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Abstract. Inspired by Morse theory, we introduce a topological stack Broken,
which we refer to as the moduli stack of broken lines. We show that Broken can
be presented as a Lie groupoid with corners and provide a combinatorial descrip-
tion of sheaves on Broken with values in any compactly generated ∞-category
C. Moreover, we show that factorizable C-valued sheaves (with respect to a nat-
ural semigroup structure on the stack Broken) can be identified with nonunital
A∞-algebras in C. This is a first step in a program whose goal is to present
an “equation-free” construction of the Morse complex associated to a compact
Riemannian manifold.
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1. Introduction

Our starting point in this paper is the following:

Definition 1.0.1. Let L be a topological space equipped with a continuous action

µ : R× L→ L

of the group R of real numbers. We will say that the pair (L, µ) is a broken line if
the following pair of conditions is satisfied:

(1) There exists a homeomorphism γ : L ' [0, 1] with the property that, for every
point x ∈ L and every nonnegative real number t, we have γ(µ(t, x)) ≥ γ(x).

(2) The fixed point set LR = {x ∈ L : (∀t ∈ R)[µ(t, x) = x]} ⊆ L is finite.

Example 1.0.2. Let [−∞,∞] = R∪{±∞} denote the extended real line, equipped
with the R-action given by translation. Then [−∞,∞] is a broken line.

Broken lines are easy to classify. For any broken line L, the fixed point set LR

has at least two elements: the points γ−1(0) and γ−1(1), where γ : L ' [0, 1] is as
above. We will refer to γ−1(0) as the initial point of L and γ−1(1) as the terminal
point of L. Note that if L and L′ are broken lines with terminal point p ∈ L and
initial point q ∈ L′, then we can form a new broken line from the disjoint union
L q L′ by identifying the points p and q. We will refer to this broken line as the
concatenation of L and L′ and denote it by L ? L′. It is not difficult to see that
every broken line L can be obtained by concatenating n copies of [−∞,∞], for some
n ≥ 1 (see Corollary 3.3.4). Our terminology is meant to suggest that the R-action
“breaks” L into n pieces: more precisely, the non-fixed locus L\LR has n connected
components.

In this paper, we study continuous families of broken lines. If S is a topological
space, we define an S-family of broken lines to be a topological space LS equipped
with a projection map π : LS → S and a continuous action of R on LS, satisfying
certain axioms (see Definition 2.1.3). These axioms guarantee that, for each point
s ∈ S, the fiber Ls = π−1{s} is a broken line, so that Ls \ LR

s has ns components
for some positive integer ns. However, we do not require the function s 7→ ns to be
locally constant: our definition allows families which “degenerate” when specialized
to closed subsets of S.
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Figure 1.1. Examples and non-examples of broken lines. The white
arrowheads indicate the direction of the R-action, while the black dots
indicate the R-fixed points. Diagrams (a) and (b) depict broken lines,
but (c) and (d) do not: (c) violates axiom (1) of 1.0.1 (the R-action
is not directed), while (d) violates axiom (2) (the collection of fixed
points is infinite).

Example 1.0.3. Let S = R≥0 be the set of nonnegative real numbers. Set L◦S =
R≥0 × R≥0, and define π◦ : L◦S → S by the formula π◦(x, y) = xy. There is a
continuous action of R on L◦S which preserves each fiber of π◦, given by the map

µ : R× L◦S → L◦S µ(t, x, y) = (etx, e−ty).

The space L◦S admits a (fiberwise) compactification LS = L◦S ∪ (S × {±∞}) which
is a family of broken lines over S (see Example 3.2.1 for a description). The fiber Ls
over any point s > 0 can be identified with the standard “unbroken” line [−∞,∞] of
Example 1.0.2, while the fiber L0 can be identified with the concatenation [−∞,∞]?
[−∞,∞].

For every topological space S, the collection of S-families of broken lines can be
organized into a groupoid which we will denote by Broken(S). The construction
S 7→ Broken(S) is an example of a topological stack: that is, it is a rule which
associates a groupoid to every topological space, having good descent properties
(see §2.3 for a review of the theory of topological stacks). We will denote this stack
by Broken and refer to it as the moduli stack of broken lines. Our first main result
is that Broken is a reasonable geometric object:

Theorem 1.0.4. The moduli stack Broken is (representable by) a Lie groupoid with
corners (see Definition 3.5.1).
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Figure 1.2. Two depictions of the family of broken lines from
Example 1.0.3. On the left are drawn the domain of π◦, along with the
fibers (π◦)−1{0} and (π◦)−1{t} for t > 0, whose arrowheads indicate
the R-action. On the right is a drawing of LS, where S (not pictured)
is a horizontal interval with a closed endpoint toward the left. Black
dots indicate fixed points of the R-action, and on the right, the solid
horizontal lines also indicated R-fixed points. See also Figure 2.1.

The primary goal in this paper is to understand the theory of sheaves on the
moduli stack Broken. Let C be any category. We define a C-valued sheaf on Broken
to be a functor which associates an object F (LS) ∈ C to every S-family of broken
lines LS, satisfying a suitable descent condition for open coverings (see §4.2 for
more details). Heuristically, one can think of F as a rule which associates an
object F (L) ∈ C to each broken line L, depending “continuously” on L. Since the
classification of broken lines is relatively simple, this heuristic suggests that sheaves
on Broken should admit a purely combinatorial description. Our second main result
asserts that this is indeed the case, at least if the category C is well-behaved:

Theorem 1.0.5. Let C be a compactly generated category. Then there is a canonical
equivalence of categories ShvC(Broken) ' Fun(Lin, C), where Lin denotes the category
whose objects are nonempty finite linearly ordered sets, and whose morphisms are
monotone surjections (see Theorems 4.0.1 and 4.4.1 for more precise statements).

The concatenation construction (L,L′) 7→ L ? L′ can be extended to families of
broken lines, and is classified by a map

m : Broken× Broken→ Broken.

The multiplication m is associative (up to canonical isomorphism) and exhibits
Broken as a semigroup in the setting of topological stacks. Suppose now that C is
a (sufficiently nice) monoidal category, with tensor product ⊗ : C × C → C. In this
case, we define a factorizable C-valued sheaf on Broken to be a C-valued sheaf F
on Broken, equipped with an isomorphism α : m∗F ' F �F which satisfies the
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following coherence condition: the diagram

(m× id)∗(m∗F )
∼ //

α

��

(id×m)∗(m∗F )

α

��
(m× id)∗(F �F )

α�id

))

(id×m)∗(F �F )
id�α

uu
F �F �F

commutes, in the category of C-valued sheaves on Broken × Broken × Broken (see
Definition 5.1.7 for a more precise definition).

Heuristically, if we view a C-valued sheaf F as a rule which associates an object
F (L) ∈ C to each broken line L, then a factorizable sheaf consists of such a rule
together with a collection of isomorphisms F (L ? L′) ' F (L) ⊗F (L′), satisfying
a suitable associativity condition. Since every broken line L can be obtained by
concatenating finitely many copies of the interval [−∞,∞], this heuristic suggests
that a factorizable sheaf F should be determined by the single object F ([−∞,∞]) ∈
C. Our third main result asserts that this heuristic is essentially correct, modulo the
caveat that we must remember some additional structure on the object F ([−∞,∞]):

Theorem 1.0.6. Let C be a compactly generated category with a closed monoidal
structure and let Shvfact

C (Broken) denote the category of factorizable C-valued sheaves
on Broken. Then the construction F 7→ F ([−∞,∞]) can be promoted to an equiv-
alence of categories

Shvfact
C (Broken) ' Algnu(C),

where Algnu(C) denotes the category of nonunital associative algebra objects of C.

Remark 1.0.7. Let F be a factorizable C-valued sheaf on Broken and set A =
F ([−∞,∞]) ∈ C. Set S = R≥0, and let LS be the S-family of broken lines described
in Example 1.0.3. Then LS is classified by a map S → Broken, we can regard the
restriction F |S as a C-valued sheaf on S. On the open set R>0 ⊆ S, this sheaf
is constant with the value A. At the point 0 ∈ S, the stalk (F |S)0 is given by
F ([−∞,∞] ? [−∞,∞]) = A⊗ A. The structure of the sheaf F |S is then encoded
by a cospecialization map A ⊗ A → A. The content of Theorem 1.0.6 is that this
map endows A with the structure of a (nonunital) associative algebra, from which
we can recover the entire factorizable sheaf F .

We will actually prove stronger versions of Theorems 1.0.5 and 1.0.6 in this paper,
where we allow C to be an∞-category rather than an ordinary category. In this case,
the associativity in the definition of factorizable sheaf and on the resulting algebra
object of C should be understood in the homotopy coherent sense: for example, if C
is the∞-category of chain complexes over some field k, then Theorem 1.0.6 provides
a geometric model for the theory of (nonunital) A∞-algebras over k.
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Remark 1.0.8 (Motivation). One impetus for the current work is to present a
“coordinate-free” construction of Morse theory—a formal framework in which the
input of a Morse function, a sufficiently generic Riemannian metric, and sufficient
tangential structures output a filtered stable homotopy type equivalent to the orig-
inal manifold (filtered by the Morse function). In later works, we plan to show that
the example of Section 2.2 (combined with the results of this paper) outputs an
A∞-algebra in spectra encoding a deformation problem, and that a choice of funda-
mental cycle for the moduli of Morse trajectories yields a Maurer-Cartan element
for the algebra. The associated solution recovers the filtered stable homotopy type
of the original manifold, whose associated graded pieces are the Morse attaching
spheres.

Notation 1.0.9. In the literature, the term∞-categories is sometimes used model-
independently. In this work, by an ∞-category we mean a quasi-category as in-
troduced by Boardman-Vogt [1] and later developed by Joyal [2]: a simplicial set
satisfying the weak Kan condition. In our notation, we will not distinguish between
a category and its nerve; for example, if C is a category and D is an∞-category, we
will write Fun(C,D) rather than Fun(N(C),D) to mean the ∞-category of functors
from the nerve of C to D.

Acknowledgments. During the period of time in which this work was carried out,
the first author was supported by the National Science Foundation under grant
number 1510417, and the second author was also supported by the National Science
Foundation under award number DMS-1400761.
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2. Families of Broken Lines

2.1. Definitions. Our first goal in is to introduce the notion of a family of broken
lines parametrized by a topological space S (Definition 2.1.3), which specializes to
Definition 1.0.1 in the case where S is a point. We begin with some general remarks.

Definition 2.1.1. Let L be a topological space equipped with a continuous action
µ : R × L → L, and let [a, b] be a closed interval for real numbers a < b. We will
say that a homeomorphism γ : L ∼= [a, b] is directed if, for every point x ∈ L, the
induced map

R ∼= R× {x} → R× L µ−→ L
γ−→ [a, b]

is nondecreasing.

Notation 2.1.2 (The Ordering of a Broken Line). Let L be a broken line (in the
sense of Definition 1.0.1), and let γ : L ' [0, 1] be a directed homeomorphism. For
every pair of points x, y ∈ L, we write x ≤L y if γ(x) ≤ γ(y). Note that this
condition is independent of the choice of γ. The relation ≤L is a linear ordering of
L. Moreover, the ordered set (L,≤L) has a least element γ−1(0) (the initial point
of L) and a greatest element γ−1(1) (the terminal point of L). Note that the initial
and terminal points are automatically fixed by the action of R on L.

Definition 2.1.3. Let S be a topological space. An S-family of broken lines is a
triple (LS, π, µ), where LS is a topological space, π : LS → S is a continuous map,
and µ : R× LS → LS is a continuous action of R on LS which preserves each fiber
of π and satisfies the following additional conditions:

(a) For every point s ∈ S, there exists an open set U ⊆ S containing s and a
continuous map f : LS ×S U → [0, 1] with the following properties:

– The induced map LS ×S U ∼= [0, 1]× U is a homeomorphism.
– For each s′ ∈ U , the restriction f |Ls′ : Ls′ → [0, 1] is a directed home-

omorphism (in the sense of Definition 2.1.1). Here Ls′ = LS ×S {s′}
denotes the fiber π−1{s′}.

(b) Let LR
S denote the set of fixed points for the action of R on LS. Then the

restriction π|LR
S

: LR
S → S is unramified. More precisely, for every point

s ∈ S there exists an open set U ⊆ S containing s and a decomposition

π−1(U) ∩ LR
S
∼= K1 qK2 q · · · qKn,

where each of the induced maps π|Ki : Ki → U is a closed embedding of
topological spaces.

Remark 2.1.4. In the situation of Definition 2.1.3, we will often abuse terminology
by referring to the topological space LS or the projection map π : LS → S as an
S-family of broken lines (in this case, we implicitly assume that an action of R on
LS has also been specified).



8 JACOB LURIE AND HIRO LEE TANAKA

(a) (b) (c) (d)

Figure 2.1. Non-examples of families of broken lines over S =
[0, 1]. The projection map to S, in each figure, is the projection to a
horizontal line. Also in each figure, a black line segment or a black
dot indicates points fixed by the R action; a circle or a dotted line
indicates loci which are not included in S̃. The R-actions in each
picture are by flowing downward. Example (a) fails to satisfy axiom
(A5), Example (b) fails to satisfy (A3) and (A4), and examples (c)
and (d) fail to satisfy (A2).

Remark 2.1.5 (Pullbacks). Let S be a topological space and let π : LS → S be
an S-family of broken lines. For any continuous map of topological spaces S ′ → S,
we can endow the pullback LS′ = LS ×S S ′ with the structure of an S ′-family of
broken lines (via projection onto the second factor, with R-action inherited from
the R-action on LS). In the special case where S ′ = {s} is a single point, we will
denote the pullback L{s} simply by Ls.

Example 2.1.6. Let S be a point. Then the data of an S-family of broken lines
(LS, π, µ) (in the sense of Definition 2.1.3) is equivalent to the data of a broken
line (LS, µ) (in the sense of Definition 1.0.1). Condition (b) of Definition 2.1.3 is
equivalent to the requirement that the fixed point locus LR

S is finite.
More generally, if S is an arbitrary topological space and LS is an S-family of

broken lines (in the sense of Definition 2.1.3), then for each point s ∈ S, the fiber
Ls is a broken line (in the sense of Definition 1.0.1).

Remark 2.1.7 (Semicontinuity). Condition (b) of Definition 2.1.3 implies that the
function (s ∈ S) 7→ (|LR

s | ∈ Z) is upper semicontinuous. In particular, the collection
of points s ∈ S for which there exists an isomorphism of broken lines Ls ' [−∞,∞]
is an open subset of S.

For further examples of broken lines (and a complete classification of their local
behavior), we refer the reader to §3.

Remark 2.1.8 (Locality). Let π : LS → S be a map of topological spaces and let
µ : R × LS → S̃ be a continuous action of R on LS which preserves each fiber of
π. Then the condition that (LS, π, µ) is an S-family of broken lines can be tested
locally on S. More precisely, if there exists an open covering {Uα} of S for which each
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(LUα , π|LUα , µ|R×LUα ) is a Uα-family of broken lines, then (LS, π, µ) is an S-family
of broken lines.

Remark 2.1.9. Let S be a topological space and let π : LS → S be an S-family of
broken lines. If S is a paracompact Hausdorff space, then LS satisfies the following
a priori stronger version of condition (a) of Definition 2.1.3:

(a′) There exists a continuous map f : LS → [0, 1] for which the product map
(f × π) : LS → [0, 1] × S is a homeomorphism and, for each s ∈ S, the
induced homeomorphism f |Ls : Ls → [0, 1] is directed.

To prove this, choose a cover of S by open subsets {Uα} and continuous maps
fα : LUα → [0, 1] satisfying condition (a′) for each LUα . The assumption that S is a
paracompact Hausdorff space guarantees that there exists a partition of unity {ψα}
subordinate to the open cover {Uα}. It is then easy to check that the formula

f(x) =
∑
α

ψα(π(x))fα(x)

determines a function f : LS → [0, 1] satisfying (a′) (where we adopt the convention
that the product ψα(π(x))fα(x) is equal to zero when π(x) /∈ Uα).

2.2. Example: Broken Gradient Trajectories. Let M be a compact, smooth
Riemannian manifold, and let h : M → R be a smooth function. Then the manifold
M can be equipped with a (smooth) action

µ : R×M →M,

which is the unique solution to the differential equation

∂µ(t, x)

∂t
= (∇h)(µ(t, x)).

We will refer to the action µ as the gradient flow associated to h. It enjoys the
following properties:

• The fixed point set MR can be identified with the set Crit(M) ⊆M of critical
points for the function h: that is, the set of points x for which (∇h)(x) = 0.
• For every point x ∈ X, the function t 7→ h(µ(t, x)) is either constant (if x is

a critical point of h) or strictly increasing (if x is not a critical point of h).

Definition 2.2.1. Let x and y be critical points of M satisfying h(x) < h(y). A
broken gradient trajectory from x to y is a continuous path p : [h(x), h(y)] → M
satisfying the following conditions:

(a) The path p satisfies p(h(x)) = x and p(h(y)) = y.
(b) For t ∈ [h(x), h(y)], we have h(p(t)) = t.
(c) The image im(p) = {p(t) : h(x) ≤ t ≤ h(y)} ⊆ M is invariant under the

gradient flow associated to h.

We let Trajx,y denote the set of all broken gradient trajectories from x to y. We will
regard Trajx,y as a topological space by endowing it with the compact-open topology.



10 JACOB LURIE AND HIRO LEE TANAKA

Under mild hypotheses, the topological space Trajx,y supports a family of broken
lines, in the sense of Definition 2.1.3.

Notation 2.2.2. Let x and y be critical points of M satisfying h(x) < h(y). We

let T̃rajx,y denote the subset of Trajx,y ×M consisting of those pairs (p, z) where z
belongs to the image of p. It follows from condition (c) of Definition 2.2.1 that the

gradient flow µ : R×M →M restricts to an action of R on T̃rajx,y, which preserves

each fiber of the projection map T̃rajx,y → Trajx,y.

Proposition 2.2.3. Let M be a compact smooth Riemannian manifold equipped
with a smooth function h : M → R for which the critical set Crit(M) is finite (this
condition is satisfied, for example, if h is a Morse function). Then the projection

map π : T̃rajx,y → Trajx,y exhibits T̃rajx,y as a Trajx,y-family of broken lines, in the
sense of Definition 2.1.3.

Proof. Let e : Trajx,y × [h(x), h(y)] → M be the evaluation map given by e(p, t) =
p(t), and let π : Trajx,y× [h(x), h(y)]→ Trajx,y be the projection onto the first factor.

Unwinding the definitions, we see that T̃rajx,y is the image of the product map

(π × e) : Trajx,y × [h(x), h(y)]→ Trajx,y ×M.

This map is closed (by the compactness of [h(x), h(y)]) and injective, hence deter-

mines a homeomorphism Trajx,y × [h(x), h(y)] ' T̃rajx,y which is directed on each

fiber. Consequently, to show that T̃rajx,y is a Trajx,y-family of broken lines, it will

suffice to show that the projection map T̃raj
R

x,y → Trajx,y is unramified. To prove

this, we note that T̃raj
R

x,y can be identified with a closed subset of the product

Trajx,y×MR, where MR = Crit(M) is the set of critical points of h (and is therefore
a finite set equipped with the discrete topology). �

2.3. The Moduli Stack of Broken Lines. In this section, we introduce the main
object of interest in this paper: the moduli stack Broken of broken lines. We begin
by reviewing some terminology.

Definition 2.3.1. Let ρ : E → C be a functor between categories. We say that ρ is
a fibration in groupoids if the following conditions are satisfied:

(a) For every object E ∈ E and every morphism f : E ′ → E ′′ in E , the diagram
of sets

HomE(E,E
′)

f◦ //

��

HomE(E,E
′′)

��
HomC(ρ(E), ρ(E ′))

ρ(f)◦
// HomC(ρ(E), ρ(E ′′))

is a pullback square.
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(b) For every object E ∈ E and every morphism f : C → ρ(E) in the category
C, there exists a morphism f : C → E in E with ρ(f) = f0.

Remark 2.3.2. Let ρ : E → C be a fibration in groupoids. Then, for each object
C ∈ C, the fiber EC = ρ−1{C} is a groupoid—that is, every morphism in EC is
invertible. Moreover, if f : C ′ → C is a morphism in the category C, then for every
object E ∈ EC we can apply condition (b) of Definition 2.3.1 to choose a morphism
f : f ∗E → E in the category E with ρ(f) = f . It follows from condition (a) that the
object f ∗E is well-defined up to (unique) isomorphism and that the construction
E 7→ f ∗E determines a functor f ∗ : EC → EC′ . If we regard the category C as fixed,
this construction establishes a dictionary

{Fibrations in Groupoids ρ : E → C}

��
{Functors of 2-categories Cop → {Groupoids}}.

Definition 2.3.3. Let Top denote the category of topological spaces. A topological
prestack X is a category Pt(X) equipped with a fibration in groupoids ρ : Pt(X)→
Top. Note that if X is a topological stack and S is a topological space, then the
construction

(U ⊆ S) 7→ ρ−1(U)

determines a presheaf on S with values in the 2-category of groupoids. We will say
that Pt(X) is a topological stack if this presheaf is a sheaf for every topological space
S (in other words, if the construction S 7→ ρ−1(S) satisfies descent with respect to
the Grothendieck topology on Top generated by the open covers).

Remark 2.3.4. The terminology of Definition 2.3.3 is potentially confusing, since
a topological stack X “is” the category Pt(X) (and the functor ρ : Pt(X) → Top).
However, our notation is intended to emphasize the idea that a topological stack X
should be viewed as a geometric object of some kind, from which one can extract
a category Pt(X) (whose objects can be viewed as topological spaces S equipped
with a map S → X). We refer to Pt(X) as the category of points of X.

Remark 2.3.5 (The 2-Category of Topological Stacks). Let X and Y be topological
stacks. A morphism of topological stacks from X to Y is a functor f : Pt(X) →
Pt(Y ) for which the diagram

Pt(X)
f //

ρX

##

Pt(Y )
ρY

{{
Top

commutes. The collection of all morphisms from X to Y can be organized into a
category, where an isomorphism from f : Pt(X)→ Pt(Y ) to g : Pt(X)→ Pt(Y ) is
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a natural transformation α : f → g for which the induced natural transformation

ρX = ρY ◦ f
α−→ ρY ◦ g = ρX

is the identity (that is, for every object S̃ ∈ Pt(X), the map α(S̃) : f(S̃) → g(S̃)
induces the identity on the underlying topological space S). Note that such a natural
transformation α is automatically invertible (since ρY is a fibration in groupoids).

We let TopStk denote the (strict) 2-category whose objects are topological stacks,
and whose morphisms (and 2-morphisms) are defined as above. Note that every
2-morphism in TopStk is invertible.

Example 2.3.6 (Topological Spaces as Topological Stacks). Let X be a topological
space, and let Pt(X) denote the category Top/X , whose objects are topological
spaces S equipped with a map S → X. Then the forgetful functor ρ : Pt(X)→ Top
is a topological stack, which (by a slight abuse of terminology) we will identify
with the original topological space X. The construction X 7→ Pt(X) determines a
fully faithful embedding from the category of topological spaces to the 2-category
of topological stacks.

Further, let ρ : Pt(Y )→ Top be a topological stack. Then by the Yoneda Lemma,
there is a canonical equivalence between the category of morphisms X → Y and the
category ρ−1(X).

Example 2.3.7 (The Classifying Stack of a Group). Let G be a topological group.
We let Pt(BG) denote the category whose objects are maps P → S, where S is a
topological space and P is a principal G-bundle over S; a morphism from (P → S) to
(P ′ → S ′) in the category Pt(BG) is given by a commutative diagram of topological
spaces

P //

��

P ′

��
S // S ′

where the upper horizontal map isG-equivariant. Then the construction (P → S) 7→
S determines a topological stack Pt(BG) → Top. We will denote this topological
stack by BG and refer to it as the classifying stack of the group G.

Notation 2.3.8. Let X be a topological stack. We will typically denote objects

of the category Pt(X) by S̃, and write S for the image of S̃ under the forgetful
functor ρ : Pt(X) → Top. If f : U → S is a continuous map of topological spaces,

we let S̃|U denote the domain of a morphism f̃ : S̃|U → S̃ in the category Pt(X)

(our assumption that ρ is fibered in groupoids guarantees that the object S̃|U is
determined uniquely up to (unique) isomorphism). Heuristically, we view the object

S̃ ∈ Pt(X) as encoding the datum of a map from S into the topological stack X, in

which case S̃|U encodes the composite map U
f−→ S → X.
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We now introduce the main object of interest in this paper.

Construction 2.3.9. We define a category Pt(Broken) as follows:

• An object of Pt(Broken) is a topological space S together with an S-family
of broken lines (π : LS → S, µ) (see Definition 2.1.3).
• A morphism from (π′ : LS′ → S ′, µ′) to (π : LS → S, µ) in the category

Pt(Broken) is a pair of continuous maps f : S ′ → S, f̃ : LS′ → LS, where f̃
is R-equivariant and the diagram

LS′
f̃ //

π′

��

LS

π
��

S ′
f // S

is a pullback square in the category of topological spaces.

Remark 2.3.10. In what follows, we will generally abuse notation by identifying
an object (π : LS → S, µ) of the category Pt(Broken) with the topological space LS,
and a morphism

(f̃ , f) : (π′ : LS′ → S ′, µ′)→ (π : LS → S, µ)

with the underlying map of topological spaces f̃ : LS′ → LS (note that the map f̃
determines f).

Note that the construction (π : LS → S, µ) 7→ S determines a functor ρ from the
category Pt(Broken) to the category Top of topological spaces. We will refer to ρ as
the forgetful functor.

Proposition 2.3.11. The forgetful functor ρ : Pt(Broken) → Top is a topological
stack, in the sense of Definition 2.3.3.

Proof. Condition (a) of Definition 2.3.1 is immediate from the definitions, and con-
dition (b) follows from Remark 2.1.5. It follows that ρ is a fibration in groupoids, so
that we can regard the construction S 7→ Pt(Broken)×Top {S} as a groupoid-valued
functor on the category Topop. This functor satisfies descent by virtue of Remark
2.1.8. �

Notation 2.3.12. We will denote the topological stack of Proposition 2.3.11 by
Broken, and refer to it as the moduli stack of broken lines. For every topological
space S, we let Broken(S) denote the fiber product Pt(Broken) ×Top {S}. This is
the groupoid whose objects are S-families of broken lines, and whose morphisms are
R-equivariant homeomorphisms which are compatible with the projection to S. It
follows from Remark 2.3.2 that we can regard the construction S 7→ Broken(S) as a
contravariant functor from the category Topop to the 2-category of groupoids.
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Example 2.3.13 (Points of Broken). The groupoid Broken(∗) can be described as
follows:

• An object of Broken(∗) is a broken line L (Definition 1.0.1).
• A morphism from L to L′ in Broken(∗) is an R-equivariant homeomorphism
L ' L′.

The structure of this category is easy to describe. Up to isomorphism, it has one
object Ln for every positive integer n (given by a concatenation of n copies of the
broken line [−∞,∞] of Example 1.0.2), whose automorphism group is isomorphic
to Rn (which acts by translation separately on each component of L◦n = Ln \ LR

n ).

Remark 2.3.14 (The Moduli Stack of Unbroken Lines). Let Pt(Broken◦) denote
the full subcategory of Pt(Broken) spanned by those families of broken lines LS → S
where each fiber Ls is isomorphic to the broken line [−∞,∞] of Example 1.0.2.
Then the forgetful functor Pt(Broken◦)→ Top determines a topological stack which
we denote by Broken◦. Note that if LS is an S-family of broken lines satisfying
this condition, then the open subset LS \ LR

S is a principal R-bundle over S. It
is not difficult to see that the construction LS 7→ LS \ LR

S induces an equivalence
of topological stacks Broken◦ ' BR, where BR denotes the classifying stack of the
additive group of real numbers (Example 2.3.7).

Remark 2.3.15. The moduli stack Broken◦ of Remark 2.3.14 can be regarded as
an open substack of the moduli stack of broken lines. More generally, for any
integer n > 0, there is a locally closed substack Broken=n ⊆ Broken, equivalent to
the classifying stack BRn, which parametrized S-families of broken lines LS → S
having the property that each of the broken lines Ls is isomorphic to a concatenation
of n copies of [−∞,∞] (that is, the non-fixed locus Ls \LR

s has exactly n connected
components). The substacks Broken=n ⊆ Broken determine a stratification of the
topological stack Broken, given by the construction which assigns to each LS ∈
Broken(S) the upper semicontinuous function (s ∈ S) 7→ |π0(Ls \ LR

s )| (see Remark
2.1.7).

2.4. A Recognition Principle for Broken Lines. Condition (a) of Definition
2.1.3 can be somewhat inconvenient to work with, because a broken line L does not
come equipped with any canonical choice of directed homeomorphism L ∼= [0, 1].
It will therefore be useful to have a more intrinsic characterization of S-families of
broken lines.

Theorem 2.4.1. Let π : LS → S be a continuous map of topological spaces and let
µ : R × LS → LS be a continuous R-action which stabilizes each fiber of π. Then
(π : LS → S, µ) is an S-family of broken lines (in the sense of Definition 2.1.3) if
and only if the following axioms are satisfied:

(A1) For each point s ∈ S, there exists a directed homeomorphism Ls ∼= [0, 1].
(A2) The restriction π|LR

S
: LR

S → S is unramified (as in Definition 2.1.3).
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(A3) The map π is closed.
(A4) For every pair of points x, y ∈ LS having the same image s = π(x) = π(y)

in S, let us write x ≤LS y if x ≤Ls y (see Notation 2.1.2). Then {(x, y) ∈
LS ×S LS : x ≤LS y} is a closed subset of the fiber product LS ×S LS.

(A5) The restriction of π to the non-fixed locus L◦S = LS/L
R
S has the local lifting

property. More precisely, x is any point in L◦S, then there exists a neigh-
borhood U ⊆ S of s = π(x) and a continuous map σ : U → L◦S satisfying
σ(s) = x and π ◦ σ = idU .

Proof of Necessity. Let LS be an S-family of broken lines; we will show that con-
ditions (A1) through (A5) are satisfied (the proof of the converse will require some
preliminaries, and will be given in §2.5). Working locally on S, we can assume that
there exists a continuous map γ : LS → [0, 1] which induces a homeomorphism
LS ' [0, 1] × S which restricts to a directed homeomorphism Ls ' [0, 1] for each
s ∈ S. Assertions (A1) and (A2) are immediate, assertion (A3) follows from the
compactness of the interval [0, 1], and assertion (A4) follows from the identification

{(x, y) ∈ LS ×S LS : x ≤LS y} = {(x, y) ∈ LS ×S LS : γ(y)− γ(x) ≤ 0}.

To prove (A5), we note that for any point x ∈ LS having image s = π(x) in S, there
is a unique section σ : S → LS of the projection map π such that σ(s) = x and
γ ◦ σ : S → [0, 1] is constant. If x does not belong to the fixed locus LR

S , then there
is an open neighborhood U ⊆ S containing s such that σ|U factors through L◦S. �

Remark 2.4.2. Let S be a topological space and let (LS, π, µ) satisfy axioms (A1)
through (A5) of Theorem 2.4.1. It follows from (A4) that the relative diagonal
LS → LS ×S LS is a closed embedding, and from (A1) that each fiber of π is
compact. Consequently, axiom (A3) is equivalent to the requirement that the map
π : LS → S is proper.

We now give a convenient reformulation of condition (A4) of Theorem 2.4.1.

Notation 2.4.3 (Translation Distance). Let L be a broken line equipped with R-
action µ : R × L → L, and let ≤L be the ordering of Notation 2.1.2. For points
x ∈ L \ LR and y ∈ L, we define

dL(x, y) =


∞ if µ(t, x) ≤L y for all t ∈ R

t if µ(t, x) = y for some t ∈ R

−∞ if y ≤L µ(t, x) for all t ∈ R.

We will refer to dL(x, y) ∈ [−∞,∞] as the translation distance from x to y.
More generally, suppose that we are given a map of topological spaces π : LS → S

and an action of R on LS which exhibits each fiber of π as a broken line. For
points x ∈ L◦S = LS \ LR

S and y ∈ LS having the same image s ∈ S, we define
dLS(x, y) = dLs(x, y) ∈ [−∞,∞].
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Proposition 2.4.4. Let π : LS → S be a map of topological spaces and suppose
that LS is equipped with a continuous action of R which exhibits each fiber of π as
a broken line. Then π : LS → S satisfies axiom (A4) of Theorem 2.4.1 if and only
if the translation distance function

dLS : L◦S ×S LS → [−∞,∞]

is continuous.

Proof. Let U be an open subset of [−∞,∞]; we wish to show that

{(x, y) ∈ L◦S ×S LS : dLS(x, y) ∈ U}
is an open subset of the fiber product L◦S ×S LS. Without loss of generality, we
may assume that U is a half-open interval of the form (t,∞] or [−∞, t) for some
real number t (such intervals form a subbasis for the topology of [−∞,∞]). By
symmetry, we may assume that U = (t,∞]. Using the continuity of the R-action
on the second factor, we may reduce to the case t = 0. In this case, we have

dLS(x, y) ∈ U ⇔ y �LS x,

so the desired conclusion is equivalent to axiom (A4). �

2.5. The Proof of Theorem 2.4.1. Our goal in this section is to supply a proof
of Theorem 2.4.1. We begin by introducing a technical device which is useful for
producing “local coordinates” on the moduli stack of broken lines (see § 3).

Notation 2.5.1. Let I be a set. A linear preordering of I is a binary relation ≤I
on I satisfying the following conditions:

• For every pair of elements i, j ∈ I, either i ≤I j or j ≤I i.
• If i, j, k ∈ I satisfy i ≤I j and j ≤I k, then i ≤I k.

Note that the first condition guarantees that ≤I is reflexive: that is, we have i ≤I i
for each i ∈ I.

If ≤I is a linear preordering of a set I containing elements i, j, we write i =I j
if i ≤I j and j ≤I i. Then =I is an equivalence relation on I. We will say that
≤I is a linear ordering if i =I j implies that i = j (that is, if the relation ≤I is
antisymmetric).

Definition 2.5.2. Let π : LS → S be a map of topological spaces and suppose that
LS is equipped with an R-action which exhibits each fiber of π as a broken line.

Let I be a finite linearly preordered set. An I-section of LS is a collection of
continuous maps {σi : S → LS \ LR

S }i∈I with the following properties:

(a) Each σi is a section of π: that is, we have π ◦ σi = idS.
(b) For each i ≤ j in I and each point s ∈ S, we have dLS(σi(s), σj(s)) > −∞;

here dLS is the translation distance function of Notation 2.4.3.
(c) For each point s ∈ S and each connected component A of L◦s, there exists

i ∈ I such that σi(s) ∈ A.
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Proposition 2.5.3 (Existence of I-Sections). Let π : LS → S be a map of topolog-
ical spaces and let µ : R × LS → LS be a continuous action of R which preserves
each fiber of π and satisfies axioms (A1), (A2), (A4), and (A5) of Theorem 2.4.1.
Then, for every point s ∈ S, there exists an open set U ⊆ S containing s, a finite
linearly ordered set I, and an I-section of the projection map LS ×S U → U .

Proof. Regard the fiber Ls as equipped with the linear ordering ≤Ls of Notation
2.1.2. Then the fixed point locus LR

s is a finite set {x0 <L x1 < · · · <L xn}. Using
axiom (A5), we can choose an open set U ⊆ S containing s and a collection of
continuous maps {σi : U → L◦S}1≤i≤n satisfying xi−1 <L σi(s) <L xi.

Using axiom (A2), we can further assume (after replacing U by a smaller neighbor-
hood of s if necessary) that the fixed point locus LR

S decomposes as a disjoint union
K0 qK1 q · · · qKn, where xi ∈ Ki and each restriction π|Ki : Ki → U is a closed
embedding. Using Axiom (A4), we can further arrange (by shrinking U as neces-
sary) that for all y ∈ Ki, we have σj(π(y)) <LS y if j ≤ i, and y <LS σj(π(y)) for
j > i. Finally, using the continuity of the translation distance function dLS (Propo-
sition 2.4.4), we can assume (after shrinking U) that dLS(σi(s

′), σj(s
′)) > −∞ for

all s′ ∈ U and 1 ≤ i ≤ j ≤ n.
We now claim that {σi}1≤i≤n is an I-section of the projection map LU → U ,

where I is the set {1, . . . , n} (equipped with its usual ordering). The only nontrivial
point is to verify that for each s′ ∈ U , the set {σi(s′)}1≤i≤n intersects each connected
component A of Ls′ \LR

s′ . Note that the closure of A in the broken line Ls′ contains
exactly two R-fixed points p and q, which belong to the sets Kj and Kk for some
j < k. In this case, our preceding assumptions guarantee that p <LS σk(s

′) <LS q,
so that σk(s

′) belongs to A. �

Proof of Theorem 2.4.1. Let π : LS → S be a map of topological spaces and let
µ : R× LS → LS be a continuous action of R which satisfies axioms (A1) through
(A5) of Theorem 2.4.1. We now complete the proof of Theorem 2.4.1 by showing that
(LS, π, µ) is an S-family of broken lines. Since this assertion is local on S (Remark
2.1.8), we can reduce to the case where there exists a finite linearly ordered set I
and an I-section {σi}i∈I of π (Proposition 2.5.3). Let n be the cardinality of I. We
may assume without loss of generality that n > 0 (otherwise, the space S is empty
and there is nothing to prove).

Let dLS : L◦S ×S LS → [−∞,∞] denote the translation distance function of Nota-
tion 2.4.3, and choose an orientation-preserving homeomorphism

ρ : [−∞,∞] ' [0,
1

n
].

We define a map γ : LS → [0, 1] by the formula

γ(x) =
∑
i∈I

ρ(dLS(σi(π(x)), x)).
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It follows from Proposition 2.4.4 that the map γ is continuous. To complete the
proof of Theorem 2.4.1, it will suffice to establish the following:

(a) For each point s ∈ S, the restriction γ|Ls : Ls → [0, 1] is a directed homeo-
morphism.

(b) The product map (γ, π) : LS → [0, 1]× S is a homeomorphism.

We first prove (a). Fix a point s ∈ S, and regard the broken line Ls as equipped
with the ordering ≤Ls of Notation 2.1.2. For each i ∈ I, the function (x ∈ Ls) 7→
dLS(σi(s), x) = dLs(σi(s), x) determines a nondecreasing, endpoint-preserving map
from Ls to the interval [−∞,∞]. It follows that the function γ|Ls : Ls → [0, 1] is
nondecreasing and endpoint-preserving. We will complete the proof by showing that
γ|Ls is strictly increasing. By continuity, it will suffice to show that γ|Ls is strictly
increasing on each connected component A of L◦s = Ls \ LR

s . Our assumption that
{σi} is an I-section of π then guarantees that A contains σi(s) for some point i ∈ I.
We now observe that the function (x ∈ Ls) 7→ dLS(σi(s), x) is strictly increasing
when restricted to A. This completes the proof of (a).

To prove (b), we note that the product map (γ, π) : LS → [0, 1]× S is continuous
and bijective (by virtue of (a)). It will therefore suffice to show that it is a closed
map, which follows from the fact that LS is proper over S (Remark 2.4.2). �
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3. Presenting the Moduli Stack of Broken Lines

Our goal in this section is to construct an atlas for the topological stack Broken
of Notation 2.3.12. For this, it will be convenient to consider broken lines equipped
with some additional structure.

Notation 3.0.1. Let (I,≤I) be a finite linearly preordered set (Notation 2.5.1).
For every topological space S, we let BrokenI(S) denote the groupoid whose objects
are triples (π : LS → S, µ, {σi}i∈I), where the pair (π : LS → S, µ) is an S-family of
broken lines (Definition 2.1.3) and {σi}i∈I is an I-section of LS (Definition 2.5.2).
The construction S 7→ BrokenI(S) determines a stack (in groupoids) on the category
of topological spaces, which we will denote by BrokenI .

Remark 3.0.2. The associated fibration in groupoids (see Definition 2.3.1) is as
follows: We let Pt(BrokenI) denote the category whose objects are triples (π : LS →
S, µ, {σi}i∈I). A morphism of Pt(BrokenI) is a morphism of Pt(Broken) compatible
with the choices of I-sections. The forgetful functor Pt(BrokenI) → Top is the
fibration in groupoids associated to BrokenI (see Definition 2.3.3).

For each I, BrokenI is equipped with a map of topological stacks BrokenI →
Broken. Moreover, Proposition 2.5.3 guarantees that these maps determine a cov-
ering of Broken: every family of broken lines LS → S can be equipped with an
I-section in a neighborhood of each point s ∈ S, for some finite linearly preordered
set I (which might depend on s). Consequently, we can recover the moduli stack
Broken from the moduli stacks BrokenI together with information about fiber prod-
ucts of the form BrokenI ×Broken Broken

J . The main results of this section can be
summarized as follows:

• For every finite linearly preordered set I, the topological stack BrokenI is
actually (representable by) a topological space (Theorem 3.1.6). In other
words, there is a universal example of a family of broken lines equipped with
an I-section; we will construct this universal family explicitly in §3.2.
• For every pair of linearly preordered sets I and J , the fiber product

BrokenI ×Broken Broken
J

is a manifold (with corners) which admits an explicit open covering by open
subsets of the form BrokenK , where K ranges over all linearly preordered sets
which can be obtained by amalgamating I and J (Theorem 3.4.6). Using
this, we show that Broken is (representable by) a Lie groupoid with corners
(Proposition 3.5.10).
• The topological stack Broken can be realized as the (homotopy) colimit

lim−→I
BrokenI , where I ranges over all finite linearly preordered sets (The-

orem 3.6.4).
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3.1. The Moduli Stack BrokenI. Our first goal is to show that, for every linearly
preordered set I, the moduli stack BrokenI is representable by a topological space.

Notation 3.1.1. Let (I,≤I) be a finite nonempty linearly preordered set. We can
then form a category whose objects are the elements of I whose morphisms are given
by

Hom(i, j) =

{
{∗} if i ≤I j
∅ otherwise.

In what follows, we will generally not distinguish between a linearly preordered set
I and its associated category.

Let R+ denote the union R ∪ {∞}, equipped with the topology given by its
realization as a half-open interval (−∞,∞]. We regard R+ as a commutative monoid
under addition (with the convention that t+∞ =∞+ t =∞ for all t ∈ R+).

Let BR+ denote the category having a unique object ∗, with HomBR+(∗, ∗) =
R+ (and composition of morphisms given by addition). For every finite linearly
preordered set I, we let Rep(I,BR+) denote the set of all functors from I to BR+.

More concretely, Rep(I,BR+) can be described as the set of all functions

α : {(i, j) ∈ I × I : i ≤I j} → R+

which satisfy the equations

α(i, i) = 0

α(i, j) + α(j, k) = α(i, k) if i ≤I j ≤I k.

Consequently, we can view Rep(I,BR+) as a closed subset of a product of finitely
many copies of R+. We will regard Rep(I,BR+) as a topological space by equipping
it with the subspace topology: that is, the coarsest topology for which all of the
functions α 7→ α(i, j) ∈ R+ are continuous.

Example 3.1.2. Let I be a nonempty finite set. Then we can regard I as a linearly
preordered set by equipping it with the indiscrete preordering: that is, by declaring
that i ≤I j for every pair of elements i, j ∈ I. In this case, the set Rep(I,BR+) is
homeomorphic to R|I|−1. More precisely, for any choice of element i ∈ I, we have a
canonical homeomorphism Rep(I,BR) ' RI−{i}, given by the construction

(α ∈ Rep(I,BR+)) 7→ {α(i, j)}j 6=i.

Example 3.1.3. Let I = [n] = {0 < 1 < 2 < . . . < n}, which we regard as
equipped with its usual ordering. In this case, we have a canonical homeomorphism
Rep(I,BR) ' (R+)n, given by the construction

(α ∈ Rep(I,BR+)) 7→ (α(0, 1), α(1, 2), . . . , α(n− 1, n)).
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Remark 3.1.4. Let I be any nonempty finite linearly preordered set. Then we can
(non-uniquely) write I = {i0, i1, . . . , in} where i0 ≤I i1 ≤I i2 ≤I · · · ≤I in. In this
case, the construction

(α ∈ Rep(I,BR+)) 7→ (α(i0, i1), α(i1, i2), . . . , α(in−1, in))

determines an open embedding Rep(I,BR+) ↪→ (R+)n, whose image consists of
those points (t1, . . . , tn) ∈ (R+)n satisfying the condition tm < ∞ whenever im ≤I
im−1—that is, whenever im ∼= im−1 in the category I. In particular, Rep(I,BR+) is
a manifold (with corners) of dimension n.

Construction 3.1.5. Let (I,≤I) be a nonempty finite linearly preordered set, let S
be a topological space, and let (π : LS → S, µ, {σi}i∈I) be an object of BrokenI(S).
To this data, we associate a map

α : S → Rep(I,BR+) s 7→ αs

by the formula
αs(i, j) = dLS(σi(s), σj(s)).

Note that condition (b) of Definition 2.5.2 guarantees that αs(i, j) 6= −∞ for i ≤I j,
and Proposition 2.4.4 guarantees that the map α : S → Rep(I,BR+) is continuous.

We can now formulate the first result of this section:

Theorem 3.1.6. Let (I,≤I) be a nonempty finite linearly preordered set. Then, for
every topological space S, Construction 3.1.5 induces an equivalence of categories

BrokenI(S)→ HomTop(S,Rep(I,BR+))

where we regard the set HomTop(S,Rep(I,BR+)) as a category having only identity
morphisms. In other words, the topological stack BrokenI is represented by the
topological space Rep(I,BR+).

3.2. The Universal Family. Theorem 3.1.6 asserts that there is a universal family
of broken lines which can be equipped with an I-section, which is parametrized by
the topological space Rep(I,BR+) of Notation 3.1.1.

Example 3.2.1. Consider the topological space [−∞,∞] × [−∞,∞], equipped
with the R-action given by translation on each factor. For every real number α, the
construction t 7→ (t+α, t) determines a map [−∞,∞]→ [−∞,∞]×[−∞,∞], whose
image is a closed subset Lα ⊆ [−∞,∞] × [−∞,∞]. As α approaches ∞, the sets
Lα converge to a broken line L∞ ⊆ [−∞,∞]× [−∞,∞], given by the set-theoretic
union

([−∞,∞]× {−∞}) ∪ ({∞}, [−∞,∞]).

The collection {Lα}α∈R∪{∞} can be organized into a family of broken lines over the
topological space R+ ' Rep({0 < 1},BR+). Note that each Lα can be identified
with a compactification of the set

{(x, y) ∈ R≥0 : xy = e−α}
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via the construction (x, y) 7→ (− log(x), log(y)) (compare with Example 1.0.3).

We now consider a generalization of Example 3.2.1.

Construction 3.2.2. Let (I,≤I) be a nonempty finite linearly preordered set. We
let

R̃ep(I,BR+) ⊆ Rep(I,BR+)× [−∞,∞]I

denote the subset consisting of those pairs (α : I → BR+, {β(i)}i∈I) which satisfy
the following condition:

(∗) Suppose that i ≤I j in I. If either β(j) > −∞ or α(i, j) < ∞, then
β(i) = α(i, j) + β(j).

Note that there is an action of R on R̃ep(I,BR+), given by the map

µ : R× R̃ep(I,BR+)→ R̃ep(I,BR+)

µ(t, (α, {β(i)}i∈I)) = (α, {β(i) + t}i∈I).
Proposition 3.2.3. Let (I,≤I) be a nonempty finite linearly preordered set. Then
the projection map

R̃ep(I,BR+) ⊆ Rep(I,BR+)× [−∞,∞]I → Rep(I,BR+)

exhibits R̃ep(I,BR+) as a Rep(I,BR+)-family of broken lines (with respect to the
R-action described in Construction 3.2.2.

We begin by analyzing the fibers of the map R̃ep(I,BR+)→ Rep(I,BR+).

Lemma 3.2.4. Let (I,≤I) be a nonempty finite linearly preordered set, let α : I →
BR+ be a functor, and set L = R̃ep(I,BR+) ×Rep(I,BR+) {α}. Then L is a broken
line (with respect to the R-action described in Construction 3.2.2).

Proof. The map α determines an equivalence relation on I, where two elements
i, j ∈ I are equivalent if either i ≤I j and α(i, j) < ∞, or j ≤I i and α(j, i) < ∞.
This equivalence relation determines a partition I = I1qI2q· · ·qIm into equivalence
classes. For each equivalence class Ia ⊆ I, choose a maximal element ia ∈ Ia (with
respect to the linear preordering ≤I). Reindexing if necessary, we may assume that
for 1 ≤ a < b ≤ m, we have ia ≤I ib (so that α(ia, ib) =∞).

Let us identify L with the subset of [−∞,∞]I consisting of those tuples {β(i)}i∈I
satisfying condition (∗) of Construction 3.2.2. For 1 ≤ a ≤ m, we define an R-
equivariant map γa : [−∞,∞]→ L by the formula

γa(t)(i) =


∞ if i ∈ Ib for b < a

α(i, ia) + t if i ∈ Ia
−∞ if i ∈ Ib for b > a.

Unwinding the definitions, we see that the maps {γa}1≤a≤m induce an R-equivariant
isomorphism of L with the concatenation of m copies of [−∞,∞], so that L is a
broken line. �
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Proof of Proposition 3.2.3. We verify that R̃ep(I,BR+) satisfies the hypotheses (A1)
through (A5) of Theorem 2.4.1:

(A1) For each point α ∈ Rep(I,BR+), the fiber R̃ep(I,BR+)×Rep(I,BR+) {α} is a
broken line; this follows from Lemma 3.2.4.

(A2) The fixed point locus R̃ep(I,BR+)R is a closed subset of the product

Rep(I,BR+)× {±∞}I ,

so the projection map R̃ep(I,BR+)R → Rep(I,BR+) is unramified.

(A3) The map R̃ep(I,BR+) → Rep(I,BR+) is closed, since it is a composition

of the closed embedding R̃ep(I,BR+) ↪→ Rep(I,BR+)× [−∞,∞]I with the
projection map Rep(I,BR+) × [−∞,∞]I → Rep(I,BR+) (which is closed,
since the space [−∞,∞]I is compact).

(A4) Let

C ⊆ R̃ep(I,BR+)×Rep(I,BR+) R̃ep(I,BR+)

be the set of pairs (x, y), where x, y ∈ R̃ep(I,BR+) are points having the
same image α : I → BR+ in the space Rep(I,BR+) and x ≤L y, where
L is the broken line of Lemma 3.2.4. We wish to show that C is closed.
This follows from the observation that C is the inverse image of the closed
subset C0 ⊆ [−∞,∞]I × [−∞,∞]I consisting of those pairs of sequences
({β(i)}i∈I , {β′(i)}i∈I) satisfying β(i) ≤ β′(i) for each i ∈ I.

(A5) Let p = (α, {β(i)}i∈I) be a point of R̃ep(I,BR+) which is not fixed by the
action of R, so we can choose some element j ∈ I such that β(j) ∈ R. We
define a map

f : Rep(I,BR+)→ R̃ep(I,BR+) f(α′) = (α′, {β′(i)}i∈I)
where each β′(i) is given by the formula

β′(i) =

{
α′(i, j) + β(j) if i ≤I j
−α′(j, i) + β(j) if j ≤I i;

here we adopt the convention that −α′(j, i)+β(j) = −∞ when α′(j, i) =∞.

It is easy to see that f is a section of the projection map R̃ep(I,BR+) →
Rep(I,BR+) satisfying f(α) = (α, {β(i)}i∈I).

�

3.3. The Proof of Theorem 3.1.6. Throughout this section, we fix a topological
space S and a nonempty finite linearly preordered set I. Our goal is to prove The-
orem 3.1.6 by showing that Construction 3.1.5 induces an equivalence of categories

BrokenI(S)→ HomTop(S,Rep(I,BR+).

We begin by noting that the left hand side is (equivalent to) a set:
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Lemma 3.3.1. Suppose we are given a pair of objects

(π : LS → S, µ, {σi}i∈I), (π′ : L′S → S, µ′, {σ′i}i∈I) ∈ BrokenI(S).

Then:

(1) If h : LS → L′S is an R-equivariant map satisfying π′ ◦ h = π and h ◦ σi = σ′i
for each i ∈ I, then h is a homeomorphism (and can therefore be regarded
as an isomorphism of LS with L′S in the category BrokenI(S)).

(2) If h, h′ : LS → L′S are two maps satisfying the hypotheses of (1), then h = h′.

Proof. We first prove (1). Note that since LS and L′S are both proper over S (Remark
2.4.2), any continuous map h : LS → L′S satisfying π′◦h = π is automatically closed.
Consequently, to show that h is a homeomorphism, it will suffice to show that h is
bijective. This condition can be checked fiberwise, so we can assume without loss
of generality that S = {s} is a point. Note that the image of h is an R-invariant
subset of L′S which contains each point σ′i(s), and therefore contains the non-fixed
locus L′◦S = L′S \ L′RS . Since h is closed and L′◦S is dense in L′S, we conclude that
h is surjective. To prove injectivity, suppose that we are given points x 6= y in LS
such that h(x) = h(y). Without loss of generality, we may assume that x <LS y
(where ≤LS is the ordering of Notation 2.1.2). It then follows that the function h
is constant on the nonempty open set U = {z ∈ LS : x <LS z <LS y}. The set
U has nonempty intersection with some connected component V of L◦S = LS \ LR

S .
Choose i ∈ I such that σi(s) belongs to V . Then we can choose choose real numbers
t 6= t′ ∈ R such that µ(t, σi(s)), µ(t′, σi(s)) ∈ U . It follows that

µ′(t, σ′i(s)) = h(µ(t, σi(s))) = h(µ(t′, σi(s))) = µ′(t′, σ′i(s)),

contradicting the fact that σ′i(s) belongs to the non-fixed locus L′◦S . This completes
the proof of (1).

We now prove (2). Suppose we are given a pair of maps h, h′ : LS → L′S satisfying
the requirements of (1); we wish to show that h(x) = h′(x) for each x ∈ LS. Set
s = π(x). By continuity, we may assume without loss of generality that x belongs to
the non-fixed locus L◦s = Ls\LR

s . In this case, there exists t ∈ R and i ∈ I such that
x = µ(t, σi(s)), so that h(x) = µ′(t, σ′i(s)) = h′(x) by virtue of the R-equivariance
of h and h′. �

We now explicitly construct an inverse to the map of Construction 3.1.5.

Construction 3.3.2. Let α : S → Rep(I,BR+) be a continuous map of topological
spaces; we denote the value of α on a point s ∈ S by αs ∈ Rep(I,BR+). We let

[α]S denote the fiber product R̃ep(I,BR+) ×Rep(I,BR+) S. Let π : [α]S → S be the
projection onto the second factor. By virtue of Proposition 3.2.3, we can regard
π : [α]S → S as a family of broken lines over S. For each j ∈ I, we define a map
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α̃j : S → R̃ep(I,BR+) by the formula

α̃j(s) = (αs, {βs(i)}i∈I) βs(i) =

{
αs(i, j) if i ≤I j
−αs(j, i) if j ≤I i.

Then each of the maps α̃j induces a section σj : S → [α]S of the projection map
[α]S. It is not difficult to see that {σj}j∈I is an I-section of [α]S, in the sense of
Definition 2.5.2.

Proof of Theorem 3.1.6. Let us abuse notation by identifying BrokenI(S) with the
set of isomorphism classes of objects of BrokenI(S) (this abuse is harmless, by virtue
of Lemma 3.3.1). Construction 3.3.2 then defines a map

ρ : HomTop(S,Rep(I,BR+))→ BrokenI(S)

ρ(α) = ([α]S, {σj}j∈I).
If α : S → Rep(I,BR+) is a continuous map, then a simple calculation shows
that the translation distance function d[α]S satisfies the identity d[α]S(σi(s), σj(s)) =
αs(i, j) for i ≤I j. It follows that ρ is right inverse to the map given by Construction
3.1.5. We claim that it is also a left inverse. To prove this, suppose we are given
an object (π : LS → S, µ, {τj}j∈I) ∈ BrokenS(i). Define α : S → Rep(I,BR+)
by the formula αs(i, j) = dLS(τi(s), τj(s)), as in Construction 3.1.5. Let [α]S and
{σj : S → [α]S}j∈I be as in Construction 3.3.2. We wish to show that (LS, {τj}j∈I)
and ([α]S, {σj}i∈I) are isomorphic as objects of BrokenI(S). To prove this, define a
map h : LS → [α]S by the formula

h(x) = (απ(s), {dLS(τi(π(s)), x)}i∈I).
A simple calculation shows that h is an R-equivariant map satisfying h ◦ τi = σi for
i ∈ I and compatible with the projection to S, and is therefore an isomorphism in
BrokenI(S) by virtue of Lemma 3.3.1. �

Corollary 3.3.3. Let S be a topological space and let π : LS → S be an S-family
of broken lines. For each point s ∈ S, there exists an open set U ⊆ S containing s,
a nonempty finite linearly ordered set I, a continuous map α : U → Rep(I,BR+),
and an isomorphism

U ×S LS ' U ×Rep(I,BR+) R̃ep(I,BR+)

of U -families of broken lines.

Proof. Combine Theorem 3.1.6 (and its proof) with 2.5.3. �

Corollary 3.3.3 can be regarded as “parametrized version” of the following ele-
mentary observation, which we asserted in Example 2.3.13:

Corollary 3.3.4 (Classification of Broken Lines). Let L be a broken line. Then L
is isomorphic to a concatenation of finitely many copies of [−∞,∞].
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Proof. By virtue of Corollary 3.3.3, we can assume that there exists a nonempty
finite linearly ordered set I and a map α : I → BR+ such that L ' {α} ×Rep(I,BR+)

R̃ep(I,BR+). In this case, the desired result follows as in the proof of Lemma
3.2.4. �

3.4. Fiber Products. Corollary 3.3.3 implies that the topological spaces

Rep(I,BR+) ' BrokenI

form a covering of the moduli stack Broken of broken lines. Our next goal is to
describe the nerve of this covering.

Notation 3.4.1. Let (I,≤I) and (J,≤J) be nonempty finite linearly ordered sets.
We let BrokenI,J denote the fiber product BrokenI ×Broken Broken

J , formed in the
2-category of topological stacks. More concretely, BrokenI,J is the topological stack
which assigns to a topological space S the groupoid of triples (LS, {σi}i∈I , {τj}j∈J),
where LS is an S-family of broken lines, {σi}i∈I is an I-section of LS, and {τj}j∈J
is a J-section of LS.

Proposition 3.4.2. For every pair of nonempty finite linearly ordered sets (I,≤I)
and (J,≤J), the topological stack BrokenI,J is (representable by) a topological space.

Proof. Let X denote the J-fold fiber product of R̃ep(I,BR+) with itself over the
space Rep(I,BR+). By definition, a point of X is a tuple {α̃j}j∈J of points of

R̃ep(I,BR+), where each α̃j has the same image α ∈ Rep(I,BR+). Let Y ⊆ X
be the subset consisting of those tuples {α̃j}j∈J which comprise a J-section of the

broken line {α} ×Rep(I,BR+) R̃ep(I,BR+) (the subset Y ⊆ X is open, though we do
not need this). Unwinding the definitions, we have a pullback diagram

Y //

��

BrokenI,J

��

Rep(I,BR+) // BrokenI ,

where the bottom horizontal map is inverse to the equivalence of Theorem 3.1.6 (that

is, the map classifying the family of broken lines R̃ep(I,BR+)→ Rep(I,BR+)). It
follows that the upper horizontal map is also an equivalence: that is, BrokenI,J is
representable by the topological space Y . �

In what follows, we will abuse notation by identifying BrokenI,J with the corre-
sponding topological space. Our next goal is to give an explicit open covering of
BrokenI,J by topological spaces of the form BrokenK (Theorem 3.4.6).

Remark 3.4.3 (Functoriality). Let (I,≤I) and (J,≤J) be a finite linearly pre-
ordered sets, so that ≤I and ≤J induce equivalence relations =I and =J on the
sets I and J , respectively (see Notation 2.5.1). We will say that a nondecreasing
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function f : I → J is essentially surjective if the induced map I/ =I→ J/ =J is
surjective. If this condition is satisfied, then for any S-family of broken lines LS and
any J-section {σj : S → LS}j∈J of LS, the collection of maps {σf(i) : S → LS}i∈I is
an I-section of LS. Consequently, the construction

(π : LS → S, µ, {σj}j∈J) 7→ (π : LS → S, µ, {σf(i)}i∈I)

induces a functor Pt(BrokenJ) → Pt(BrokenI), which we can identify with a mor-
phism of topological stacks BrokenJ → BrokenI . (See Construction 3.6.1.) Under
the identifications BrokenI ' Rep(I,BR+) and BrokenJ ' Rep(J,BR+) supplied by
Theorem 3.1.6, this corresponds to the map Rep(J,BR+)→ Rep(I,BR+) given by
precomposition with f .

Notation 3.4.4. Let (I,≤I) and (J,≤J) be nonempty finite linearly preordered sets.
An amalgam of ≤I and ≤J is a linearly preordered set (K,≤K) with the following
properties:

• The underlying set K is the disjoint union I q J .
• The inclusion maps I ↪→ K ←↩ J are nondecreasing and essentially surjective.

Let Amalg(I, J) denote the collection of all amalgams of I and J . We will regard
Amalg(I, J) as a category, where a morphism from (K,≤K) to (K ′,≤K′) is a non-
decreasing map which is the identity on I and J . Note that this category is actually
a partially ordered set—in particular, there is at most one morphism between every
pair of objects of Amalg(I, J).

It follows from Remark 3.4.3 that each amalgam (K,≤K) ∈ Amalg(I, J) deter-
mines a canonical map

BrokenK → BrokenI,J = BrokenI ×Broken Broken
J .

Moreover, we can regard BrokenK as a contravariant functor of K ∈ Amalg(I, J).

Remark 3.4.5. Let (I,≤I) and (J,≤J) be nonempty finite linearly preordered sets.
Then the partially ordered set Amalg(I, J) is a join semilattice. That is, every pair
of objects K,K ′ ∈ Amalg(I, J) has a least upper bound in Amalg(I, J), which we
will denote by K ∨K ′.

We can now state the main result of this section:

Theorem 3.4.6. Let (I,≤I) and (J,≤J) be finite nonempty linearly preordered
sets. Then:

(a) For each K ∈ Amalg(I, J), the canonical map BrokenK → BrokenI,J is an
open embedding, whose image is an open subset UK ⊆ BrokenI,J .

(b) The open sets UK cover the topological space BrokenI,J .
(c) For every pair of amalgams K,K ′ ∈ Amalg(I, J), we have UK∨K′ = UK∩UK′ .

Warning 3.4.7. In the situation of Theorem 3.4.6, each amalgam K ∈ Amalg(I, J)
can be viewed as a linearly preordered set which is never linearly ordered. This is
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our primary motivation for considering the objects BrokenI when I is a general
preordering, rather than restricting our attention to linear orderings.

Remark 3.4.8. It follows formally from Theorem 3.4.6 that BrokenI,J can be real-
ized as the colimit lim−→K∈Amalg(I,J)op

BrokenK , formed either in the ordinary category

of topological spaces or in the 2-category of topological stacks. See Lemma 3.6.7 for
a stronger statement along similar lines.

Proof of Theorem 3.4.6. Suppose we are given a topological space S and an object

(LS, {σi}i∈I , {τj}j∈J) ∈ BrokenI,J(S).

For every point s ∈ S, let us regard the elements {σi(s), τj(s)}i∈I,j∈J as defining a
map of sets fs : I q J → Ls. Let ≤s denote the linear preordering of I q J given by

(a ≤s b)⇔ (dLs(a, b) 6= −∞)

Let Ks denote the linearly preordered set (I qJ,≤s), which we will identify with an
object of Amalg(I, J). For each object K ∈ Amalg(I, J), we can identify the fiber
product S×BrokenI,J Broken

K with the open subset SK ⊆ S consisting of those points
s for which K ≤ Ks (in the partially ordered set Amalg(I, J); see Notation 3.4.4).
From this observation, assertions (a), (b), and (c) are immediate. �

3.5. The Lie Groupoid of Broken Lines. We now use the analysis of §3.4 to
define a smooth structure on the moduli stack Broken of broken lines.

Definition 3.5.1. Let G be a category. We let Ob(G) denote the set of objects of G
and Mor(G) the set of morphisms of G, so that we have maps s, t : Mor(G)→ Ob(G)
which associate to each morphism f : C → D its source C = s(f) and target
D = t(f), respectively.

We will say that a category G is a Lie groupoid with corners if the sets Ob(G) and
Mor(G) are equipped with the structure of smooth manifolds with corners satisfying
the following conditions:

(a) The map s is submersive. That is, for every point f ∈ Mor(G), there exist
open neighborhoods U ⊆ Mor(G) containing f and V ⊆ Ob(G) containing
s(f) for which the restriction s|U factors as a composition

U
h−→ V ×Rk → V ↪→ Ob(G),

where h is a diffeomorphism.
(b) The map t is submersive.
(c) The construction (C ∈ Ob(G)) 7→ (idC ∈ Mor(G)) is a smooth map of

manifolds with corners.
(d) The composition law Mor(G) ×Ob(G) Mor(G) → Mor(G) is smooth map of

manifolds with corners (note that the fiber product Mor(G) ×Ob(G) Mor(G)
inherits a smooth structure from assumption (a) or (b)).
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(e) The category G is a groupoid: that is, every morphism f ∈ Mor(G) has an
inverse f−1 ∈ Mor(G). Moreover, the construction f 7→ f−1 determines a
smooth map from Mor(G) to itself.

Remark 3.5.2. As mentioned in the introduction, Lie groupoids represent reason-
able geometric objects among all stacks on the site of smooth manifolds. This is
analogous to the way in which Artin stacks are reasonable objects among all stacks
on the site of algebraic varieties.

Remark 3.5.3 (From Lie Groupoids to Topological Stacks). Let G be a Lie groupoid
with corners and let S be a topological space. We define a category Homstr

cont(S,G)
as follows:

• The objects of Homstr
cont(S,G) are continuous maps S → Ob(G).

• Given a pair of objects C,D : S → Ob(G) of Homstr
cont(S,G), a morphism

from C to D is a continuous map f : S → Mor(G) satisfying s ◦ f = C and
t ◦ f = d (where s, t : Mor(G) → Ob(G) are the source and target maps,
respectively).
• Composition of morphisms in Homstr

cont(S,G) is given by composition of mor-
phisms in G.

The construction S 7→ Homstr
cont(S,G) determines a contravariant functor from the

category Top of topological spaces to the 2-category of groupoids, which we can
view as a topological prestack (see Definition 2.3.3). In general, this prestack is not
a stack: that is, the construction S 7→ Homstr

cont(S,G) need not satisfy descent for
open coverings. However, this can be rectified by passing to the sheafification of the
functor S 7→ Homstr

cont(S,G), which we will denote by S 7→ Homcont(S,G).

Example 3.5.4. Let G be a Lie group, and let BG denote the groupoid having a
single object with automorphism group G (so that Ob(BG) = ∗ and Mor(BG) = G).
Then BG can be regarded as a Lie groupoid (without corners). For any topological
space S, the groupoid Homstr

cont(S,BG) has a single object with automorphism group
Homcont(S,G). This category is equivalent to the category of trivial principal G-
bundles on S. The associated topological stack S 7→ Homcont(S,BG) associates to
each topological space S the category of all G-bundles on S: that is, it agrees with
the classifying stack of the topological group G, in the sense of Example 2.3.7.

We now apply these ideas to the study of broken lines. For every nonempty finite
linearly ordered set I, let us abuse notation by identifying BrokenI with the topo-
logical space that represents it, given explicitly by Rep(I,BR+) (Theorem 3.1.6).

Remark 3.5.5 (The Smooth Structure on Broken[n]). Let I = [n] = {0 < 1 < · · · <
n} be the standard linearly ordered set with n+ 1 elements. Then the construction

(α ∈ Rep(I,BR+)) 7→ (α(0, 1), . . . , α(n− 1, n))
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determines a homeomorphism of topological spaces BrokenI ' Rep(I,BR+) '
(R+)n (see Example 3.1.3). Composing with the homeomorphism

− log : R+ → R≥0,

we obtain a homeomorphism of topological spaces BrokenI ' Rn
≥0. We will use this

homeomorphism to endow BrokenI with the structure of a smooth manifold with
corners.

Remark 3.5.6 (The Smooth Structure on BrokenI). Let (I,≤I) be an arbitrary
nonempty finite linearly preordered set. Then we can write I = {i0, i1, . . . , in},
where i0 ≤I i1 ≤I · · · ≤I in. In other words, we can choose a map of linearly
preordered sets [n] → I which is bijective on objects. This map induces an open
embedding

BrokenI ↪→ Broken[n] ' Rn
≥0,

whose image is the open subset of Rn
≥0 consisting of those sequences (t1, . . . , tn)

satisfying tm > 0 when im−1 =I im. Using this embedding, we endow BrokenI with
the structure of a smooth manifold with corners; it is easy to see that the resulting
structure is independent of the chosen enumeration of I.

Remark 3.5.7 (The Smooth Structure on BrokenI,J). Let (I,≤I) and (J,≤J) be
nonempty finite linearly ordered sets, and let us abuse notation by identifying the
topological stack BrokenI,J of Notation 3.4.1 with its underlying topological space.
Then Theorem 3.4.6 supplies an explicit covering of BrokenI,J by open subspaces
{BrokenK}K∈Amalg(I,J). Using Remark 3.5.6, we can regard each of these subspaces
as a smooth manifold with corners. It it easy to see that these smooth structures
are compatible along the intersections BrokenK ∩ BrokenK

′ ' BrokenK∨K
′
, so that

they endow BrokenI,J with the structure of a smooth manifold with corners.

Construction 3.5.8 (The Lie Groupoid of Broken Lines). We define a category B
as follows:

• An object of B consists of an integer n ≥ 0 and a point α ∈ Rep([n],BR+)
(that is, a sequence (α(0, 1), . . . , α(n − 1, n)) ∈ R+). Identifying α with a
continuous map from the one-point space to Rep([n],BR+), we can apply
Construction 3.3.2 to construct a broken line, which we will denote by [α].
• Let ([n], α) and ([n′], α′) be objects of B. A morphism from ([n], α) to ([n′], α′)

is an isomorphism of broken lines [α] ' [α′].

Note that the set Ob(B) of objects of B can be identified with the disjoint union∐
n≥0 Broken

[n], and that the set Mor(B) of morphisms of B can be identified with the

disjoint union
∐

m,n≥0 Broken
[m],[n]. Using Remarks 3.5.5 and 3.5.7, we can regard

Ob(B) and Mor(B) as smooth manifolds with corners.
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Proposition 3.5.9. Let B be the category of Construction 3.5.8. Then the smooth
structures on Ob(B) and Mor(B) endow B with the structure of a Lie groupoid with
corners, in the sense of Definition 3.5.1.

Proof. We will show that the source and target maps s, t : Mor(B) → Ob(B) are
submersive, and leave the remaining axioms of Definition 3.5.1 to the reader. Fix
nonnegative integers m and n; we wish to show that the projection maps

Broken[m] ← Broken[m],[n] → Broken[n]

are submersive. Covering Broken[m],[n] by open subsets of the form BrokenK for K ∈
Amalg([m], [n]), we are reduced to showing that the projection maps Broken[m] ←
BrokenK → Broken[n] are submersive (Theorem 3.4.6). Let I and J denote the
sets [m] and [n], respectively, endowed with the linear preorderings given by the
restriction of ≤K . Then we can identify BrokenI and BrokenJ with open subsets of
Broken[m] and Broken[n], respectively (Remark 3.5.6). We are therefore reduced to
showing that the projection maps BrokenI ← BrokenK → BrokenJ are submersive.
By symmetry, it will suffice to treat the case of the projection map s : BrokenK →
BrokenI . For each j ∈ J , choose an element φ(j) ∈ I such that j =K φ(j). We
conclude by observing that the construction α 7→ (s(α), {α(j, φ(j))}j∈J) induces a
diffeomorphism BrokenK ' BrokenI ×RJ . �

For any topological space S, we can identify Homstr
cont(S,B) with the groupoid of S-

families of broken lines LS with the following property: there exists a decomposition
of S into closed and open subsets {Sn}n≥0 such that each LSn admits an [n]-section.
According to Proposition 2.5.3, every S-family of broken lines satisfies this condition
locally on S. We therefore obtain the following more precise formulation of Theorem
1.0.4:

Proposition 3.5.10. For every topological space S, there is a canonical equivalence
of categories Broken(S) ' Homcont(S,B), where B is the Lie groupoid with corners
of Construction 3.5.8. In other words, the topological stack Broken is presented by
the Lie groupoid B via the construction of Remark 3.5.3.

We can regard Proposition 3.5.10 as supplying a “smooth structure” on the topo-
logical stack Broken, which allows us to make sense of smooth families of broken
lines.

Variant 3.5.11 (From Lie Groupoids to Smooth Stacks). Let G be a Lie groupoid
with corners and let S be a smooth manifold. We define a category Homstr

sm(S,G) as
follows:

• The objects of Homstr
sm(S,G) are smooth maps S → Ob(G).

• Given a pair of objects C,D : S → Ob(G) of Homstr
sm(S,G), a morphism from

C to D is a smooth map f : S → Mor(G) satisfying s ◦ f = C and t ◦ f = d
(where s, t : Mor(G)→ Ob(G) are the source and target maps, respectively).
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• Composition of morphisms in Homstr
sm(S,G) is given by composition of mor-

phisms in G.

The construction S 7→ Homstr
sm(S,G) determines a contravariant functor from the

category Top of topological spaces to the 2-category of groupoids. We denote the
sheafification of this functor by S 7→ Homsm(S,G).

Example 3.5.12 (Smooth Families of Broken Lines). Let S be a smooth manifold
and let B be the Lie groupoid with corners of Construction 3.5.8. Unwinding the
definitions, we can identify the objects of Homsm(S,B) with S-families of broken
lines LS equipped with a smooth structure on the non-fixed locus L◦S satisfying the
following conditions:

• The projection map L◦S → S is a smooth submersion.
• Set U = {(x, y) ∈ L◦S ×S L◦S : dLS(x, y) <∞}. Then the function

((x, y) ∈ U) 7→ (log(dLS(x, y)) ∈ R≥0)

is smooth.

Warning 3.5.13. More generally, one can attempt to use Proposition 3.5.10 to
define the notion of a smooth S-families of broken lines where S is a manifold with
corners. There are multiple candidates for this definition, depending on how one
defines the notion of smooth map f : S → Rn

≥0 when S is a manifold with corners
(that is, what sort of differentiability does one require at the boundary of S?).
We caution the reader that the most conservative option (where we require f to
extend to a smooth function on a larger manifold without boundary) does not seem
appropriate for describing families of broken lines which arise naturally in geometric
situations (such as Morse theory; see §2.2).

3.6. Another Presentation of Broken. We now apply the analysis of §3.4 to ob-
tain another presentation of the moduli stack Broken, which will be particularly
convenient for our analysis of sheaves in §4. We begin by elaborating on Remark
3.4.3.

Construction 3.6.1 (The Category of Linear Preorderings). We define a category
PLin as follows:

• The objects of PLin are finite nonempty linearly preordered sets (I,≤I).
• A morphism from (I,≤I) to (J,≤J) in the category PLin is a nondecreasing

map γ : I → J which is essentially surjective (that is, for every element
j ∈ J , there exists i ∈ I such that γ(i) =J j).

By virtue of Remark 3.4.3, the construction (I,≤I) 7→ BrokenI determines a functor
from the category PLinop to the 2-category of topological stacks.

Our goal in this section is to show that the moduli stack Broken can be identified
with the (homotopy) colimit

lim−→
I∈PLinop

BrokenI ,
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in the 2-category of topological stacks. For later use, it will be convenient to formu-
late and prove a stronger version of this result.

Notation 3.6.2. Let S denote the∞-category of Kan complexes and let Top denote
the category of topological spaces. We say that a functor F : Topop → S is a sheaf
if, for every topological space S, the construction

(U ⊆ S) 7→ F (U)

determines an S-valued sheaf on the topological space S (see Definition 4.1.1). We
let ShvS(Top) denote the full subcategory of Fun(Topop,S) spanned by the sheaves
on Top.

Example 3.6.3. The 2-category of topological stacks (Definition 2.3.3) can be iden-
tified with the full subcategory of ShvS(Top) spanned by those sheaves F : Topop →
S with the property that, for each topological space S, the Kan complex F (S) is
1-truncated: that is, the homotopy groups πn(F (S), x) vanish for n ≥ 2 (and any
choice of base point x ∈ F (S)).

In particular, we can regard the moduli stack Broken as an object of ShvS(Top),
and the construction (I,≤I) 7→ BrokenI as a functor from PLinop to the ∞-category
ShvS(Top).

Theorem 3.6.4. The canonical map

lim−→
I∈PLinop

BrokenI → Broken

exhibits Broken as a colimit of the diagram {BrokenI}I∈PLinop in the ∞-category
ShvS(Top).

We begin with some general remarks. For every topological space S, let us abuse
notation by identifying S with the functor HomTop(•, S), which we regard as an
object of ShvS(Top).

Remark 3.6.5. Let X be a topological space. Note that HomTop(X,S) is a discrete
Kan complex—for example, π0 HomTop(X,S) is naturally in bijection with the set
of all continuous maps from X to S.

Lemma 3.6.6. Let S be a topological space, let A be a partially ordered set, and
let {Uα}α∈A be a collection of open subsets of S indexed by A. Assume that:

(i) The open sets Uα cover the topological space S.
(ii) For every pair of elements α, β ∈ A, there exists a least upper bound α ∨ β

in A, and we have
Uα∨β = Uα ∩ Uβ.

It follows from (ii) that the construction α 7→ Uα determines an order-reversing map
from A to the partially ordered set U(S) of open subsets of S, and therefore defines
a functor

Aop → U(S)→ Top ↪→ ShvS(Top).
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Then the canonical map lim−→α∈Aop
Uα → S exhibits S as a colimit of the diagram

{Uα}α∈A in the ∞-category ShvS(Top).

Proof. Let F : Topop → S be a sheaf. We wish to show that the canonical map

θ : MapShvS(Top)(S,F )→ lim←−
α∈A

MapShvS(Top)(Uα,F )

is a homotopy equivalence. Using Yoneda’s lemma, we can identify θ with the
canonical map

F (S)→ lim←−
α∈A

F (Uα),

which is a homotopy equivalence by virtue of our assumption that F is a sheaf. �

Combining Lemma 3.6.6 with Theorem 3.4.6, we obtain the following:

Lemma 3.6.7. Let (I,≤I) and (J,≤J) be nonempty finite linearly preordered sets.
Then the canonical map

lim−→
K∈Amalg(I,J)op

BrokenK → BrokenI ×Broken Broken
J

exhibits the fiber product BrokenI ×Broken Broken
J as a colimit of the diagram

{BrokenK}K∈Amalg(I,J)op

in the ∞-category ShvS(Broken).

Proof of Theorem 3.6.4. By virtue of Proposition 2.5.3, the canonical map

θ : lim−→
I∈PLinop

BrokenI → Broken

is locally surjective: that is, for every S-family of broken lines LS, we can find
an open covering {Uα} of S for which each LUα belongs to the essential image of
(lim−→I∈PLinop Broken

I)(Uα). It will therefore suffice to show that θ is a monomorphism

in ShvS(Top).
Form a pullback diagram

F //

��

lim−→I∈PLinop Broken
I

θ

��
lim−→J∈PLinop Broken

J θ // Broken.

so that F can be written as a colimit lim−→I,J∈PLinop Broken
I,J in the ∞-category

ShvS(Top). Using Lemma 3.6.7, we can write F as an iterated colimit

lim−→
I,J∈PLinop

lim−→
K∈Amalg(I,J)op

BrokenK .
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Equivalently, F can be realized as the colimit

lim−→
(I,J,K)∈J op

BrokenK ,

where J denotes the category whose objects are triples (I, J,K) where I, J ∈ PLin
and K ∈ Amalg(I, J) is an amalgam of I and J ; a morphism from (I, J,K) to
(I ′, J ′, K ′) is a pair of morphisms I → I ′ and J → J ′ in PLin for which the induced
map of sets

K = I q J → I ′ q J ′ = K ′

is nondecreasing (and therefore also a morphism in PLin).
The construction (I, J,K) 7→ K determines a functor J → PLin. This functor

admits a right adjoint (which carries a linearly preordered set K to the disjoint
union K qK) and is therefore right cofinal. It follows that the canonical map

F ' lim−→
(I,J,K)∈J op

BrokenK → lim−→
K∈PLinop

BrokenK

is an equivalence in ShvS(Top). We observe that this map is a left homotopy inverse
to the relative diagonal

δ : lim−→
K∈PLinop

Rep(K,BR+)→ lim−→
I∈PLinop

Rep(I,BR+)×Broken lim−→
J∈PLinop

Rep(J,BR+) = F .

It follows that δ is also an equivalence in ShvS(Broken), so that θ is a monomorphism
as desired. �

3.7. The Moduli Stack BrokenI. Let I be a nonempty finite linearly ordered set
and let Rep(I,BR+) denote the set of all functors from I to the category BR+

(Notation 3.1.1). According to Theorem 3.1.6, we can regard Rep(I,BR+) as a
topological space which represents the functor BrokenI of Notation 3.0.1. However,
it is perhaps more natural to view Rep(I,BR+) as the collection of objects of the
category Fun(I,BR+) of all functors from I to BR+. We let Fun(I,BR+)' denote
the underlying groupoid of this category: that is, the groupoid whose objects are the
elements of Rep(I,BR+), where a morphism from α : I → BR+ to α′ : I → BR+ is
given by a map γ : I → R satisfying

α(i, j) + γ(j) = γ(i) + α′(i, j)

for i ≤I j. We will regard Fun(I,BR+)' as an example of a Lie groupoid with
corners (Definition 3.5.1), where the set of objects Rep(I,BR+) is regarded as a
manifold with corners as in Remark 3.5.6, and the set of morphisms is regarded as
a manifold with corners by identifying it with Rep(I,BR+)×RI . Our goal in this
section is to give an explicit description of the topological stack represented by the
Lie groupoid Fun(I,BR+)'.

We begin with some elementary observations.
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Lemma 3.7.1. Let S be a topological space and let π : LS → S be an S-family of
broken lines. Then:

(i) The action of R on L◦S = LS − LR
S is topologically free: that is, L◦S is an

R-torsor over the quotient L◦S/R.
(ii) The induced map L◦S/R→ S is a local homeomorphism.

Warning 3.7.2. In the situation of Lemma 3.7.1, the quotient L◦S/R is usually not
Hausdorff (even if the space S is assumed to be Hausdorff).

Proof of Lemma 3.7.1. Using Corollary 3.3.3, we can assume that S = Rep(I,BR+)

and LS = R̃ep(I,BR+) for some nonempty finite linearly ordered set I (see Con-
struction 3.2.2). For each i ∈ I, let LS(i) denote the subset of LS consisting of those
pairs (α, {β(j)}j∈I) where β(i) ∈ R. Then the sets {LS(i)}i∈I comprise an open
covering of L◦S by R-invariant open subsets. It will therefore suffice to prove the
following:

(i′) The action of R on each LS(i) is topologically free.
(ii′) Each of the maps LS(i)/R→ S is a local homeomorphism.

In fact, something stronger is true: there are R-equivariant isomorphisms LS(i) '
S ×R, given by the construction (α, {β(j)}j∈I) 7→ (α, β(i)). �

Definition 3.7.3. Let S be a topological space, let π : LS → S be an S-family
of broken lines, and let I be a finite nonempty linearly preordered set. A weak
I-section of LS is a collection of continuous maps {σi : S → L◦S/R}i∈I with the
following properties:

• Each σi is a section of the local homeomorphism L◦S/R → S: that is, the

composite maps S
σi−→ L◦S/R→ S are the identity on S.

• For each s ∈ S, the induced map

I → L◦s/R i 7→ σi(s)

is surjective and nondecreasing (where L◦s/R is equipped with the linear
ordering inherited from the ordering on the broken line Ls).

Example 3.7.4. Let S be a topological space, let π : LS → S be an S-family of
broken lines, and let I be a finite nonempty linearly preordered set. Suppose we are
given a collection of maps {σi : S → L◦S}i∈I , and for each i ∈ I let σi denote the

composite map S
σi−→ L◦S → L◦S/R. Then {σi}i∈I is an I-section of LS (in the sense

of Definition 2.5.2) if and only if {σi}i∈I is a weak I-section of LS (in the sense of
Definition 3.7.3). In particular, every I-section of LS gives rise to a weak I-section
of LS. Moreover, every weak I-section of LS arises in this way, at least locally on S
(or even globally on S, if every R-torsor over S is trivial: this condition is satisfied
whenever S is a paracompact Hausdorff space).

Remark 3.7.5. Let π : LS → S and I be as in Definition 3.7.3, and let {σi : S →
L◦S/R}i∈I be a weak I-section. Then σi = σj whenever i =I j. It follows that we
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can identify weak I-sections of LS with weak (I/ =I)-sections of LS. Consequently,
nothing is lost by replacing I by the quotient I/ =I , and thereby restricting to the
case where I is a linearly ordered set.

Notation 3.7.6. Let I be a finite nonempty linearly ordered set. We define a
category Pt(BrokenI) as follows:

• The objects of Pt(BrokenI) are triples (π : LS → S, µ, {σi}i∈I), where (π, µ)
is an object of the category Pt(Broken) (see Construction 2.3.9) and {σi :
S → L◦S/R}i∈I is a weak I-section of LS (see Definition 3.7.3).
• A morphism from (π′ : LS′ → S ′, µ′, {σ′i}i∈I) to (π : LS → S, µ, {σi}i∈I) in

the category Pt(BrokenI) is a pair of continuous maps g : S ′ → S, g̃ : LS′ →
LS which define a morphism from (π′, µ′) to (π, µ) in the category Pt(Broken)
and for which each of the diagrams

S ′

σ′i
��

g // S

σi
��

L◦S′/R
// L◦S/R

commutes. Here, the bottom horizontal arrow is the map induced by g̃.

Lemma 3.7.7. Let I be a finite nonempty linearly ordered set. Then the forgetful
functor Pt(BrokenI)→ Pt(Broken) is a representable local homeomorphism of topo-
logical stacks (see Remark 4.2.13). In other words, for any family of broken lines
LS → S, the fiber product S×BrokenBrokenI is (representable by) a topological space
S ′ for which the projection map S ′ → S is a local homeomorphism.

Proof. Unwinding the definitions, we see that S ×Broken BrokenI can be identified
with an open subset of the product

∏
i∈I L

◦
S/R, formed in the category Top/S. The

desired result now follows from the observation that the map L◦S/R → S is a local
homeomorphism (Lemma 3.7.1). �

Proposition 3.7.8. Let I be a finite nonempty linearly ordered set. Then, for every
topological space S, we have a canonical equivalence

BrokenI(S) ' Homcont(S,Fun(I,BR+)'),

where the right hand side is obtained by applying Remark 3.5.3 to the Lie groupoid
with corners Fun(I,BR+)'.

Proof. Combine Example 3.7.4 with Theorem 3.1.6. �

Remark 3.7.9. Proposition 3.7.8 can be restated as follows: the topological stack
BrokenI can be realized as the stack-theoretic quotient of the topological space
Rep(I,BR+) ' BrokenI by the action of RI , given concretely by the map

R× Rep(I,BR+)→ Rep(I,BR+) (γ, α) 7→ {α(i, j)− γ(i) + γ(j)}i≤Ij.
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We close this section by establishing an analogue of Theorem 3.6.4.

Notation 3.7.10. We define a category Lin as follows:

• The objects of Lin are pairs (I,≤I), where I is a finite nonempty set and ≤I
is a linear ordering on I.
• A morphism from (I,≤I) to (J,≤J) in the category Lin is a surjection f :
I → J which is nondecreasing: that is, i ≤I i′ implies f(i) ≤J f(i′).

Note that we can regard Lin as a full subcategory of the category PLin introduced
in Construction 3.6.1. We will generally abuse notation by identifying an object
(I,≤I) ∈ Lin with its underlying set I.

Theorem 3.7.11. The canonical map

φ : lim−→
I∈Linop

BrokenI → Broken

exhibits Broken as a colimit of the diagram {BrokenI}I∈Linop in the ∞-category
ShvS(Top)

Proof. Note that, for every finite nonempty linearly preordered set Ĩ, we have a map

of topological stacks BrokenĨ → BrokenĨ/=
Ĩ
, depending functorially on Ĩ (see Remark

3.7.5). Passing to the colimit over Ĩ, we obtain a map ψ : lim−→Ĩ∈PLinop Broken
Ĩ →

lim−→I∈Linop BrokenI , whose composition with φ is the equivalence lim−→Ĩ∈PLinop Broken
Ĩ '

Broken of Theorem 3.6.4 (here all colimits are formed in the∞-category ShvS(Top)).
It will therefore suffice to show that ψ is an equivalence. In fact, we make a more
precise claim: the diagram {BrokenI}I∈Linop is a left Kan extension of the diagram

{BrokenĨ}Ĩ∈PLinop along the functor

q : PLinop → Linop Ĩ 7→ Ĩ/ =Ĩ .

Since q is an op-fibration of categories, this assertion can be reformulated as follows:

(∗) Let I be a nonempty finite linearly ordered set, and set C = PLin×Lin{I}.
Then the canonical map lim−→Ĩ∈Cop Broken

Ĩ → BrokenI is an equivalence in the

∞-category ShvS(Top).

Let us regard BrokenI as an RI-torsor over BrokenI , classified by a map of topological

stacks BrokenI → BRI . For each Ĩ ∈ Cop, we have a pullback diagram of topological
stacks

BrokenĨ //

��

BrokenI

��

RĨ/RI // BRI .
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It will therefore suffice to show that the lower horizontal maps induce an equivalence

ρ : lim−→
Ĩ∈Cop

RĨ/RI → BRI .

Let C0 denote the category of nonempty finite sets. Then the construction Ĩ 7→
{Ĩ×I {i}}i∈I induces an equivalence of categories C ' CI0 . Unwinding the definitions,
we see that ρ can be identified with the Ith power of a morphism

ρ0 : lim−→
J∈Cop0

RJ/R→ BR

in ShvS(Top); here R acts diagonally on each RJ . To show that ρ0 is an equivalence,
it will suffice to show that the final object 1 ∈ ShvS(Top) is a colimit of the diagram
{RJ}J∈Cop ; here we identify each RJ with the associated representable functor

Topop → Set ⊆ S S 7→ HomTop(S,R
J).

In fact, we claim that 1 is already a colimit of the diagram {RJ}J∈Cop in the presheaf
∞-category Fun(Topop,S): that is, for every topological space S, the (homotopy)
colimit lim−→J∈Cop0

HomTop(S,R
J) is contractible. This homotopy colimit can be iden-

tified with the (Kan complex associated to the) nerve of the category whose objects
are nonempty finite sets J equipped with a map J → HomTop(S,R), which is con-
tractible because it is nonempty and admits pairwise coproducts. �



40 JACOB LURIE AND HIRO LEE TANAKA

4. Sheaves on the Moduli Stack of Broken Lines

In this section, we study sheaves on the moduli stack Broken of broken lines. By
definition, a sheaf F on Broken with values in a category C (or, more generally,
an ∞-category C) is a functor Pt(Broken)op → C which satisfies a suitable descent
condition (see Definition 4.2.9). Roughly speaking, we can think of a C-valued sheaf
F on Broken as a rule which assigns to each S-family of broken lines π : LS → S
a C-valued sheaf FLS on the topological space S, depending functorially on LS.
This functoriality guarantees that the stalk FLS ,s ∈ C depends only on the broken
line Ls ' π−1{s}, which is determined (up to isomorphism) by the linearly ordered
set π0L

◦
s of connected components of the non-fixed locus. The main result of this

section asserts that F can be recovered from its value on individual broken lines,
together with some additional data of a purely combinatorial nature:

Theorem 4.0.1. Let C be a compactly generated ∞-category, let ShvC(Broken)
denote the ∞-category of C-valued sheaves on Broken (Definition 4.2.9), and let Lin
denote the category of finite nonempty linearly ordered sets (Notation 3.7.10). Then
there is a canonical equivalence of categories

ShvC(Broken)
∼−→ Fun(Lin, C).

Moreover, if L is a broken line and I ' π0(L◦), then the diagram of ∞-categories

ShvC(Broken)

%%

∼ // Fun(Lin, C)

zzC

commutes up to canonical isomorphism, where the vertical maps are given by eval-
uation on L and I, respectively.

4.1. Sheaves on Topological Spaces. We begin with a review of the theory of
sheaves with values in an ∞-category C. For a more detailed discussion, we refer
the reader to [4].

Definition 4.1.1. For every topological space S, let U(S) denote the partially
ordered set of open subsets of S. Let C be an ∞-category. A C-valued presheaf
on S is a functor F : U(S)op → C. We let PShvC(S) denote the ∞-category
Fun(U(S)op, C) whose objects are C-valued presheaves on S.

Assume now that the ∞-category C admits small limits. We will say that a C-
valued presheaf F on a topological space S is a C-valued sheaf on S if, for every
collection of open sets {Uα} in S having union U , the canonical map

F (U)→ lim←−
V

F (V )
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is an equivalence, where the limit is indexed by the category of all open sets V ⊆ X
which are contained in some Uα. We let ShvC(S) denote the full subcategory of
PShvC(S) spanned by the C-valued sheaves on S.

Notation 4.1.2. In the situation of Definition 4.1.1, suppose that the ∞-category
C admits filtered colimits. Let F be a C-valued presheaf on a topological space
S. For each point s ∈ S, we let F s denote the direct limit lim−→s∈U F (U); here the

colimit is taken over the filtered system of all open neighborhoods of s in S. We will
refer to F s as the stalk of F at the point s.

Definition 4.1.3. Let S be a topological space and let C be an ∞-category which
admits small limits. Suppose we are given a morphism α : F → G of C-valued
presheaves on S. We will say that α exhibits G as a sheafification of F if the
following conditions are satisfied:

(i) The presheaf G is a C-valued sheaf on S.
(ii) For every C-valued sheaf H on S, composition with α induces a homotopy

equivalence MapPShvC(S)(G ,H )→ MapPShvC(S)(F ,H ).

It follows immediately from the definitions that if F is a C-valued presheaf on a
topological space S, then a sheafification of F is unique up to equivalence (in fact,
up to a contractible space of choices) provided that it exists. We can also guarantee
existence under the hypothesis that C is compactly generated (see Section 5.5.7
of [4]):

Proposition 4.1.4. Let C be a compactly generated ∞-category and let F be a
C-valued presheaf on a topological space S. Then:

(a) There exists a morphism α : F → G which exhibits G as a sheafification of
F .

(b) For every point s ∈ S, the map α induces an equivalence of stalks F s → G s.

Corollary 4.1.5. Let C be a compactly generated∞-category and let S be a topo-
logical space. Then the inclusion functor ShvC(S) ↪→ PShvC(S) admits a left adjoint,
which assigns to each C-valued presheaf F its sheafification.

Remark 4.1.6. For part (a) of Proposition 4.1.4, one does not need the full strength
of the assumption that C is compactly generated: one can sheafify C-valued pre-
sheaves whenever C is a presentable ∞-category. However, in general one cannot
control the stalks of the resulting sheaves.

Warning 4.1.7. Let C be a compactly generated∞-category, let S be a topological
space, and let α : F → G be a morphism of C-valued presheaves on S. Consider
the following assertions:

(1) The morphism α exhibits G as a sheafification of F .
(2) The presheaf G is a C-valued sheaf on S, and the map α induces an equiva-

lence of stalks F s → G s for each point s ∈ S.
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It follows from Proposition 4.1.4 that (1)⇒ (2). The reverse implication holds if C
is an ordinary category (or, more generally, an n-category for n < ∞), or if S is a
paracompact Hausdorff space of finite covering dimension. However, condition (2)
does not imply (1) in general: equivalences of C-valued presheaves cannot be detected
at the level of stalks. For our applications, this technicality will be irrelevant (since
we are interested primarily in sheaves on finite-dimensional manifolds).

Remark 4.1.8 (Functoriality). Let f : S → T be a map of topological spaces and
let C be an ∞-category. If F is a C-valued presheaf on S, we let f∗F denote the
C-valued presheaf on T given by the formula (f∗F )(U) = F (f−1(U)). If C admits
small limits and F is a C-valued sheaf on S, then f∗F is a C-valued sheaf on T .
We can therefore regard the construction F 7→ f∗F as a functor f∗ : ShvC(S) →
ShvC(T ). We will refer to f∗ as the direct image functor associated to f .

Proposition 4.1.9. Let C be a compactly generated∞-category and let f : S → T
be a map of topological spaces. Then the direct image functor f∗ : ShvC(S) →
ShvC(T ) admits a left adjoint f ∗ : ShvC(T )→ ShvC(S).

In the situation of Proposition 4.1.9, we will refer to f ∗ as the pullback functor
associated to f .

Notation 4.1.10. In the situation of Proposition 4.1.9, we will sometimes denote
the image of a sheaf F ∈ ShvC(T ) under the pullback functor f ∗ by F |S, and refer
to it as the restriction of F to S.

Example 4.1.11. Let C be a compactly generated∞-category, let S be a topological
space containing a point s, and let i : {s} ↪→ S be the inclusion map. Then the
pullback functor i∗ : ShvC(S) → ShvC({s}) ' C assigns to each sheaf F ∈ ShvC(S)
its stalk F s at the point s.

Example 4.1.12 (Constant Sheaves). Let S be a topological space and let C be a
compactly generated ∞-category. Suppose we are given an object C ∈ C, which we
will identify with a C-valued sheaf on the one-point space ∗. We let C denote the
pullback f ∗C, where f : S → ∗ is the projection map. We will refer to C ∈ ShvC(S)
as the constant sheaf with value C.

Example 4.1.13. Let f : S → T be a continuous map of topological spaces and
let C be a compactly generated ∞-category. For any C-valued sheaf F on T , the
stalks of the pullback sheaf f ∗F are given by the formula (f ∗F )s ' F f(s) (this
follows from Example 4.1.11 together with the transitivity properties of the pullback
construction).

Example 4.1.14. Let S be a topological space, let C be a compactly generated
∞-category, and let U ⊆ S be an open subset. Then the restriction F |U is given
by the formula F |U(V ) = F (V ) for V ⊆ U .
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Remark 4.1.15 (Extension by Zero). Let f : S ′ → S be a local homeomorphism of
topological spaces. Then, for any compactly generated ∞-category C, the pullback
functor f ∗ : ShvC(S) → ShvC(S

′) preserves small limit and colimits. It follows
from the adjoint functor theorem that f ∗ admits a left adjoint f! : ShvC(S

′) →
ShvC(S). Moreover, this construction enjoys the following base change property: for
any pullback diagram of topological spaces

T ′
g′ //

f ′

��

S ′

f
��

T
g // S,

the Beck-Chevalley transformation f ′! ◦ g′∗ → g∗f! is an equivalence of functors from
ShvC(S

′) to ShvC(T ). In particular, the functor f! is given at the level of stalks by
the formula

(f! F )s =
∐

f(s′)=s

F s′ .

Remark 4.1.16 (Functoriality in C). Suppose we are given a pair of adjoint functors

C
F //D
G
oo , where C and D are compactly generated ∞-categories. Then G preserves

small limits. It follows that for any topological space S, postcomposition with
G determines a functor ShvD(S) → ShvC(S). This functor admits a left adjoint
F̃ : ShvC(S)→ ShvD(S), which carries a sheaf F ∈ ShvC(S) to the sheafification of
the presheaf

(U ∈ U(S)) 7→ F (F (U)).

Observe that if f : S → T is a continuous map of topological spaces, then we
have a commutative diagram of ∞-categories

ShvD(S)
G //

f∗
��

ShvC(S)

f∗
��

ShvD(T )
G // ShvC(T ).

It follows that the diagram of left adjoints

ShvD(S) ShvC(S)
F̃oo

ShvD(T )

f∗

OO

ShvC(T )

f∗

OO

F̃oo

also commutes, up to canonical homotopy.
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4.2. Sheaves on Topological Stacks. We now adapt the ideas of §4.1 to the
setting of topological stacks.

Definition 4.2.1. Let X be a topological stack and let C be an ∞-category. A
lax C-valued presheaf on X is a functor F : Pt(X)op → C. We let PShvlax

C (X) =
Fun(Pt(X)op, C) denote the ∞-category of lax C-valued presheaves on X.

Warning 4.2.2. Let X be a topological space, viewed as a topological stack as in
Example 2.3.6. Then the ∞-category PShvC(X) of C-valued presheaves on X (in
the sense of Definition 4.1.1) is not equivalent to the ∞-category PShvlax

C (X) of lax
C-valued presheaves on X (in the sense of Definition 4.2.1), except in the trivial case
where X is empty. The latter∞-category is much larger (perhaps unreasonably so),
since the ∞-category Pt(X) ' Top/X is not small.

Definition 4.2.3. Let X be a topological stack, let C be an ∞-category which
admits small limits, and let F be a lax C-valued presheaf on X. For each object

S̃ ∈ Pt(X) having image S ∈ Top, we let F S̃ denote the C-valued presheaf on S

given by the formula F S̃(U) = F (S̃|U). We will say that F is a lax C-valued sheaf

on X if, for each object S̃ ∈ Pt(X), the presheaf F S̃ is a C-valued sheaf on S. We

let Shvlax
C (X) denote the full subcategory of PShvlax

C (X) spanned by the lax C-valued
sheaves on S.

Definition 4.2.4. Let X be a topological stack and let C be an ∞-category which
admits small limits. Suppose we are given a morphism α : F → G of lax C-valued
presheaves on X. We will say that α exhibits G as a sheafification of F if the
following conditions are satisfied:

(i) The lax presheaf G is a lax C-valued sheaf on X.
(ii) For every lax C-valued sheaf H on X, composition with α induces a homo-

topy equivalence MapPShvlax
C (X)(G ,H )→ MapPShvlax

C (X)(F ,H ).

It follows immediately from the definitions that if F is a lax C-valued presheaf
on a topological stack X, then a sheafification of F is unique up to equivalence (in
fact, up to a contractible space of choices) provided that it exists. For existence, we
have the following analogue of Proposition 4.1.4:

Proposition 4.2.5. Let C be a compactly generated ∞-category and let F be a
C-valued presheaf on a topological stack X. Then:

(a) There exists a morphism α : F → G which exhibits G as a sheafification of
F .

(b) Let α : F → G be any morphism of lax C-valued presheaves on X. Then α
exhibits G as a sheafification of F (in the sense of Definition 4.2.4) if and

only if, for each object S̃ ∈ Pt(X), the induced map F S̃ → G S̃ exhibits G S̃

as a sheafification of F S̃ (in the sense of Definition 4.1.3).
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Remark 4.2.6. More informally, Proposition 4.2.5 asserts that if F is a lax C-
valued presheaf on a topological stack X, then we can sheafify each of the associated
presheaves F S̃ (in the sense of Definition 4.1.3) and assemble the resulting objects
into a lax C-valued sheaf on X, which also satisfies the requirements of Definition
4.2.4.

Corollary 4.2.7. Let C be a compactly generated ∞-category and let X be a
topological stack. Then the inclusion functor Shvlax

C (X) ↪→ PShvlax
C (X) admits a

left adjoint, which assigns to each C-valued presheaf F its sheafification.

Notation 4.2.8. Let X be a topological stack, let F be a C-valued presheaf on

X, and let f̃ : S̃ ′ → S̃ be a morphism in Pt(X), covering a continuous map of
topological spaces f : S ′ → S. For each open set U ⊆ S, we have a tautological

map S̃ ′|f−1(U) → S̃|U in the category Pt(X), which induces a map

F S̃(U) = F (S̃|U)→ F (S̃ ′|f−1(U)) = F S̃′(f
−1U) = (f∗F S̃′)(U).

This construction depends functorially on U , and therefore determines a morphism
ηf̃ : F S̃ → f∗F S̃′ in the ∞-category of presheaves PShvC(S).

If the ∞-category C is compactly generated and F is a lax C-valued sheaf on
X, then we can identify ηf̃ with a map η]

f̃
: f ∗F S̃ → F S̃′ in the ∞-category of

C-valued presheaves on S ′.

Definition 4.2.9. Let X be a topological stack, let C be a compactly generated
∞-category, and let F be a lax C-valued presheaf on X. We will say that F is a
C-valued sheaf on X if it is a lax C-valued sheaf on X (Definition 4.2.3) and, for every

morphism f̃ : S̃ ′ → S̃ in Pt(X), the map ηf̃ : F S̃ → f∗F S̃′ is an equivalence in the

∞-category ShvC(S). We let ShvC(X) denote the full subcategory of PShvlax
C (X)

spanned by the C-valued sheaves on X.

Warning 4.2.10. Let X be a topological space and let C be a compactly gener-
ated ∞-category. We have now given two different definitions for the ∞-category
ShvC(X) of C-valued sheaves on X:

(a) Viewing X as a topological space and applying Definition 4.1.1, obtain an
∞-category ShvC(X) which is a full subcategory of Fun(U(X)op, C).

(b) Viewing X as a topological stack (via Example 2.3.6) and applying Definition
4.2.9, we obtain an∞-category which is a full subcategory of Fun(Pt(X)op, C);
we denote this full subcategory by Shv′C(X) in this Warning only.

The ∞-categories ShvC(X) and Shv′C(X) are not isomorphic. However, they are
canonically equivalent: composition with the inclusion functor U(X) ↪→ Pt(X) =
Top/X yields a forgetful functor θ : Shv′C(X)→ ShvC(X), given by F 7→ F X̃ where

X̃ ∈ Pt(X) is the object given by the identity map id : X → X. The functor θ has
a homotopy inverse, which assigns to each sheaf G ∈ ShvC(X) the functor

G : Pt(X)op → C G (f : S → X) = (f ∗ G )(S).
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Remark 4.2.11 (Stalks of Lax Sheaves). Let C be a compactly generated ∞-
category, let X be a topological stack, and let F be a lax C-valued sheaf on X. For

every object S̃ ∈ Pt(X) and every point s of the underlying topological space S, we

can consider the stalk F S̃,s. If f̃ : S̃ → S̃ ′ is a morphism in Pt(X), then the construc-

tion of Notation 4.2.8 determines a canonical map F S̃′,f(s) ' (f ∗F S̃′)s → F S̃,s. If

F is a C-valued sheaf on X, then this map is an equivalence: in other words, the
stalk F S̃,s depends only on the underlying map {s} → X, and not on the “ambient
space” S. Moreover, the converse is almost true: if a lax C-valued sheaf F has the
property that each of the maps F S̃′,f(s) → F S̃,s is an equivalence, then the map

η]
f̃

: f ∗F S̃ → F S̃′ induces an equivalence on stalks, and is therefore an equivalence

if either C is an ordinary category or S is a paracompact Hausdorff space of finite
covering dimension. (See Warning 4.1.7.)

Remark 4.2.12 (Functoriality). Let f : X → Y be a morphism of topological
stacks (see Remark 2.3.5). For any compactly generated∞-category C, composition
with f determines functors

PShvlax
C (Y )→ PShvlax

C (X) Shvlax
C (Y )→ Shvlax

C (X) ShvC(Y )→ ShvC(X).

We will denote each of these functors by f ∗. By means of this observation, we can
regard the constructions X 7→ PShvlax

C (X), Shvlax
C (X), ShvC(X) as functors from the

2-category TopStk of topological stacks (Remark 2.3.5) to the ∞-category Ĉat∞ of
(not necessarily small) ∞-categories.

Remark 4.2.13 (Extension by Zero). Let f : X → Y be a morphism of topological
stacks. Assume that f is representable by local homeomorphisms: that is, for every

object S̃ ∈ Pt(Y ) with underlying topological space S, the fiber product SX = X×Y
S is (representable by) a topological space and the projection map π : SX → S is a
local homeomorphism. In this case, the pullback functor f ∗ : Shvlax

C (Y )→ Shvlax
C (X)

admits a left adjoint f! : Shvlax
C (X) → Shvlax

C (Y ), which is given concretely by the
formula

(f! F )S̃ = π!(F S̃X
),

where S̃X denotes the object of Pt(X) given by the projection map SX → X. Note
that if F belongs to ShvC(X), then f! F belongs to ShvC(Y ) (this follows from
compatibility of extension-by-zero with base change; see Remark 4.1.15).

Remark 4.2.14. Let f : X → Y be a map of topological spaces and let C be
a compactly generated ∞-category. Then the pullback functor f ∗ : ShvC(Y ) →
ShvC(X) of Proposition 4.1.9 agrees (under the identification provided in Warning
4.2.10) with the pullback functor defined in Remark 4.2.12, if we identify X and Y
with the associated topological stacks.
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Remark 4.2.15. Suppose we are given a pair of adjoint functors C
F //D
G
oo , where

C and D are compactly generated. For any topological stack X, postcomposition
with G determines a forgetful functor Shvlax

D (X)→ Shvlax
C (X). This functor admits

a left adjoint F̃ : Shvlax
C (X) → Shvlax

C (X). Concretely, the functor F̃ carries a lax
sheaf F ∈ Shvlax

C (X) to the sheafification of the lax presheaf given by

(S̃ ∈ Pt(X)) 7→ F (F (S̃)).

Note that if F belongs to ShvC(X), then F̃ (F ) belongs to ShvD(X) (see Remark
4.1.16).

4.3. Constructible Sheaves on BrokenI. Recall that the moduli stack Broken of
broken lines can be presented as colimit lim−→BrokenI , where each BrokenI is (repre-
sentable by) a topological space and the colimit is taken over all linearly preordered
sets I (Theorem 3.6.4). Consequently, a C-valued sheaf F on Broken can be re-
covered from its restrictions F |BrokenI to the topological spaces BrokenI . We now
articulate a special property enjoyed by sheaves of the form F |BrokenI : they are
constructible with respect to a certain stratification of the topological space BrokenI

(Example 4.3.3).

Construction 4.3.1 (The Stratification of BrokenI). Let I be a nonempty finite set
equipped with a linear preordering ≤I . We will say that an equivalence relation E
on I is convex if the E-equivalence classes of I are convex: that is, if for every triple
of elements i ≤I j ≤I k satisfying iEk, we also have iEj and jEk. We let Conv(I)
denote the collection of all convex equivalence relations on I, partially ordered by
refinement.

In what follows, we will identify BrokenI with the topological space Rep(I,BR+)
of functors α : I → BR+ (see Notation 3.1.1). For each convex equivalence relation
E on I, we define subsets KE ⊆ UE ⊆ BrokenI by the formulae

UE = {α ∈ Rep(I,BR+) : (iEj)⇒ (α(i, j) <∞)}
KE = {α ∈ Rep(I,BR+) : (iEj)⇔ (α(i, j) <∞)}.

The following properties are easily verified:

(i) Each UE is an open subset of BrokenI . Moreover, the construction E 7→ UE
is order-reversing: if E ⊆ E ′, then UE′ ⊆ UE.

(ii) Each KE is a closed subset of UE. More precisely, KE is the closed subset of
UE complementary to the union

⋃
E(E′ UE′ .

(iii) Each KE is homeomorphic to Euclidean space of dimension |I| − |I/E| (in
particular, it is contractible).

(iv) Each point α ∈ BrokenI belongs to exactly one of the sets {KE}E∈Conv(I).

In particular, the sets {KE}E∈Conv(I) determine a stratification of the topological
space Rep(I,BR+), indexed by the partially ordered set Conv(I).
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Definition 4.3.2. Let I be a nonempty finite linearly preordered set, let C be a
compactly generated ∞-category, and let F be a C-valued sheaf on the topological
space BrokenI . We will say that F is constructible if the restriction F |KE is con-
stant for each E ∈ Conv(I). We let ShvcC(Broken

I) denote the full subcategory of
ShvC(Broken

I) spanned by the constructible sheaves on BrokenI .

Example 4.3.3. Let C be a compactly generated ∞-category and let F be a C-
valued sheaf on the topological stack Broken. Then, for every finite nonempty lin-
early preordered set I, the sheaf F R̃ep(I,BR+) ∈ ShvC(Broken

I) is constructible. In

other words, for every convex equivalence relation E ∈ Conv(I), the restriction
F R̃ep(I,BR+) |KE is constant. This follows from the observation that the family of

broken lines

KE ×Rep(I,BR+) R̃ep(I,BR+)→ KE

is constant: that is, it is equivalent to a product KE × L for some fixed broken line
L (namely, a concatenation of copies of [−∞,∞] indexed by the linearly ordered set
I/E). Consequently, the map KE → Broken classifying this family of broken lines
factors through the projection KE → ∗.

Proposition 4.3.4. Let I be a finite nonempty linearly preordered set and let C be
a compactly generated ∞-category. Then the construction

(F ∈ ShvC(Broken
I)) 7→ {F (UE)}E∈Conv(I)

restricts to an equivalence of ∞-categories

ShvcC(Broken
I)→ Fun(Conv(I), C).

Proof. Let J denote the ∞-category of exit paths associated to the stratification of
Construction 4.3.1. By virtue of Theorem A.9.3 of [3], it will suffice to show that
the projection map J → Conv(I) is an equivalence of ∞-categories. Fix points
α, α′ ∈ BrokenI , having images E,E ′ ∈ Conv(I) with E ≤ E ′; we wish to show
that the mapping space MapJ (α, α′) is contractible. Unwinding the definitions,
we can identify MapJ (α, α′) with the Kan complex whose n-simplices are given by

continuous maps f : ∆n×[0, 1]→ BrokenI having the property that for each x ∈ ∆n,
we have

f(x, 0) = α f(x, 1) = α′ f(x, t) ∈ KE′ for t > 0.

It is easy to see that this Kan complex is contractible: writing I = {i0 ≤ i1 ≤ · · · ≤
in}, the construction

(β ∈ Rep(I,BR+)) 7→ (log(β(i0, i1)), . . . , log(β(in−1, in))

restricts to homeomorphisms of both KE′ and {α} ∪ KE′ with convex subsets of
Rn
≤0. �
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Remark 4.3.5. Let C be a compactly generated∞-category and let F be a C-valued
sheaf on the topological stack Broken. Then, for every finite nonempty linearly
ordered set I, the restriction map

F (BrokenI)→ F ({α})

is an equivalence, where {α} denotes the point of BrokenI ' Rep(I,BR+) given by
the formula

α(i, j) =

{
0 if i =I j

∞ otherwise.

This follows by applying Proposition 4.3.4 to the sheaf F R̃ep(I,BR+), which is con-

structible by virtue of Example 4.3.3.

Remark 4.3.6 (Functoriality). Let f : I → J be an essentially surjective morphism
of finite nonempty linearly preordered sets. If E is a convex equivalence relation
on J , we let E denote the convex equivalence relation on I defined by (iEi′) ⇔
(f(i)Ef(i′)). Note that composition in f determines a map BrokenJ → BrokenI

which carries each stratum KE ⊆ BrokenJ into the corresponding stratum KE ⊆
BrokenI . Consequently, for any compactly generated ∞-category C, the pullback
functor ShvC(Broken

I)→ ShvC(Broken
J) carries constructible sheaves on BrokenI to

constructible sheaves on BrokenJ . Moreover, the pullback functor on constructible
sheaves fits into a commutative diagram of ∞-categories

ShvcC(Broken
I) //

��

ShvcC(Broken
J)

��
Fun(Conv(I), C) // Fun(Conv(J), C),

where the vertical maps are the equivalences of Proposition 4.3.4 and the bottom
horizontal map is given by precomposition with the map

Conv(J)→ Conv(I) E 7→ E.

4.4. Classification of Sheaves. We now give a more precise formulation of The-
orems 1.0.5 and 4.0.1. Let Lin denote the category of finite nonempty linearly
ordered sets, with morphisms given by surjections (Notation 3.7.10). For every

object I ∈ Lin, let R̃ep(I,BR+) → Rep(I,BR+) ' BrokenI be the family of bro-
ken lines given in Construction 3.2.2. By virtue of Remark 3.4.3, the construction

I 7→ R̃ep(I,BR+) determines a functor Lin→ Pt(Broken)op.

Theorem 4.4.1. Let C be a compactly generated ∞-category. Then composi-

tion with the functor I 7→ R̃ep(I,BR+) induces an equivalence of ∞-categories
ShvC(Broken)→ Fun(Lin, C).
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Proof of Theorem 4.0.1 from Theorem 4.4.1. Let L be a broken line and set I =
π0(L◦), which we regard as a linearly ordered set. The only nontrivial point is to
verify that the diagram of ∞-categories

ShvC(Broken)

%%

∼ // Fun(Lin, C)

zzC
commutes up to isomorphism, where the horizontal map is the equivalence of Theo-
rem 4.4.1 and the vertical maps are given by evaluation on L and I, respectively. In
other words, we must show that if F is a C-valued sheaf on Broken, then the value

of F on the family of broken lines R̃ep(I,BR+) → Rep(I,BR+) is equivalent to
the value of F on L (which we can regard as a family of broken lines parametrized
by a point). This is a restatement of Remark 4.3.5. �

We would like to deduce Theorem 4.4.1 from Proposition 4.3.4, which concerns
sheaves on topological spaces rather than topological stacks. For this, we appeal to
the following formal observation:

Proposition 4.4.2. Let X be a topological stack and suppose we are given a dia-
gram {Xα} in the 2-category TopStk/X which satisfies the following condition:

(∗) The induced map lim−→Xα → X is an equivalence in the ∞-category of S-
valued sheaves on the category Top.

Then, for any compactly generated ∞-category C, the canonical maps

Shvlax
C (X)→ lim←− Shvlax

C (Xα) ShvC(X)→ lim←− ShvC(Xα)

are equivalences of ∞-categories.

Corollary 4.4.3. Let C be a compactly generated ∞-category. Then the construc-
tion F 7→ {F R̃ep(I,BR+)}I∈PLin induces an equivalence of ∞-categories

ShvC(Broken)→ lim←−
I∈PLin

ShvC(Broken
I).

Proof. Combine Proposition 4.4.2 with Theorem 3.6.4. �

Example 4.3.3 shows that for any F ∈ ShvC(Broken), the sheaves F R̃ep(I,BR+)

are automatically constructible. We therefore obtain the following variant of Corol-
lary 4.4.3:

Corollary 4.4.4. Let C be a compactly generated ∞-category. Then the construc-
tion F 7→ {F R̃ep(I,BR+)}I∈PLin induces an equivalence of ∞-categories

ShvC(Broken)→ lim←−
I∈PLin

ShvcC(Broken
I).
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We now wish to combine Corollary 4.4.4 with the characterization of constructible
sheaves supplied by Proposition 4.3.4. For this, we need an auxiliary construction.

Notation 4.4.5. We define a category PLin as follows:

• The objects of PLin are triples (I,≤I , E), where I is a nonempty finite set,
≤I is a linear preordering on I, and E is a convex equivalence relation on I
(see Construction 4.3.1).
• A morphism from (I,≤I , E) to (J,≤J , E ′) in the category PLin consists of a

nondecreasing map f : I → J with the property that (iEi′)⇒ (f(i)E ′f(i′))
(so that f induces a map I/E → J/E ′).

The construction (I,≤I , E) 7→ (I,≤I) determines a forgetful functor

θ : PLin→ PLin .

This functor is a Grothendieck fibration, whose fiber over an object I ∈ PLin can be
identified with the partially ordered set Conv(I) of Construction 4.3.1.

Remark 4.4.6. For each object (I,≤I , E) of PLin, we let ŨE denote the fiber

product UE ×Rep(I,BR+) R̃ep(I,BR+), where UE is the open subset of Rep(I,BR+)

defined in Construction 4.3.1. We note that the construction (I,≤I , E) 7→ ŨE
determines a functor PLin→ Pt(Broken)op.

Remark 4.4.7. The Cartesian fibration θ : PLin → PLin is classified by a functor
PLin→ Catop

∞, given concretely by I 7→ Conv(I). It follows that for any∞-category
C, the construction I 7→ Fun(Conv(I), C) determines a functor PLin→ Cat∞. More-
over, Corollary 3.3.3.2 of [4] supplies a fully faithful embedding

lim←−
I∈PLin

Fun(Conv(I), C)→ Fun(PLin, C),(4.4.1)

whose essential image is spanned by those functors which carry each θ-Cartesian
morphism in PLin to an equivalence in C.

If C is a compactly generated ∞-category, then we can use Proposition 4.3.4 to
identify the domain of the map (4.4.1) with the limit lim←−I∈PLin ShvcC(Rep(I,BR+)).

Combining this observation with Corollary 4.4.4, we obtain the following:

Corollary 4.4.8. Let C be a compactly generated ∞-category. Then composition
with the functor

PLin→ Pt(Broken)op (I,≤I , E) 7→ ŨE

of Remark 4.4.6 induces a fully faithful embedding

T : ShvC(Broken)→ Fun(PLin, C),

whose essential image is spanned by those functors F : PLin → C which carry
θ-Cartesian morphisms of PLin to equivalences in C.
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Proof of Theorem 4.4.1. Let u : Lin → PLin be the functor given by u(I,≤I) =
(I,≤I ,=I). We wish to show that for any compactly generated ∞-category C, the
composite functor

ShvC(Broken)
T−→ Fun(PLin, C) ◦u−→ Fun(Lin, C)

is an equivalence of ∞-categories, where T is the functor appearing in Corollary
4.4.8.

Note that the functor u is a fully faithful embedding which admits a left adjoint
v : PLin → Lin, given by the formula v(I,≤I , E) = (I/E,≤I/E). Let Fun′(PLin, C)
denote the full subcategory of Fun(PLin, C) spanned by those functors F : PLin→ C
which satisfy the following condition:

(∗) For every morphism α in PLin, if v(α) is an isomorphism in Lin, then F (α)
is an equivalence in PLin.

Then condition (∗) is equivalent to the requirement that F is a right Kan extension
of its restriction F |Lin, so the restriction functor Fun′(PLin, C) → Fun(Lin, C) is an
equivalence of ∞-categories (with homotopy inverse given by composition with v).
We now complete the proof by observing that T restricts to an equivalence of ∞-
categories ShvC(Broken) ' Fun′(PLin, C), by virtue of Corollary 4.4.8 (note that a
morphism α in PLin has the property that v(α) is an isomorphism if and only if α
is θ-Cartesian, where θ : PLin→ PLin is the forgetful functor). �

4.5. Lax Sheaves on Broken. Let C be a compactly generated ∞-category and let
F ,G ∈ ShvC(Broken) be C-valued sheaves on the moduli stack of broken lines. It
follows from Theorem 4.4.1 that the space of maps MapShvC

(F ,G ) can be recov-

ered from the values of F and G on the families of broken lines R̃ep(I,BR+) →
Rep(I,BR+) given in Construction 3.2.2. In §5, we will need a slight extension of
this result, which applies to certain classes of lax C-valued sheaves (see Definition
4.2.3). To formulate this extension, we need to introduce some terminology.

Definition 4.5.1. Let X be a topological stack, let C be a compactly generated
∞-category, and let F ∈ PShvlax

C (X) be a lax C-valued presheaf on X. We will say
that F is homotopy invariant if the following condition is satisfied:

(∗) Let S̃ ′ → S̃ be a morphism in the category Pt(X) whose underlying map
of topological spaces is the projection π : S ×R → S, for some topological

space S. Then the induced map F (S̃) → F (S̃ ′) is an equivalence in the
∞-category C.

Proposition 4.5.2. Let X be a topological stack, let C be a compactly generated
∞-category, and let F ∈ ShvC(X) be a C-valued sheaf on X. Then F is homotopy
invariant.

Proof. Let S̃ be an object of the category Pt(X) having underlying topological
space S, and let F S̃ ∈ ShvC(S) be as in Definition 4.2.3. Then the projection map
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π : S ×R → S admits an essentially unique lift to a map S̃ ′ → S̃ in the category
Pt(X). Our assumption that F belongs to ShvC(X) guarantees that we can identify
F S̃′ with the pullback π∗F S̃. It will therefore suffice to show that the canonical
map F S̃(S) → (π∗F S̃)(S × R) is an equivalence. Equivalently, we wish to show
that for every object C ∈ C, the induced map

θ : MapC(C,F S̃(S))→ MapC(C, π
∗F S̃(S))

is a homotopy equivalence. Since the∞-category C is compactly generated, we may
assume without loss of generality that the object C ∈ C is compact. In this case,
the construction

(U ∈ U(S)) 7→ MapC(C,F S̃(U))

determines a S-valued sheaf G on S, and θ can identified with the canonical map
G (S)→ (π∗ G )(S×R), which is an equivalence by virtue of Lemma A.2.9 of [3]. �

We can now formulate the main result of this section; it will be used in the proof
of Theorem 5.4.9.

Proposition 4.5.3. Let C be a compactly generated ∞-category. Suppose we are
given objects F ∈ ShvC(Broken) and G ∈ Shvlax

C (Broken). Let

R̃ep : Linop → Pt(Broken) I 7→ R̃ep(I,BR+)

denote the functor of Construction 3.2.2. If G is homotopy invariant, then the
restriction map

MapShvlax
C (Broken)(F ,G )→ MapFun(Lin,C)(F ◦R̃ep,G ◦R̃ep)

is a homotopy equivalence.

Proof. Let C be a compactly generated ∞-category and let

T : Fun(Lin, C)→ ShvC(Broken)

denote a homotopy inverse to the equivalence of ∞-categories ShvC(Broken) →
Fun(Lin, C) of Theorem 4.4.1. Suppose that G ∈ Shvlax

C (Broken) is homotopy-
invariant. Let us say that a functor F : Lin→ C is good if the canonical map

θF : MapShvlax
C (Broken)(T (F ),G ) → MapFun(Lin,C)(T (F ) ◦ R̃ep,G ◦R̃ep)

' MapFun(Lin,C)(F,G ◦R̃ep).

is a homotopy equivalence. We wish to prove that every object F ∈ Fun(Lin, C) is
good.

For each object I ∈ Lin and each object C ∈ C, let FI,C : Lin → C denote the
functor given by the formula

FI,C(J) =
∐
I�J

C,
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where the coproduct is taken over all isomorphism classes of morphisms I � J in the
category Lin (here I is fixed). In other words, FI,C is the left Kan extension of the
constant functor {I} → {C} ⊆ C along the inclusion {I} ↪→ Lin. Note that the the
∞-category Fun(Lin, C) is generated under small colimits by objects of the form FI,C .
The functor T preserves small colimits when regarded as a functor from Fun(Lin, C)
to Shvlax

C (Broken) (since the full subcategory ShvC(Broken) ⊆ Shvlax
C (Broken) is closed

under small colimits). It follows that the collection of good functors F ∈ Fun(Lin, C)
is closed under small colimits. Consequently, to complete the proof, it will suffice to
show that each of the functors FI,C ∈ Fun(Lin, C) is good.

Let us henceforth regard the objects I ∈ Lin and C ∈ C as fixed. Let BrokenI
denote the topological stack of Notation 3.7.6, let u : BrokenI → Broken be the
tautological map, and let C denote the constant sheaf on BrokenI taking the value
C. We will prove the following:

(∗) Let H ∈ Shvlax
C (Broken) be homotopy invariant. Then the canonical map

MapShvlax
C (BrokenI)(C, u

∗H )→ MapC(C,H (R̃ep(I,BR+)))

is a homotopy equivalence.

Let us assume (∗) for the moment and use it to complete the proof of Proposition
4.5.3. Lemma 3.7.7 asserts that the map u : BrokenI → Broken is a local homeomor-
phism of topological stacks. Let u! : Shvlax

C (BrokenI) → Shvlax
C (Broken) denote the

“extension-by-zero” functor of Remark 4.2.13. Then u!C belongs to ShvC(Broken)
(Remark 4.2.13). Applying (∗) in the special case where H ∈ ShvC(Broken) (not-
ing that any such sheaf is homotopy invariant by Proposition 4.5.2), we obtain a
homotopy equivalence

MapShvC(Broken)(u!C,H )→ MapC(C,H (R̃ep(I,BR+)))

' MapFun(Lin,C)(FI,C ,H ◦R̃ep).

It follows that we can identify u!C with the sheaf T (FI,C). Applying (∗) again in
the case H = G , we conclude that the functor FI,C is good, as desired.

It remains to prove (∗). Let X• denote the simplicial topological space given by
the nerve of the map Rep(I,BR+) → BrokenI . Then the composite map X• →
BrokenI

u−→ Broken allows us to lift X• to a simplicial object X̃• of the category
Pt(Broken). It follows from Proposition 3.7.8 that the mapping space

MapShvlax
C (BrokenI)(C, u

∗H )

can be realized as the totalization of the cosimplicial space E• = MapC(C,H (X̃•)).
Consequently, (∗) is equivalent to the assertion that the map of spaces Tot(E•)→ E0

is a homotopy equivalence. To prove this, it will suffice to show that the cosimplicial
space E• is constant: that is, that each of the iterated coface maps

E0 = MapC(C,H (X̃0))→ MapC(C,H (X̃k)) ' Ek
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is a homotopy equivalence. This follows from our assumption that H is homotopy
invariant (note that Xk can be identified with the product of X0 = Rep(I,BR+)
with the kth power of RI , by virtue of Proposition 3.7.8). �
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5. Factorizable sheaves and nonunital associative algebras

Let C be a compactly generated ∞-category. Suppose that C is equipped with a
monoidal structure, whose underlying tensor product

⊗ : C × C → C

preserves colimits separately in each variable. In this section, we study factorizable
C-valued sheaves on Broken: that is, sheaves F ∈ ShvC(Broken) equipped with an
isomorphism m∗F ' F �F , satisfying appropriate coherence conditions (here
m : Broken × Broken → Broken is the map given by concatenation of broken lines).
Our goal in this section is to prove the main result of this paper, which asserts that
the datum of a factorizable C-valued sheaf on Broken is equivalent to the datum of
a nonunital associative algebra object of C (Theorem 1.0.6; see §5.3 for a precise
formulation).

Notation 5.0.1. We assume throughout this section that the reader is familiar
with the theory of monoidal∞-categories, as developed in [3]. We will be primarily
interested in nonunital monoidal ∞-categories: that is, ∞-categories C equipped
with a tensor product operation ⊗ : C × C → C which is coherently associative
(but not necessarily unital). Given nonunital monoidal ∞-categories C and D, we
let Funlax(C,D) denote the ∞-category of nonunital lax monoidal functors from C
to D, and we let Fun⊗(C,D) denote the full subcategory of Funlax(C,D) spanned
by the nonunital monoidal functors from C to D. More informally: the objects
of Funlax(C,D) are functors F : C → D which are equipped with natural trans-
formations uC,C′ : F (C) ⊗ F (C ′) → F (C ⊗ C ′) (compatible with the associativity
constraints on C and D, in an appropriate homotopy-coherent sense); such an object
belongs to Fun⊗(C,D) if each of the maps uC,C′ is an equivalence in D.

Warning 5.0.2. Our use of the superscript lax in Notation 5.0.1 (in connection
with lax monoidal functors) is logically unrelated to our use of the same superscript
in Definition 4.2.3 (in connection with lax sheaves on topological stacks). These
notions will make a brief simultaneous appearance in our proof of Theorem 5.4.9,
but it should be clear in context which of the two meanings is relevant.

5.1. Concatenation of Broken Lines. Recall that if L and L′ are broken lines,
the concatenation L ? L′ is obtained from the disjoint union L q L′ by identifying
the final point of L with the initial point of L′. We now extend this construction
to families. Given an S-family of broken lines LS and a T -family of broken lines
LT , we will define an (S× T )-family of broken lines LS ? LT (see Construction 5.1.2
below) whose fiber at a point (s, t) ∈ S × T is given by the concatenation Ls ? Lt.
First, we need the following elementary observation:

Proposition 5.1.1. Let π : LS → S be a family of broken lines over a topological
space S. Let vinit : S → LS be the function which assigns to each point s ∈ S the
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initial point of the broken line Ls, and define vterm : S → LS similarly. Then vinit

and vterm are continuous.

Proof. The assertion is local on S, so we can assume that there exists a directed
homeomorphism h : LS ' S × [0, 1]. In this case, the maps vinit and vterm are given
by the formulae

vinit(x) = h−1(π(x), 0) vterm(x) = h−1(π(x), 1).

�

Construction 5.1.2 (Concatenation). Let S and T be topological spaces, and
suppose we are given families of broken lines πS : LS → S and πT : LT → T . Let
vterm : S → LS and vinit : T → LT be as in Proposition 5.1.1. We define a new map:

LS ? LT → S × T
as follows:

• As a topological space, LS ? LT fits into a pushout diagram

S × T vterm×idT //

idS ×vinit
��

LS × T

��
S × LT // LS ? LT

• The projection map LS ?LT → S×T is obtained by amalgamating the maps

(πS × idT ) : LS × T → S × T

(idS ×πT ) : S × LT → S × T.
Note that there is a canonical action of the group R on LS ?LT , which is uniquely

determined by the requirement that the inclusion maps

LS × T ↪→ LS ? LT ←↩ S × LT
are R-equivariant.

Proposition 5.1.3. Let πS : LS → S and πT : LT → T be families of broken lines
over topological spaces S and T , respectively. the induced map LS ? LT → S × T is
a family of broken lines over the product S × T (where we equip LS ? LT with the
R-action described in Construction 5.1.2).

Proof. The assertion is local on S and T . We may therefore assume without loss
of generality that there exist directed homeomorphisms h : LS ' S × [0, 1] and
h′ : LT ' T × [1, 2]. We combine h and h′ to obtain a directed homeomorphism
LS ? LT ' S × T × [0, 2]. Unwinding the definitions, we see that the fixed point
locus (LS ? LT )R is given by the pushout

(LR
S × T )qS×T (S × LR

T ),
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and is therefore unramified over S × T (by virtue of the fact that both LR
S × T and

S × LR
T are unramified over S × T ). �

Remark 5.1.4. Suppose we are given two families of broken lines LS → S ← L′S,
parametrized by the same topological space S. In this case, we let LS ?S L

′
S denote

the fiber product (LS ? L
′
S)×S×S S. This is an S-family of broken lines, whose fiber

over a point s ∈ S is given by the concatenation Ls ? L
′
s.

Recall that Pt(Broken) is the category whose objects are pairs (π : LS → S, µ),
where S is a topological space and µ : R×LS → S exhibits LS as a family of broken
lines over S (see Construction 2.3.9). Construction 5.1.2 determines a functor

? : Pt(Broken)× Pt(Broken)→ Pt(Broken)

((LS → S), (LT → T )) 7→ (LS ? LT → S × T ).

Moreover, for every triple of families of broken lines (LS → S), (LT → T ), (LU → U),
we have a canonical isomorphism

(5.1.1) (LS ? LT ) ? LU ' LS ? (LT ? LU)

in the category Pt(Broken): both sides can be identified with the colimit of the
diagram of topological spaces

S × T × U

vv ((

S × T × U

vv ((
LS × T × U S × LT × U S × T × LU .

It is easy to check that these isomorphisms satisfy the pentagon identity, leading to
the following conclusion:

Proposition 5.1.5. The natural isomorphism (5.1.1) endows (Pt(Broken), ?) with
the structure of a nonunital monoidal category.

Remark 5.1.6. Let ρ : Pt(Broken) → Top be the forgetful functor of Proposition
2.3.11, given by ρ(π : LS → S) = S. Then ρ has the structure of a (nonunital)
monoidal functor, where we equip Top with the monoidal structure given by the
Cartesian product.

Proposition 2.3.11 asserts that ρ is a fibration in groupoids, which is classified
by a functor from the category of topological spaces to the 2-category of groupoids
(given by S 7→ Broken(S)). The nonunital monoidal structures on Pt(Broken) and on
ρ encode the fact that the construction S 7→ Broken(S) is a nonunital lax monoidal
functor: in particular, for every pair of topological spaces S and T , we have a
canonical map Broken(S) × Broken(T ) → Broken(S × T ), given by (LS, LT ) 7→
(LS ? LT ).

We now use the monoidal structure on the category Pt(Broken) to introduce the
class of sheaves we are interested in.
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Definition 5.1.7. Let C be a monoidal ∞-category. Assume that C is compactly
generated and that the tensor product functor

⊗ : C × C → C

preserves small colimits separately in each variable. A weakly factorizable C-valued
sheaf on Broken is a nonunital lax monoidal functor F : Pt(Broken)op → C which
satisfies the following condition:

(a) The underlying functor F : Pt(Broken)op → C is a C-valued sheaf on Broken,
in the sense of Definition 4.2.9.

We call F a factorizable C-valued sheaf if it satisfies the following additional condi-
tion:

(b) For every pair of broken lines L and L′, the map F (L)⊗F (L′)→ F (L?L′)
(supplied by the lax monoidal structure on the functor F ) is an equivalence
in the ∞-category C.

We let Shvwfact
C (Broken) denote the ∞-category of weakly factorizable C-valued

sheaves on Broken (which we regard as a full subcategory of the ∞-category of
all nonunital lax monoidal functors from Pt(Broken)op to C), and we let

Shvfact
C (Broken) ⊆ Shvwfact

C (Broken)

denote the full subcategory spanned by the factorizable C-valued sheaves on Broken.

Remark 5.1.8. The definition of a factorizable C-valued sheaf on Broken does not
mention the unit for the monoidal structure on C; consequently, Definition 5.1.7 also
makes sense when C is a (compactly generated) nonunital monoidal ∞-category.

Warning 5.1.9. The terminology of Definition 5.1.7 is potentially misleading: Fac-
torizability is a structure on a C-valued sheaf, rather than a property (so the term
factorized sheaf might be more appropriate).

Warning 5.1.10. Condition (b) of factorizability only refers to the value of F on
broken lines—not on families thereof. In general, if F is a factorizable sheaf and
LS, LT are families of broken lines, the map F(LS) ⊗ F(LT ) → F(LS ? LT ) is not
an equivalence (and in particular, F is still a lax monoidal functor).

5.2. Digression: The Twisted Arrow Category. We now introduce a categor-
ical construction which will be useful in our analysis of factorizable sheaves on the
moduli stack of broken lines.

Construction 5.2.1 (Twisted Arrows). Let C be a category. We define a new
category Tw(C) as follows:

• The objects of Tw(C) are morphisms f : C → C in the category C.
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• A morphism from f : C → C to g : D → D in Tw(C) is given by a pair of
morphisms u : C → D and v : D → C satisfying f = v ◦ g ◦ u; that is, by a
commutative diagram

C

f
��

// D

g
��

C Doo

in the category C.
We refer to Tw(C) as the twisted arrow category of the category C. Note that we have
forgetful functors C ← Tw(C)→ Cop, given on objects by C ←[ (f : C → C) 7→ C.

We will only be interested in the following special case of Construction 5.2.1:

Example 5.2.2. Let Lin denote the category whose objects are nonempty finite lin-
early ordered sets and whose morphisms are monotone surjections (Notation 3.7.10).
Given an object I ∈ Lin, the datum of a monotone surjection I → I is equivalent to
the datum of an equivalence relation 'I on the set I which is convex, in the sense
that i ≤I j ≤I k and i 'I k implies i 'I j 'I k. This equivalence gives a more
concrete description of the twisted arrow category Tw(Lin):

• The objects of Tw(Lin) are pairs (I,'I), where I ∈ Lin and 'I is a convex
equivalence relation on I.
• A morphism from (I,'I) to (J,'J) in Tw(Lin) is a monotone surjection
f : I → J having the following additional property: if i, i′ ∈ I satisfy
f(i) 'J f(i′), then i 'I i′. Note that this condition ensures the existence of
a commutative diagram

I //

��

J

��
I/ 'I J/ 'Joo

in the category Lin.

Under this description, the forgetful functors Lin ← Tw(Lin) → Linop are given by
I ←[ (I,'I) 7→ I/ 'I .

Notation 5.2.3. Given an object I ∈ Lin, we let I] denote the object (I,'I) ∈
Tw(Lin), where 'I is the indiscrete equivalence relation on I: that is, we have
i 'I i′ for every pair of elements i, i′ ∈ I. The construction I 7→ I] determines a
fully faithful embedding Lin ↪→ Tw(Lin), which is left adjoint to the forgetful functor
Tw(Lin)→ Lin.

We now introduce (nonunital) monoidal structures on the categories Lin and
Tw(Lin), given by a combinatorial counterpart of the geometric concatenation in-
troduced in §5.1.
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Construction 5.2.4 (Concatenation of Linearly Ordered Sets). Let I and J be
sets equipped with linear orderings ≤I and ≤J , respectively. We let I ?J denote the
disjoint union I q J , which we equip with the linear ordering ≤I?J given by

(x ≤I?J y)⇔ (x, y ∈ I and x ≤I y) or (x, y ∈ J and x ≤J y) or (x ∈ I and y ∈ J).

We will refer to I ? J as the concatenation of I and J .
Note that if I and J are finite and nonempty, then I ? J has the same property.

Consequently, concatenation determines a functor

? : Lin× Lin→ Lin .

Moreover, we have evident isomorphisms (I ? J) ?K ' I ? (J ?K), which endow Lin
with the structure of a nonunital monoidal category.

Remark 5.2.5. The nonunital monoidal category Lin enjoys the following universal
property: it is the free nonunital monoidal ∞-category on a single generator (that
is, the monoidal envelope of the nonunital associative∞-operad, in the sense of [3]).
In particular, for every nonunital monoidal ∞-category C, we have an equivalence
of ∞-categories

Fun⊗(Lin, C) ' Algnu(C),
where Fun⊗(Lin, C) denotes the∞-category of nonunital monoidal functors from Lin
to C, and Algnu(C) denotes the ∞-category of nonunital associative algebra objects
of C. Alternatively, one can take this to be the definition of the∞-category Algnu(C).

Variant 5.2.6 (Concatenation in Tw(Lin)). By functoriality, the concatenation
functor on the category Lin induces a concatenation functor on the twisted arrow
category Tw(Lin), which we will also denote by ?. In terms of the description of
the category Tw(Lin) given in Example 5.2.2, this functor is given concretely by the
formula

(I,'I) ? (J,'J) = (I ? J,'I?J),

where the equivalence relation 'I?J is given by

(x 'I?J y)⇔ (x, y ∈ I and x 'I y) or (x, y ∈ J and x 'J y).

Note that the operation I, J 7→ I ? J (together with the evident isomorphisms
(I ?J)?K ' I ? (J ?K)) endow Tw(Lin) with the structure of a nonunital monoidal
category, compatible with the forgetful functors Lin← Tw(Lin)→ Linop.

Warning 5.2.7. Let ] : Lin → Tw(Lin) denote the left adjoint to the forgetful
functor (Notation 5.2.3). Since the forgetful functor is a nonunital monoidal functor,
] inherits the structure of a colax nonunital monoidal functor: in particular, for every
pair of objects I, J ∈ Lin, we have a canonical map (I ? J)] → I] ? J ]. Beware that
this map is bijective on the underlying sets (which can be identified with the disjoint
union I q J on both sides), but is not an isomorphism in the category Tw(Lin): the
equivalence relation on I] ? J ] has two equivalence classes, rather than one.
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Notation 5.2.8. Let C be an ∞-category and let Fun(Tw(Lin), C) denote the ∞-
category of functors from Tw(Lin) to C. We let Fun0(Tw(Lin), C) denote the full
subcategory of Fun(Tw(Lin), C) spanned by those functors F with the following
property: for every object (I,'I) ∈ Tw(Lin), the map F (I]) → F (I,'I) is an
equivalence in C. Note that this condition is equivalent to the requirement that F is
a left Kan extension of its restriction to the essential image of the fully faithful em-
bedding ] : Lin ↪→ Tw(Lin). It follows that the restriction map Fun0(Tw(Lin), C)→
Fun(Lin, C) is an equivalence of ∞-categories.

Variant 5.2.9. Let C be a monoidal ∞-category. We let Fun⊗0 (Tw(Lin), C) and
Funlax

0 (Tw(Lin), C) be the full subcategories of the ∞-categories Fun⊗(Tw(Lin), C)
and Funlax(Tw(Lin), C) spanned by those objects for which the underlying functor F :
Tw(Lin) → C belongs to the full subcategory Fun0(Tw(Lin), C) ⊆ Fun(Tw(Lin), C)
of Notation 5.2.8. By definition, we have a diagram of pullback squares

Fun⊗0 (Tw(Lin), C) //

��

Fun⊗(Tw(Lin), C)

��

Funlax
0 (Tw(Lin), C) //

��

Funlax(Tw(Lin), C)

��
Fun0(Tw(Lin), C) // Fun(Tw(Lin), C).

Since the functor ] : Lin ↪→ Tw(Lin) is fully faithful, the forgetful functor

Tw(Lin)→ Lin

exhibits Lin as the ∞-category obtained from Tw(Lin) by formally inverting all
morphisms of the form I] → (I,'I). From this description, we immediately deduce
the following result:

Proposition 5.2.10. Let C be a nonunital monoidal∞-category. Then composition
with the forgetful functor Tw(Lin)→ Lin induces a fully faithful embedding

Algnu(C) ' Fun⊗(Lin, C)→ Fun⊗(Tw(Lin), C)

whose essential image is the full subcategory Fun⊗0 (Tw(Lin), C) of Variant 5.2.9.

Remark 5.2.11. Proposition 5.2.10 admits a refinement: the category Tw(Lin)
is actually universal among nonunital monoidal ∞-categories which admit a colax
nonunital monoidal functor from Lin. In other words, for any nonunital monoidal∞-
category C, composition with the functor ] : Lin ↪→ Tw(Lin) induces an equivalence
from Fun⊗(Tw(Lin), C) to the∞-category of nonunital colax monoidal functors from
Lin into C. Since we will not need this fact, we leave details to the reader.
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5.3. The Main Theorem. In this section, we give a more precise formulation of
Theorem 1.0.6. First, we need to understand the relationship between the concate-
nation operations in the setting of broken lines (Construction 5.1.2) and linearly
ordered sets (Construction 5.2.4).

Construction 5.3.1 (Concatenation of Sections). Let π : LS → S and π′ : LT → T
be families of broken lines, and let I and J be finite nonempty linearly ordered sets.
Suppose that LS is equipped with an I-section {σi : S → LS}i∈I , and that LT
is equipped with a J-section {τj : T → LT}j∈J . In this case, we can equip the
concatenation LS ? LT with an (I ? J)-section {ρk : S × T → LS ? LT}k∈I?J , given
by the formula

ρk(s, t) =

{
(σk(s), t) if k ∈ I
(s, τk(t)) if k ∈ J.

Here we abuse notation by identifying the products LS × T and S × LT with their
images in LS ? LT .

Applying this observation in the universal example (where π is the projection

map R̃ep(I,BR+) → Rep(I,BR+) and π′ is the projection map R̃ep(J,BR+) →
Rep(J,BR+)), we obtain a morphism

R̃ep(I,BR+) ? R̃ep(J,BR+)→ R̃ep(I ? J,BR+)

in the category Pt(Broken). These maps equip the construction I 7→ R̃ep(I,BR+)
with the structure of a nonunital lax monoidal functor Linop → Pt(Broken); here Lin
is equipped with the nonunital monoidal structure given by concatenation of linearly
ordered sets, and Pt(Broken) is equipped with the nonunital monoidal structure
given by concatenation of broken lines.

Beware that the (nonunital) lax monoidal functor of Construction 5.3.1 is not
monoidal: given a pair of objects I, J ∈ Lin, we have a pullback square

R̃ep(I,BR+) ? R̃ep(J,BR+) //

��

R̃ep(I ? J,BR+)

��
Rep(I,BR+)× Rep(J,BR+) // Rep(I ? J,BR+)

where the bottom vertical map is given by

(α : I → BR+, β : J → BR+) 7→ (γ : I ? J,BR+)

γ(x, y) =


α(x, y) if x, y ∈ I
β(x, y) if x, y ∈ J
∞ if x ∈ I, y ∈ J.
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This map is a closed embedding (but not a homeomorphism), whose image consists
of those functors γ : I ? J → BR+ satisfying γ(i, j) = ∞ for i ∈ I and j ∈ J . To
remedy the situation, we introduce a variant of Construction 5.3.1:

Construction 5.3.2 (The Functor Φ). Let (I,'I) be an object of the twisted arrow
category Tw(Lin) (see Example 5.2.2), and let Rep(I,BR+) be as in Notation 3.1.1.
We let Φ(I,'I) denote the closed subset of Rep(I,BR+) consisting of those maps

α : I → BR+ having the property that α(i, j) <∞ implies i 'I j. We let Φ̃(I,'I)
denote the object of Pt(Broken) given by the family of broken lines

Φ(I,'I)×Rep(I,BR+) R̃ep(I,BR+)→ Φ(I,'I).
Note that if f : (I,'I) → (J,'J) is a morphism in the category Tw(Lin),

then the map Rep(J,BR+) → Rep(I,BR+) carries the closed subset Φ(J,'J) ⊆
Rep(J,BR+) to the closed subset Φ(I,'I) ⊆ Rep(I,BR+). It follows that the

construction (I,'I) 7→ Φ̃(I,'I) determines a functor

Φ̃ : Tw(Lin)op → Pt(Broken).

Example 5.3.3. Let I be a nonempty finite linearly ordered set and let I] ∈ Tw(Lin)
be as in Notation 5.2.3: that is, the object obtained by equipping I with the indis-
crete equivalence relation. Then Φ(I]) = Rep(I,BR+) ' BrokenI .

Example 5.3.4. Let I = [n] = {0 < 1 < · · · < n} and let 'I be the discrete
equivalence relation on I (so that i 'I j if and only if i = j). Then Φ(I,'I)
consists of a single point, and Φ̃ is the “n-times broken line”: that is, an (n+1)-fold
concatenation of the standard (un)broken line [−∞,∞] of Example 1.0.2.

Suppose we are given a pair of objects (I,'I), (J,'J) ∈ Tw(Lin). Then the closed
embedding

Rep(I,BR+)× Rep(J,BR+) ↪→ Rep(I ? J,BR+)

restricts to a homeomorphism

Φ(I,'I)× Φ(J,'J)
∼−→ Φ(I ? J,'I?J).

It follows that we can identify Φ̃(I ?J,'I?J) with the concatenation of Φ̃(I,'I) with

Φ̃(J,'J) in the category Pt(Broken), which proves the following:

Proposition 5.3.5. The functor Φ̃ : Tw(Lin)op → Pt(Broken) admits a nonunital
monoidal structure, where we equip Tw(Lin) with the nonunital monoidal structure
given by concatenation (Variant 5.2.6) and Pt(Broken) with the nonunital monoidal
structure described in §5.1.

We can now formulate the main result of this paper:

Theorem 5.3.6. Let C be a compactly generated monoidal∞-category, and assume
that the tensor product functor ⊗ : C × C → C preserves small colimits separately
in each variable. Then:
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(1) For every factorizable sheaf F ∈ Shvfact
C (Broken), the composition

Tw(Lin)
Φ̃−→ Pt(Broken)op F−→ C

is a nonunital monoidal functor.
(2) The functor

Shvfact
C (Broken)

◦Φ̃−→ Fun⊗(Tw(Lin), C)
is fully faithful, and its essential image is the full subcategory

Fun⊗0 (Tw(Lin), C),⊆ Fun⊗(Tw(Lin), C)
described in Variant 5.2.9.

From Theorem 5.3.6, we easily deduce the result promised in the introduction to
this paper:

Proof of Theorem 1.0.6. Theorem 5.3.6 and Proposition 5.2.10 supply equivalences

Algnu(C) ∼−→ Fun⊗0 (Tw(Lin), C) ∼←− Shvfact
C (Broken).

�

We will deduce Theorem 5.3.6 from the following more general statement:

Theorem 5.3.7. Let C be a compactly generated monoidal∞-category, and assume
that the tensor product functor ⊗ : C × C → C preserves small colimits separately

in each variable. Then composition with the nonunital lax monoidal functor Φ̃ :
Tw(Lin)→ Pt(Broken)op determines a fully faithful embedding Shvwfact

C (Broken) ↪→
Funlax(Tw(Lin), C), whose essential image is the full subcategory

Funlax
0 (Tw(Lin), C) ⊆ Funlax(Tw(Lin), C)

described in Variant 5.2.9.

Theorem 5.3.7 is a consequence of a more general statement that we will formulate
in §5.4 (Theorem 5.4.9) and prove in §5.5).

Proof of Theorem 5.3.6 from Theorem 5.3.7. Let F ∈ Shvwfact
C (Broken) be a weakly

factorizable C-valued sheaf on Broken, and let F = F ◦Φ̃ denote the associated lax
monoidal functor Tw(Lin) → C. By virtue of Theorem 5.3.7, it will suffice to show
that the following conditions are equivalent:

(i) The functor F is a factorizable C-valued sheaf on Broken. In other words,
for every pair of broken lines L and L′, the canonical map F (L)⊗F (L′)→
F (L ? L′) is an equivalence in C.

(ii) The functor F is nonunital monoidal: that is, for every pair of objects (I,'I)
and (J,'J) in Tw(Lin), the canonical map F (I,'I) ⊗ F (J,'J) → F (I ?
J,'I?J) is an equivalence in C.
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Note that assertion (i) is equivalent to the special case of assertion (ii) where we
assume that the equivalence relations 'I and 'J are discrete. Conversely, suppose
we are given an arbitrary pair of objects (I,'I) and (J,'J) of the category Tw(Lin).
Set I[ = (I,=I) and J [ = (J,=J). (These are the discrete equivalence relations on
I and J ; see Notation 2.5.1.) Then we have a commutative diagram

F (I,'I)⊗ F (J,'J) //

��

F (I ? J,'I?J)

��

F (I[)⊗ F (J [) // F (I[ ? J [)

where the vertical maps are equivalences. If condition (i) is satisfied, then the lower
horizontal map is an equivalence, so that the upper horizontal map is an equivalence
as well. �

5.4. Digression: Day Convolution. In this section, we recall the theory of Day
convolution in the setting of nonunital monoidal∞-categories. For more details, we
refer the reader to Section 2.2.6 of [3].

Construction 5.4.1 (The Day Convolution Product). Let C and D be nonunital
monoidal ∞-categories with tensor product functors ⊗C : C × C → C and ⊗D :
D×D → D. Assume that D is small and that C admits small colimits. Given a
pair of functors F0, F1 : D → C, we define a new functor (F0 ~ F1) : D → C by the
formula

(F0 ~ F1)(D) = lim−→
D0⊗DD1→D

F0(C0)⊗C F1(C1).

Here the colimit is taken over the ∞-category (D×D)×D D/D parametrizing pairs
of objects D0, D1 ∈ D equipped with a morphism D0 ⊗D D1 → D. We refer to
F0 ~ F1 as the Day convolution product of the functors F0 and F1.

Under mild hypotheses, one can show that the Day convolution product under-
lies a nonunital monoidal structure on the ∞-category Fun(D, C). Moreover, this
monoidal structure can be characterized by a universal property:

Theorem 5.4.2. Let C and D be nonunital monoidal ∞-categories. Assume that
D is small, that C admits small colimits, and that the tensor product on C preserves
small colimits separately in each variable. Then there is a nonunital monoidal struc-
ture on the ∞-category Fun(D, C) with the following properties:

(a) The underlying tensor product ~ : Fun(D, C) × Fun(D, C) → Fun(D, C) is
given by the Day convolution product of Construction 5.4.1.

(b) For every nonunital monoidal∞-category E , there is a canonical equivalence
of ∞-categories

Funlax(E ,Fun(D, C)) ' Funlax(E × D, C).
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In particular, there is an equivalence of ∞-categories Algnu(Fun(D, C)) '
Funlax(D, C).

Example 5.4.3. Let C be a compactly generated monoidal ∞-category for which
the tensor product ⊗ : C × C → C preserves small colimits separately in each
variable. Applying Theorem 5.4.2 in the case D = Tw(Lin), we obtain a nonunital
monoidal structure on the ∞-category Fun(Tw(Lin), C), whose tensor product ~ is
given concretely by the formula

(F0 ~ F1)(I,'I) =
∐

F0(I0,'I0)⊗ F1(I1,'I1).

Here the coproduct is taken over all decompositions I = I0 q I1 into nonempty
subsets, where I0 is closed downward under the linear order ≤I and invariant under
the equivalence relation 'I (so that I1 is closed upwards under ≤I and invariant
under 'I), and 'I0 , 'I1 denote the equivalence relations on I0 and I1 obtained by
restricting the equivalence relation 'I . Moreover, there is a canonical equivalence
of ∞-categories

Algnu(Fun(Tw(Lin), C)) ' Funlax(Tw(Lin), C).

Under this equivalence, the subcategory Funlax
0 (Tw(Lin), C) ⊆ Funlax(Tw(Lin), C) of

Variant 5.2.9 corresponds to the full subcategory of Algnu(Fun(Tw(Lin), C)) spanned
by those algebras for which the underlying functor F : Tw(Lin)→ C belongs to the
full subcategory Fun0(Tw(Lin), C)→ Fun(Tw(Lin), C) of Notation 5.2.8.

We would like to consider an analogue of Example 5.4.3, where we replace the
twisted arrow category Tw(Lin) with the category Pt(Broken)op whose objects are
families of broken lines. Here we cannot apply Theorem 5.4.2 as stated, because the
category Pt(Broken)op is not small. However, this is a minor technical nuisance:

Lemma 5.4.4. Let C be an∞-category which admits small coproducts, and suppose
we are given a pair of functors F0, F1 : Pt(Broken)op → C. Then the Day convolution
product F0 ~ F1 is well-defined. That is, for any object of Pt(Broken)op given by a
family of broken lines LS → S, the colimit

lim−→
LS→LS0?LS1

F0(LS0)⊗C F1(LS1).

exists in the ∞-category C.

Proof. The relevant colimit is indexed by the opposite of the category

E = (Pt(Broken)× Pt(Broken))×Pt(Broken) Pt(Broken)LS/
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parametrizing pairs of families of broken lines LS0 → S0, LS1 → S1 together with a
morphism

LS //

��

LS0 ? LS1

��
S // S0 × S1.

in the category Pt(Broken). Let E0 be the full subcategory of E spanned by those
objects for which the maps S0 ← S → S1 are homeomorphisms. The inclusion
E0 ↪→ E has a right adjoint, and is therefore right cofinal. It will therefore suffice to
show that the colimit

lim−→
(LS0 ,LS1 )∈E0

F0(LS0)⊗C F1(LS1).

exists in the category C. This follows from our assumption that C admits small
coproducts, since the category E0 is equivalent to a (small) set, regarded as a category
with only identity morphisms. �

Using Lemma 5.4.4, we obtain the following variant of Theorem 5.4.2:

Theorem 5.4.5. Let C be a compactly generated monoidal ∞-category for which
the tensor product ⊗ : C×C → C preserves small colimits separately in each variable.
Then there is a nonunital monoidal structure on the∞-category Fun(Pt(Broken)op, C)
with the following properties:

(a) The underlying tensor product

~ : Fun(Pt(Broken)op, C)× Fun(Pt(Broken)op, C)→ Fun(Pt(Brokenop, C)
is given by the Day convolution product described in Lemma 5.4.4.

(b) There is a canonical equivalence of ∞-categories

Algnu(Fun(Pt(Broken)op, C)) ' Funlax(Pt(Broken)op, C).

Proof. Let C0 be the full subcategory of C spanned by the compact objects. Our
assumption that C is compactly generated guarantees that we can identify C with
the ∞-category Ind(C0) = Funlex(Cop

0 ,S) of left-exact S-valued functors on Cop
0 (see

Notation 3.6.2). Let Ŝ denote the ∞-category of Kan complexes that are not nec-

essarily small, and set Ĉ = Funlex(Cop
0 , Ŝ). Then we can regard Ĉ as a compactly

generated∞-category in a larger universe where the category Pt(Broken)op is small.
Applying Theorem 5.4.2 in that context, we obtain a nonunital monoidal structure

on the ∞-category Fun(Pt(Broken)op, Ĉ) satisfying the analogues of conditions (a)
and (b). It follows from Lemma 5.4.4 that the full subcategory

Fun(Pt(Broken)op, C) ⊆ Fun(Pt(Broken)op, Ĉ)
is closed under Day convolution, and therefore inherits a nonunital monoidal struc-
ture with the desired properties. �



ASSOCIATIVE ALGEBRAS AND BROKEN LINES 69

Remark 5.4.6. Using a more refined analysis, one can prove Theorem 5.4.5 directly
from the analysis of Lemma 5.4.4, without appealing to the notion of universes. We
can also weaken the assumption that C is compactly generated: it is only necessary
to assume that C admits small coproducts. We leave the details to the reader.

Remark 5.4.7. Let C be a compactly generated ∞-category. The proof of Lemma
5.4.4 shows that the Day convolution on Fun(Pt(Broken)op, C) can be described
concretely by the formula

(F ′~F ′′)(LS) =
∐

LS'L′S?SL
′′
S

F ′(L′S)⊗F ′′(L′′S),

where the coproduct is taken over all (isomorphism classes of) decompositions LS '
L′S ?S L

′′
S in the category Broken(S) of broken lines over S; here ?S is defined as in

Remark 5.1.4.

Remark 5.4.8. Under the equivalence

Algnu(Fun(Pt(Broken)op, C)) ' Funlax(Pt(Broken)op, C)

of Theorem 5.4.5, the full subcategory Shvwfact
C (Broken) ⊆ Funlax(Pt(Broken)op, C)

corresponds to the ∞-category of nonunital algebra objects of Fun(Pt(Broken)op, C)
which are C-valued sheaves on Broken, in the sense of Definition 4.2.9.

In the situation of Theorem 5.4.5, precomposition with the nonunital monoidal

functor Φ̃ : Tw(Lin) → Pt(Broken)op of Proposition 5.3.5 induces a nonunital lax
monoidal functor

Fun(Pt(Broken)op, C)→ Fun(Tw(Lin), C),

which carries the ∞-category ShvC(Broken) to Fun0(Tw(Lin), C). Using Remark
5.4.8 and Example 5.4.3, we can identify Shvwfact

C (Broken) and Funlax
0 (Tw(Lin), C)

with the inverse images of ShvC(Broken) and Fun0(Tw(Lin), C) in the∞-categories of
nonunital algebra objects of Fun(Pt(Broken)op, C) and Fun(Tw(Lin), C), respectively.
Consequently, Theorem 5.3.7 is a consequence of the following assertion, which we
will prove in our next and final section, §5.5:

Theorem 5.4.9. Let C be a compactly generated monoidal∞-category, and assume
that the tensor product ⊗ : C × C → C preserves small colimits separately in

each variable. Then composition with the functor Φ̃ : Tw(Lin) → Pt(Broken)op of
Proposition 5.3.5 induces an equivalence of ∞-categories

ShvC(Broken)→ Fun0(Tw(Lin), C).

Moreover, this functor θ is an equivalence of (nonunital) planar ∞-operads. In
other words, for any collection of objects F 1,F 2, . . . ,F n,G ∈ ShvC(Broken), the
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canonical map

MapFun(Pt(Broken)op,C)(F 1~ · · ·~F n,G )

ψ
��

MapFun(Tw(Lin)op,C)((F 1 ◦Φ̃)~ · · ·~ (F n ◦Φ̃),G ◦Φ̃)

is a homotopy equivalence.

5.5. Proof of Theorem 5.4.9. We will deduce the first assertion of Theorem 5.4.9
by combining Theorem 4.4.1 with the following:

Proposition 5.5.1. Let C be a compactly generated ∞-category and let F ∈
ShvC(Broken) be a C-valued sheaf on Broken. Then, for every object (I,'I) ∈
Tw(Lin), the inclusion Φ̃(I,'I) ↪→ R̃ep(I,BR+) = Φ̃(I]) induces an equivalence

F (Φ̃(I]))→ F (Φ̃(I,'I)).

Proof. Let F R̃ep(I,BR+) denote the C-valued sheaf on the space Rep(I,BR+) '
BrokenI determined by the family of broken lines R̃ep(I,BR+) → Rep(I,BR+).
Let us regard the topological space Rep(I,BR+) ' BrokenI as equipped with the
stratification of Construction 4.3.1, and let J be the ∞-category of exit paths as-
sociated to that stratification (see the proof of Proposition 4.3.4). Note that the
closed subset Φ(I,'I) ⊆ Rep(I,BR+) is a union of strata (namely, those strata
which correspond to convex equivalence relations E which are contained in 'I).
Consequently, Φ(I,'I) inherits a stratification whose exit path ∞-category can be
identified with a full subcategory J 0 ⊆ J . The sheaf F is constructible, and can
therefore be identified with a functor F : J → C (see Theorem A.9.3 of [3]). To
prove Proposition 5.5.1, it will suffice to show that the restriction map

lim←−
α∈J

F (α)→ lim←−
α∈J 0

F (α)

is an equivalence in the ∞-category C. This is clear, since both sides are given by
evaluating F at the point α0 ∈ Rep(I,BR+) given by the formula

α0(i, j) =

{
0 if i = j

∞ if i <I j;

note that α0 is an initial object of the ∞-category J (this follows from the proof
of Proposition 4.3.4), and is therefore also initial as an object of the subcategory
J 0. �

Corollary 5.5.2. Let C be a compactly generated ∞-category. Then composition

with the functor Φ̃ : Tw(Lin)op → Pt(Broken) of Construction 5.3.2 induces an
equivalence of ∞-categories ShvC(Broken)→ Fun0(Tw(Lin), C).
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Proof. It follows from Proposition 5.5.1 that composition with the functor Φ̃ carries
ShvC(Broken) into the subcategory Fun0(Tw(Lin), C) ⊆ Fun(Tw(Lin), C). We con-
clude by observing that this composition functor fits into a commutative diagram

Fun0(Tw(Lin), C)

((
ShvC(Broken)

55

// Fun(Lin, C),

where the right diagonal map is the equivalence of Notation 5.2.8 and the horizontal
map is the equivalence of Theorem 4.4.1. �

Proof of Theorem 5.4.9. Let C be a compactly generated monoidal∞-category, and
suppose that the tensor product ⊗ : C × C → C preserves small colimits separately
in each variable. By virtue of Corollary 5.5.2, it will suffice to show that for every
collection of C-valued sheaves F 1, . . . ,F n,G ∈ ShvC(Broken), the canonical map

MapFun(Pt(Broken)op,C)(F 1~ · · ·~F n,G )

ψ
��

MapFun(Tw(Lin)op,C)((F 1 ◦Φ̃)~ · · ·~ (F n ◦Φ̃),G ◦Φ̃)

is a homotopy equivalence.
Define functors F ,G : (Pt(Broken)op)n → C by the formulae

F (LS1 , . . . , LSn) = F 1(LS1)⊗· · ·⊗F n(LSn) G (LS1 , . . . , LSn) = G (LS1 ? · · ·?LSn).

Unwinding the definitions, we can identify ψ with the restriction map

θ : MapFun((Pt(Broken)op)n,C)(F ,G )→ MapFun(Tw(Lin)n,C)(F ◦ Φ̃n,G ◦ Φ̃n).

For 0 ≤ m ≤ n, let J (m) denote the product Tw(Lin)m × (Pt(Broken)op)n−m, and

let F
(m)
,G

(m)
: J (m) → C denote the functors given by the formulae

F
(m)

(I1, . . . , Im, LSm+1 , . . . , LSn) = F (Φ̃(I1), . . . , Φ̃(Im), LSm+1 , . . . , LSn)

G
(m)

(I1, . . . , Im, LSm+1 , . . . , LSn) = G (Φ̃(I1), . . . , Φ̃(Im), LSm+1 , . . . , LSn).

We will complete the proof by showing that each of the restriction maps

θm : MapFun(J (m−1),C)(F
(m−1)

,G
(m−1)

)→ MapFun(J (m),C)(F
(m)
,G

(m)
)

is a homotopy equivalence.
Let us henceforth regard the integer m > 0 as fixed, and let K denote the product

Tw(Lin)m−1 × (Pt(Broken)op)n−m. Let us identify F (m−1) and G (m−1) with functors
F,G : K → Fun(Pt(Broken)op, C), so that θm is given by the restriction map

MapFun(K,Fun(Pt(Broken)op,C)(F,G)→ MapFun(K,Fun(Tw(Lin),C)(F ◦ Φ̃, G ◦ Φ̃).
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To prove that this map is a homotopy equivalence, it will suffice to show that for
every pair of objects K,K ′ ∈ K, the induced map

MapFun(Pt(Broken)op,C)(F (K), G(K ′))

θK,K′
��

MapFun(K,Fun(Tw(Lin),C)(F (K) ◦ Φ̃, G(K ′) ◦ Φ̃)

is a homotopy equivalence.
To simplify the notation, we now assume that 1 < m < n (the extremal cases

m = 1 and m = n are similar, but somewhat simpler). Unwinding the definitions,
we see that the functors F (K), G(K ′) : Pt(Broken)op → C are given by the formulae

F (K)(LS) = C ⊗Fm(LS)⊗ C ′ G(K)(LS) = G (B̃ ? LS ? B̃
′)

for some objects C,C ′ ∈ C, B̃, B̃′ ∈ Pt(Broken). Note that F (K) ◦ Φ̃ is a left Kan
extension of its restriction along the functor ] : Lin ↪→ Tw(Lin) of Notation 5.2.3, so
that the restriction map

MapFun(Tw(Lin),C)(F (K) ◦ Φ̃, G(K ′) ◦ Φ̃)→ MapFun(Lin,C)(F (K) ◦ F̃un, G(K ′) ◦ R̃ep)

is a homotopy equivalence; here R̃ep denotes the functor I 7→ Φ̃(I]). We are therefore
reduced to proving that the composite map

MapFun(Pt(Broken)op,C)(F (K), G(K ′))→ MapFun(Lin,C)(F (K) ◦ R̃ep, G(K ′) ◦ R̃ep)

is a homotopy equivalence.
Let H ∈ Shvlax

C (Broken) denote the sheafification of the functor

F (K) : Pt(Broken)op → C.
Since Fm belongs to ShvC(Broken), it follows from Remark 4.2.15 that H also
belong to ShvC(Broken). For every object I ∈ Lin, let LI denote the broken line

obtained by taking the fiber of the map R̃ep(I,BR+)→ Rep(I,BR+) over the point

α ∈ Rep(I,BR+) given by α(i, j) =

{
0 if i = j

∞ if i 6= j.
. Then we have a commutative

diagram

F (K)(R̃ep(I,BR+)) //

��

F (K)(LI)

��
H (R̃ep(I,BR+)) // H (LI).

Here the right vertical map is an equivalence by construction (since the process of
sheafification does not change the value of a presheaf on a single point), and the
horizontal maps are equivalences by virtue of Remark 4.3.5. It follows that the
left vertical map is also an equivalence. Allowing I to vary, we conclude that the
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canonical map F (K) ◦ R̃ep→H ◦R̃ep is an equivalence. We can therefore identify
θK,K′ with the restriction map

MapFun(Pt(Broken)op,C)(H , G(K ′))→ MapFun(Lin,C)(H ◦R̃ep, G(K ′) ◦ R̃ep).

Note that the formula G(K ′)(LS) = G (B̃ ?LS ?B̃
′) immediately shows that G(K ′)

is a lax C-valued sheaf on Broken. To complete the proof that θK,K′ is a homotopy
equivalence, it will suffice to show that G(K ′) is homotopy invariant (see Proposition
4.5.3). Let LS → S be a family of broken lines parametrized by a topological space
S and set LS×R = LS ×R, which we regard as a family of broken lines over S ×R.
We wish to show that the canonical map

G(K ′)(LS) = G (B̃ ? LS ? B̃
′)→ G (B̃ ? LS×R ? B̃

′) = G(K ′)(LS×R)

is an equivalence in C. This follows from the homotopy invariance of the presheaf
G ∈ ShvC(Broken) (see Proposition 4.5.2). �
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