ventura)

The set

\[
 \{ f \in \mathbb{C}[x_1, \ldots, x_n]_4 \mid \text{str}(f) \leq 3 \}
\]

is not Zariski-closed for \(n \gg 0 \).
The strength of polynomials

Example \((d = 2)\)

Let

\[
f = (x_1, \ldots, x_n) \cdot A \cdot (x_1, \ldots, x_n)^\top, \quad A \in \mathbb{C}^{n \times n} \text{ with } A^\top = A
\]

be a homogeneous polynomial of degree 2. By applying a coordinate transformation (or replacing \(A\) be a congruent matrix), we may assume that \(A = \text{Diag}(1_k, 0_{n-k})\) and \(f = x_1^2 + \ldots + x_k^2\).

If \(f = g_1 \cdot h_1 + \ldots + g_r \cdot h_r\) with

\[
g_j = (x_1, \ldots, x_n) \cdot v_j^\top \text{ and } h_j = w_j \cdot (x_1, \ldots, x_n)^\top,
\]

then \(A = (v_1^\top w_1 + w_1^\top v_1) + \ldots + (v_r^\top w_r + w_r^\top v_r)\). So \(k \leq 2r\).

As \(x_j^2 + x_{j+1}^2 = (x_j + ix_{j+1})(x_j - ix_{j+1})\), we have \(\text{str}(f) = \lceil k/2 \rceil\).
The strength of polynomials

Definition

The slice rank of f is the minimal number $\text{slrk}(f) := r \geq 0$ such that

$$f = g_1 \cdot \ell_1 + \ldots + g_r \cdot \ell_r$$

with g_1, \ldots, g_r of degree $d - 1$ and ℓ_1, \ldots, ℓ_r linear.

Proposition (Tao-Sawin, Derksen-Eggermont-Snowden)

The set

$$\{ f \in \mathbb{C}[x_1, \ldots, x_n]_d \mid \text{slrk}(f) \leq k \}$$

is Zariski-closed for all $d \geq 2$, $n \geq 1$ and $k \geq 0$.

Proof.

It is the cone of the projection of

$$\{ ([f], V) \in \mathbb{P}(\mathbb{C}[x_1, \ldots, x_n]_d) \times \text{Gr}(n - k, n) \mid f(V) = 0 \}$$
The strength of polynomials

Definition

The *slice rank* of f is the minimal number $\text{slrk}(f) := r \geq 0$ such that

$$f = g_1 \cdot \ell_1 + \ldots + g_r \cdot \ell_r$$

with g_1, \ldots, g_r of degree $d - 1$ and ℓ_1, \ldots, ℓ_r linear.

Theorem

For $d \geq 3$ and $n \geq 1$, the generic slice rank in $\mathbb{C}[x_1, \ldots, x_n]_d$ is

$$\text{slrk}_{d,n}^\circ := \min \left\{ r \in \mathbb{Z} \left| \ r(n - r) \geq \binom{d - r + n - 1}{d} \right. \right\}.$$.

The strength of polynomials

Conjecture

The generic strength and generic slice rank coincide.

Example (Fermat polynomials)

Take \(f = x_1^d + \ldots + x_n^d \) with \(d \geq 2 \).

As \(x_j^d + x_{j+1}^d \) is reducible, we have \(\text{str}(f) \leq \lceil n/2 \rceil \).

Ananyan-Hochster Trick:

If \(f = g_1 \cdot h_1 + \ldots + g_r \cdot h_r \), then

\[
\text{Sing}\{f = 0\} = \{0\}
\]

contains the variety defined by \(g_1, h_1, \ldots, g_r, h_r \) and hence has codimension \(\leq 2r \). So we find \(\text{str}(f) \geq \lceil n/2 \rceil \).
The strength of polynomials

Theorem (Ballico-B-Oneto-Ventura)

The set
\[\{ f \in \mathbb{C}[x_1, \ldots, x_n]_4 \mid \text{str}(f) \leq 3 \} \]
is not Zariski-closed for \(n \gg 0 \).

Question

Is the set
\[\{ f \in \mathbb{C}[x_1, \ldots, x_n]_d \mid \text{str}(f) \leq 2 \} \]
Zariski-closed for all \(d \geq 2 \) and \(n \geq 1 \)?

Proof is non-constructive and uses polynomial functors.
Let Vec be the category of finite-dimensional vector spaces.

Definition
A functor $P : \text{Vec} \to \text{Vec}$ sends

$$
V \mapsto P(V) \\
(\ell : V \to W) \mapsto (P(\ell) : P(V) \to P(W))
$$

such that $P(\text{id}_V) = \text{id}_{P(V)}$ and $P(\ell_1 \circ \ell_2) = P(\ell_1) \circ P(\ell_2)$.

Examples
Take $U \in \text{Vec}$ fixed.

- $C_U : V \mapsto U, \ell \mapsto \text{id}_U$
- $T : V \mapsto V, \ell \mapsto \ell$
Polynomial functors: Definition

You can add and multiply two functors $P, Q : \text{Vec} \to \text{Vec}$.

$$(P \oplus Q)(V) = P(V) \oplus Q(V), \quad (P \otimes Q)(V) = P(V) \otimes Q(V)$$

$$(P \oplus Q)(\ell) = P(\ell) \oplus Q(\ell), \quad (P \otimes Q)(\ell) = P(\ell) \otimes Q(\ell)$$

You can take subfunctors and quotients:
We have $Q \subseteq P$ when $Q(V) \subseteq P(V)$ and $P(\ell)$ restricts to $Q(\ell)$.
In this case, we also get P/Q.

Definition
A polynomial functor is a functor $\text{Vec} \to \text{Vec}$ obtained from T and the C_U via addition, multiplication, subfunctors and quotients.

Examples
- Square matrices: $V \mapsto V \otimes V$
- Tensors: $V \mapsto V \otimes \cdots \otimes V$
- Polynomials: $V \mapsto S^dV$
Definition

Let P, Q be polynomial functors. A morphism $\alpha: Q \rightarrow P$ is a family $(\alpha_V: Q(V) \rightarrow P(V))_{V \in \text{Vec}}$ of polynomial maps such that

\[
\begin{array}{ccc}
Q(V) & \xrightarrow{\alpha_V} & P(V) \\
\downarrow Q(\ell) & & \downarrow P(\ell) \\
Q(W) & \xrightarrow{\alpha_W} & P(W)
\end{array}
\]

commutes for all linear maps $\ell: V \rightarrow W$.

Definition

A (closed) subset $X \subseteq P$ sends

\[
V \mapsto \text{(closed) subset } X(V) \subseteq P(V)
\]

such that $P(\ell)(X(V)) \subseteq X(W)$ for all linear maps $\ell: V \rightarrow W$.

Strength of polynomials via polynomial functors

Arthur Bik
Example

We have a morphism $C_{\mathbb{C}^{n \times (n-1)}} \oplus T^{n-1} \to T^n$ defined by:

$$\mathbb{C}^{n \times (n-1)} \oplus V^{n-1} \ni (A, v_1, \ldots, v_{n-1}) \mapsto A \cdot (v_1, \ldots, v_n) \top \in V^n$$

Its image is the closed subset of T^n consisting of all linearly dependent n-tuples of vectors.

Example

We have a morphism $T^{2k} \to T \otimes T$ defined by:

$$V^{2k} \ni (v_1, w_1, \ldots, v_k, w_k) \mapsto v_1 \otimes w_1 + \ldots + v_k \otimes w_k \in V \otimes V$$

Its image is the closed subset of $T \otimes T$ consisting of all matrices of rank $\leq k$.

Strength of polynomials via polynomial functors

Arthur Bik
Example

We have a morphism $(S^1)^r \oplus (S^{d-1})^r \rightarrow S^d$ defined by:

$$(\ell_1, \ldots, \ell_r, g_1, \ldots, g_r) \mapsto \ell_1 \cdot g_1 + \ldots + \ell_r \cdot g_r$$

Its image is the closed subset of S^d consisting of all homogeneous polynomials of degree d and slice rank $\leq r$.

Example

The subset of $T^\otimes n$ consisting of tensors with tensor rank $\leq k$.

Example

The subset of S^d consisting of polynomials with strength $\leq r$.

Strength of polynomials via polynomial functors

| Arthur Bik |
Polynomial functors: The dichotomy

Let P, Q be polynomial functors. Write $Q \prec P$ when Q_d is a quotient of P_d for d maximal with $Q_d \not= P_d$.

Dichotomy Theorem (B-Draisma-Eggermont-Snowden)

Let $X \subseteq P$ be a closed subset. Then $X = P$ or there are polynomial functors $Q_1, \ldots, Q_k \prec P$ and $\alpha_i : Q_i \to P$ such that $X \subseteq \bigcup_i \text{im}(\alpha_i)$.

Consequence

Any closed subset of $T \otimes T$ consists of rank $\leq k \leq \infty$ matrices.

Consequence (B-Draisma-Eggermont)

Any closed subset of S^d consists of strength $\leq k$ polynomials.

Consequence (Draisma)

Any polynomial functor P is Noetherian.
Back to our goal

The homogeneous polynomials of degree 4 and strength ≤ 3 form a subset of S^4. This subset is the union of the images of the morphisms

$$\alpha_k: (S^1 \oplus S^3)^k \oplus (S^2 \oplus S^2)^{3-k} \rightarrow S^4$$

$$((\ell_i, q_i)_i, (g_j, h_j)_j) \mapsto \sum_{i=1}^k \ell_i \cdot q_i + \sum_{j=1}^{3-k} g_j \cdot h_j$$

over $k = 0, 1, 2, 3$.

Goal

Prove that the subset $\bigcup_{k=0}^3 \text{im}(\alpha_k)$ of S^4 is not closed.

Idea

Consider polynomials of the form

$$x^2 f + y^2 g + u^2 h + v^2 q$$

with $x, y, u, v \in S^1$ and $f, g, h, q \in S^2$.
Consider the morphism
\[\beta : (S^1)^{\oplus 4} \oplus (S^2)^{\oplus 4} \rightarrow S^4 \]
\[(x, y, u, v, f, g, h, q) \mapsto x^2 f + y^2 g + u^2 h + v^2 q \]

Lemma

We have \(\text{im}(\beta) \subseteq \text{im}(\alpha_0) \).

Proof.

The family of strength \(\leq 3 \) polynomials

\[
\frac{1}{t} \left((x^2 + tg)(y^2 + tf) - (u^2 - tq)(v^2 - th) - (xy + uv)(xy - uv) \right)
\]

converges to \(x^2 f + y^2 g + u^2 h + v^2 q \) as \(t \to 0 \).

Goal

Prove that \(\text{im}(\beta) \not\subseteq \bigcup_{k=1}^{3} \text{im}(\alpha_k) \).
Polynomial functors: Inverse limits

Let P be a polynomial functor.

Definition

We define P_{∞} as the inverse limit of the sequence

$$
\ldots \xrightarrow{P(\pi_4)} P(C^4) \xrightarrow{P(\pi_3)} P(C^3) \xrightarrow{P(\pi_2)} P(C^2) \xrightarrow{P(\pi_1)} P(C^1)
$$

where $\pi_n : C^{n+1} \to C^n$ is the projection forgetting the last coordinate.

Example

Take $P = T^n$. Then $P_{\infty} = (C^N)^n$.

Example

Take $P = T \otimes T$. Then $P_{\infty} = C^N \times N$.
Polynomial functors: Inverse limits

A morphism \(\alpha: Q \to P \) induces a map \(\alpha_\infty: Q_\infty \to P_\infty \).

Example

The morphism \(T^{2k} \to T \otimes T \) defined by
\[
(v_1, w_1, \ldots, v_k, w_k) \mapsto v_1 \otimes w_1 + \ldots + v_k \otimes w_k
\]
induces a map \((\mathbb{C}^N)^{2k} \to \mathbb{C}^N \times \mathbb{N} \) (defined the same).

Let \(p \in P_\infty \) be a point with projections \(p_n \in P(\mathbb{C}^n) \).

Lemma

We have \(p \in \text{im}(\alpha_\infty) \) if and only if \(p_n \in \text{im}(\alpha_{\mathbb{C}^n}) \) for all \(n \geq 1 \).

Proof.

Follows from a theorem by Lang stating that a countable system of polynomial equations over an uncountable field, any finite subsystem of which has a solution, has a solution.
Polynomial functors: Systems of variables

Let P be a polynomial functor and $p \in P_\infty$ be a point.

Definition

We say that the point p is GL_∞-generic if $\text{GL}_\infty \cdot p = P_\infty$. Otherwise, the point is called degenerate.

Lemma

For $d \geq 2$, the set Ω_d of degenerate points in S^d_∞ equals the subspace of points with finite strength.

Proof.

Follows from the Dichotomy Theorem.

Definition

A system of variables consists of a basis of S^d_∞ / Ω_d over all $d \geq 1$.
Let R, Q, P be direct sums of copies of S^d with $d \geq 1$. Let $\beta : Q \to P$ and $\alpha : R \to P$ be morphisms. Let $q \in Q_{\infty}$ and $r \in R_{\infty}$ be points.

Lemma

Suppose that q is GL_{∞} generic and $p := \beta_{\infty}(q) = \alpha_{\infty}(r)$. Then $\beta = \alpha \circ \gamma$ for some morphism $\gamma : Q \to R$.

Proof.

Extend q to a system of variables. Express r in these variables:

$$r = \delta(q, q'), \quad \delta : Q \oplus Q' \to R, \quad q' \in Q'_{\infty}$$

We have $\beta_{\infty}(q) = p = (\alpha \circ \delta)_{\infty}(q, q')$. So $p = (\alpha \circ \delta)_{\infty}(q, 0)$.

Take $\gamma = \delta(-, 0)$. Then $\beta = \alpha \circ \gamma$ since this holds on $\text{GL}_{\infty} \cdot q$. \square
The proof

We have the morphisms

\[\alpha_k : (S^1 \oplus S^3)^{\oplus k} \oplus (S^2 \oplus S^2)^{\oplus 3-k} \rightarrow S^4 \]

\[\left((\ell_i, q_i)_i, (g_j, h_j)_j \right) \mapsto \sum_{i=1}^{k} \ell_i \cdot q_i + \sum_{j=1}^{3-k} g_j \cdot h_j \]

for \(k = 0, 1, 2, 3 \) and the morphism

\[\beta : (S^1)^{\oplus 4} \oplus (S^2)^{\oplus 4} \rightarrow S^4 \]

\[(x, y, u, v, f, g, h, q) \mapsto x^2 f + y^2 g + u^2 h + v^2 q \]

Goal

Prove that \(\beta_{\infty} (x, y, u, v, f, g, h, q) \notin \bigcup_{k=0}^{3} \text{im}(\alpha_{k,\infty}) \).

Enough

Prove that \(\beta = \alpha_k \circ \gamma \) has no solution for \(k = 0, 1, 2, 3 \).
The proof

Lemma
The equation \(\beta = \alpha_0 \circ \gamma \) has no solution.

Proof.
We have to prove that

\[
x^2 f + y^2 g + u^2 h + v^2 q \neq x_1 q_1 + x_2 q_2 + x_3 q_3
\]

with \(x_i, q_i \) polynomials in \(x, y, u, v, f, g, h, q \) of degrees 1, 3.

Coefficients of \(f, g, h, q \) on the left-hand side are \(x^2, y^2, u^2, v^2 \).

Coefficients of \(f, g, h, q \) on right-hand side are contained in the ideal \((x_1, x_2, x_3) \subseteq k[x, y, u, v] \).

As \(x^2, y^2, u^2, v^2 \in (x_1, x_2, x_3) \) cannot hold, we have inequality. \(\square \)
The proof

Now we know that $\beta = \alpha_k \circ \gamma$ has no solution for $k = 0, 1, 2, 3$.

So $\beta_\infty(x, y, u, v, f, g, h, q) \notin \bigcup_{k=0}^{3} \text{im}(\alpha_{k,\infty})$ for GL_∞-generic (x, y, u, v, f, g, h, q).

So $\beta_{\mathbb{C}^n}(x_n, y_n, u_n, v_n, f_n, g_n, h_n, q_n) \notin \bigcup_{k=0}^{3} \text{im}(\alpha_{k,\mathbb{C}^n})$ for $n \gg 0$.

So the set

\[\{ f \in \mathbb{C}[x_1, \ldots, x_n]_4 \mid \text{str}(f) \leq 3 \} \]

is not Zariski-closed for $n \gg 0$.

Thanks for your attention!
Reference

Edoardo Ballico, Arthur Bik, Alessandro Oneto, Emanuele Ventura

The set of forms with bounded strength is not closed

preprint

Arthur Bik

Strength and Noetherianity for infinite Tensors

PhD thesis, University of Bern, 2020

Arthur Bik, Jan Draisma, Rob H. Eggermont

Polynomials and tensors of bounded strength

Arthur Bik, Alessandro Oneto

On the strength of general polynomials

preprint