Lecture 5: Booleanization

January 31, 2018

Recall the following definition from the previous lecture:

Definition 1. Let \(\mathcal{C} \) be a category. We will say that \(\mathcal{C} \) is a **coherent category** if it satisfies the following axioms:

(A1) The category \(\mathcal{C} \) admits finite limits.

(A2) Every morphism \(f : X \to Z \) in \(\mathcal{C} \) admits a factorization \(X \xrightarrow{g} Y \xrightarrow{h} Z \), where \(g \) is an effective epimorphism and \(h \) is a monomorphism.

(A3) For every object \(X \in \mathcal{C} \), the partially ordered set \(\text{Sub}(X) \) is an upper semilattice: that is, it has a least element, and every pair of subobjects \(X_0, X_1 \subseteq X \) have a least upper bound \(X_0 \lor X_1 \).

(A4) The collection of effective epimorphisms in \(\mathcal{C} \) is stable under pullback.

(A5) For every morphism \(f : X \to Y \) in \(\mathcal{C} \), the map \(f^{-1} : \text{Sub}(Y) \to \text{Sub}(X) \) is a homomorphism of upper semilattices.

Definition 2. Let \(\mathcal{C} \) and \(\mathcal{C}' \) be coherent categories. A **morphism of coherent categories** from \(\mathcal{C} \) to \(\mathcal{C}' \) is a functor \(F : \mathcal{C} \to \mathcal{C}' \) with the following properties:

(1) The functor \(F \) is left exact: that is, it preserves finite limits.

(2) The functor \(F \) carries effective epimorphisms to effective epimorphisms.

(3) For every object \(X \in \mathcal{C} \), the induced map \(\text{Sub}(X) \to \text{Sub}(F(X)) \) is a homomorphism of upper semilattices: that is, it preserves smallest elements and joins.

Remark 3. Let \(F : \mathcal{C} \to \mathcal{C}' \) satisfy condition (1) of Definition 2. Then \(F \) preserves monomorphisms. Consequently, condition (2) is equivalent to the requirement that for every morphism \(f : X \to Z \), the functor \(F \) carries the canonical factorization \(X \to \text{Im}(f) \to Z \) to the factorization \(F(X) \to \text{Im}(F(f)) \to F(Z) \). Note also that in the situation of (3), the map \(\text{Sub}(X) \to \text{Sub}(F(X)) \) is automatically a homomorphism of lower semilattices (that is, it preserves largest elements and meets).

Example 4. Let \(P \) and \(P' \) be distributive lattices. Then, when viewed as categories, \(P \) and \(P' \) are coherent categories. A morphism of coherent categories from \(P \) to \(P' \) is just a lattice homomorphism: that is, a map of partially ordered sets that preserves least upper bounds and greatest lower bounds for finite subsets.

Example 5. Let \(\mathcal{C} \) be a category containing an object \(X \). We can then form a new category \(\mathcal{C}/X \), whose objects are pairs \((U,f) \), where \(U \in \mathcal{C} \) is an object and \(f : U \to X \) is a morphism. A morphism from \((U,f) \) to \((V,g) \) in \(\mathcal{C} \) is a morphism \(h : U \to V \) in \(\mathcal{C} \) such that \(f = g \circ h \). The construction \((U,f) \mapsto U \) determines a forgetful functor \(\mathcal{C}/X \to \mathcal{C} \), and we will generally abuse notation by identifying an object of \(\mathcal{C}/X \) with its image under this forgetful functor.

Exercise 6. Show that if \(\mathcal{C} \) is a coherent category, then so is \(\mathcal{C}/X \). Moreover, the formation of fiber products, images, and unions of subobjects in \(\mathcal{C}/X \) can be computed in the underlying category \(\mathcal{C} \).
Beware that the forgetful functor $\mathcal{C}/X \to \mathcal{C}$ is not a morphism of coherent categories, because it does not preserve final objects. However, the forgetful functor has a right adjoint which is a morphism of coherent categories. More generally, suppose that $f : X \to Y$ is any morphism in \mathcal{C}. Then f determines a functor $f^* : \mathcal{C}/Y \to \mathcal{C}/X$, given by the construction $U \mapsto U \times_X Y$.

Exercise 7. Show that if $f : X \to Y$ is a morphism in a coherent category \mathcal{C}, then the functor $f^* : \mathcal{C}/Y \to \mathcal{C}/X$ is a morphism of coherent categories. In fact, this is precisely the content of axioms (A4) and (A5).

Definition 8. Let \mathcal{C} be a coherent category. A *model* of \mathcal{C} is a morphism of coherent categories $M : \mathcal{C} \to \text{Set}$. We let $\text{Mod}(\mathcal{C})$ denote the full subcategory of the functor category $\text{Fun}(\mathcal{C}, \text{Set})$ spanned by the models of \mathcal{C}; we refer to $\text{Mod}(\mathcal{C})$ as the category of models of \mathcal{C}.

Example 9. Let $\mathcal{C} = \text{Syn}_0(T)$ be the weak syntactic category of a (typed) first-order theory T. Then we can identify $\text{Mod}(\mathcal{C})$ with the category of models of T (with morphisms given by elementary embeddings): that is the content of the theorem from the previous lecture.

We now return to a question from the previous lecture: given a category \mathcal{C}, can we construct a first-order theory T whose weak syntactic category is \mathcal{C}?

Construction 10. Let \mathcal{C} be a small coherent category. We define a typed first-order theory $T(\mathcal{C})$ as follows:

- The types of $T(\mathcal{C})$ are the objects of \mathcal{C}. We use uppercase letters like X and Y to denote these types, and the corresponding lowercase letters x, y, etcetera to denote variables of those types.
- For every morphism $f : X \to Y$ in \mathcal{C}, the language of $T(\mathcal{C})$ has a single predicate P_f, of arity (X,Y).

By definition, a structure for the language $T(\mathcal{C})$ is a rule which associates to each object $X \in \mathcal{C}$ a set $M[X]$, and to each morphism $f : X \to Y$ a relation $M[P_f] \subseteq M[X] \times M[Y]$. We now list the axioms of $T(\mathcal{C})$, along with the constraints they place on a structure M:

- For every $f : X \to Y$, we have an axiom $(\forall x)(\exists! y)[P_f(x,y)]$. (So that $M[P_f]$ is the graph of a function $f_M : M[X] \to M[Y]$.)
- If $i : X \to X$ is the identity morphism, we have an axiom $(\forall x)[P_i(x,x)]$. (So that $i_M : M[X] \to M[X]$ is the identity map.)
- Given a pair of composable morphisms $f : X \to Y$ and $g : Y \to Z$, we have an axiom $(\forall x,y,z)[(P_f(x,y) \land P_g(y,z)) \Rightarrow P_{gf}(x,z)]$. (So that $g_M \circ f_M = (g \circ f)_M$.)

These first axioms guarantee that a model M of $T(\mathcal{C})$ can be viewed as a functor from \mathcal{C} to the category of sets. We now add additional axioms to guarantee that this functor has nice properties:

- If 1 is a final object of \mathcal{C} and e is a variable of type 1, we have an axiom $(\exists! e)[e = e]$ (So that M preserves final objects.)
- For every pullback square

\[
\begin{array}{ccc}
X' & \rightarrow & X \\
\downarrow & & \downarrow f \\
Y' & \rightarrow & Y
\end{array}
\]

in \mathcal{C}, we have an axiom $(\forall x,y,y')[P_f(x,y) \land P_g(y',y)] \Rightarrow (\exists! x')(P_{f'}(x',x) \land P_{g'}(x',y'))$ (So that M preserves pullback squares.)
- If $f : X \to Y$ is an effective epimorphism in \mathcal{C}, we have an axiom $(\forall y)(\exists x)[P_f(x,y)]$ (so that M carries effective epimorphisms to surjections of sets).
• If \(X \) is an object of \(\mathcal{C} \) and \(f : X_0 \to X \) is a monomorphism which exhibits \(X_0 \) as the smallest element of \(\text{Sub}(X) \), then we have an axiom \(\neg (\exists x_0)[x_0 = x_0] \) (so that \(M \) carries the smallest element of \(\text{Sub}(X) \) to the empty set).

• If \(X \) is an object of \(\mathcal{C} \) which is given as the join of subobjects \(f : Y \to X \) and \(g : Z \to X \), then we have an axiom \((\forall x)[(\exists y)[P_f(y,x)] \vee (\exists z)[P_g(z,x)]]\) (so that \(M \) carries joins in \(\text{Sub}(W) \) to unions of subsets of \(M[W] \)).

The theory \(T(\mathcal{C}) \) has the property that models of \(T(\mathcal{C}) \) are the same as models of \(\mathcal{C} \). Let us now make that idea more precise:

Construction 11. We define a functor \(\lambda : \mathcal{C} \to \text{Syn}_0(T(\mathcal{C})) \) as follows:

• For each object \(X \in \mathcal{C} \), we set \(\lambda(X) = [x = x] \), where \(x \) is some variable of the type \(X \).

• For every morphism \(f : X \to Y \) in \(\mathcal{C} \), we let \(\lambda(f) : \lambda(X) \to \lambda(Y) \) denote the morphism in \(\mathcal{C} \) defined by the formula \(P_f(x,y) \).

By construction, a model \(M \) of \(T(\mathcal{C}) \) can be viewed as a morphism of coherent categories \(M : \mathcal{C} \to \text{Set} \), so that \(M[P_f(x,y)] \) is the graph of a function \(f_M \) from \(M[X] \) to \(M[Y] \). Moreover, since we have \((g \circ f)_M = g_M \circ f_M\) for each \(M \), it follows that \(\lambda(g \circ f) = \lambda(g) \circ \lambda(f) \). Similarly, \(\lambda(\text{id}_X) = \text{id}_{\lambda(X)} \), so that \(\lambda \) is a functor from \(\mathcal{C} \) to \(\text{Syn}_0(T(\mathcal{C})) \). Moreover, this functor preserves finite limits, effective epimorphisms, and joins of subobjects (since these properties can be tested in every model of \(T(\mathcal{C}) \)). In other words, \(\lambda \) is a morphism of coherent categories.

Note that the identification
\[
\{\text{Models of } T(\mathcal{C})\} \simeq \{\text{Models of } \mathcal{C}\}
\]
is simply given by composition with the functor \(F \) of Construction 11. This composition determines a functor
\[
\text{Mod}(T(\mathcal{C})) \simeq \text{Mod}(\text{Syn}_0(T(\mathcal{C}))) \to \text{Mod}(\mathcal{C}).
\]
By construction, the composite functor is bijective on objects. Beware that it is not necessarily an equivalence of categories. Our next goal is to discuss the following:

Theorem 12. Let \(\mathcal{C} \) be a small coherent category. Then the functor \(\lambda : \mathcal{C} \to \text{Syn}_0(T(\mathcal{C})) \) of Construction 11 is an equivalence of categories if and only if \(\mathcal{C} \) is Boolean.

Remark 13. The “only if” direction is obvious, since the weak syntactic category \(\text{Syn}_0(T(\mathcal{C})) \) is Boolean.

Remark 14. In the situation of Theorem 12, we can think of the weak syntactic category \(\text{Syn}_0(T(\mathcal{C})) \) as a “Booleanization” of \(\text{Syn}_0(\mathcal{C}) \). If \(\mathcal{C} \to \mathcal{D} \) is any morphism of coherent categories, then \(f \) can be completed to a diagram
\[
\begin{array}{ccc}
\mathcal{C} & \xrightarrow{f} & \mathcal{D} \\
\downarrow{\lambda_\mathcal{C}} & & \downarrow{\lambda_\mathcal{D}} \\
\text{Syn}_0(T(\mathcal{C})) & \xrightarrow{\text{Syn}_0(f)} & \text{Syn}_0(T(\mathcal{D})).
\end{array}
\]
which commutes up to canonical isomorphism. If \(\mathcal{D} \) is Boolean, then Theorem 12 guarantees that \(\lambda_\mathcal{D} \) is an equivalence, so that \(f \) is isomorphic to the composition \(\mathcal{C} \xrightarrow{\lambda^{-1}_\mathcal{D}} \text{Syn}_0(T(\mathcal{D})) \xrightarrow{g} \text{Syn}_0(T(\mathcal{C})) \). It is possible to show that this factorization is essentially unique (but this requires additional input).
Example 15 (The Theory of Groups). We will see later that there is a natural way to choose a coherent category \mathcal{C} for which the category Mod(\mathcal{C}) is equivalent to the category whose objects are groups and whose morphisms are group homomorphisms. In this case, $T(\mathcal{C})$ would be equivalent to the category whose objects are groups and whose morphisms are elementary embeddings of groups. Here we could replace groups by other mathematical structures of a similar flavor (abelian groups, rings, Lie algebras, etcetera).

Example 16. A topological space X is said to be *spectral* if it satisfies the following conditions:

- The quasi-compact open subsets of X form a basis for the topology of X.
- The space X is quasi-compact, and the intersection $U \cap V$ is quasi-compact whenever $U, V \subseteq X$ are quasi-compact open sets.
- Every irreducible closed subset of X has a unique generic point.

For example, the underlying topological space of any quasi-compact and quasi-separated scheme is spectral (and conversely, due to a theorem of Hochster).

Let X be a spectral space. We say that a subset $K \subseteq X$ is *constructible* if it belongs to the Boolean algebra generated by the quasi-compact open subsets of X. We can then equip X with a new topology, called the constructible topology, by taking the constructible subsets of X as a basis. Let us denote the resulting topological space by X^c; one can show that it is a *Stone space* (that is, it is compact, Hausdorff, and totally disconnected).

The construction $X \mapsto X^c$ can be regarded as a special case of the Booleanization procedure of Construction 11. If X is a spectral space, then the collection of quasi-compact open subsets of X forms a distributive lattice P, which we can regard as a coherent category. Then the Booleanization $\text{Syn}_0(T(P))$ is a Boolean coherent category in which every object admits a monomorphism to the final object, and is therefore equivalent to a Boolean algebra. This turns out to be the Boolean algebra of constructible subsets of X, or equivalently of quasi-compact open subsets of X^c.

In the situation above, we can identify X with the set of equivalence classes of models of P, and X^c with the set of equivalence classes of models of $\text{Syn}_0(T(P))$. The fact that the topological spaces X and X^c have the same points is an illustration of the general fact that a coherent category \mathcal{C} and its Booleanization $\text{Syn}_0(T(\mathcal{C}))$ have “the same” models. However, the *categories* of models need not be equivalent. In the example of a spectral space X, this corresponds to the observation that in general there can be closure relations between points of X (that is, it is possible for a point $x \in X$ to lie in the closure of a different point $y \in X$), but not in X^c (since X^c is a Hausdorff space).

We now begin the proof of Theorem 12 (we will continue in the next lecture).

Proposition 17. Let \mathcal{C} be a small Boolean coherent category. Let X be an object of \mathcal{C} which is given as a product $\prod_{1 \leq i \leq n} X_i$, and suppose that $\varphi(x_1, \ldots, x_n)$ is a formula in the language of $T(\mathcal{C})$ whose variables x_i have type X_i. Then there exists a subobject $Y \subseteq X$ such that $\lambda(Y)$ and $[\varphi(x_1, \ldots, x_n)]$ coincide as subobjects of $\lambda(X_1) \times \cdots \times \lambda(X_n) \simeq \lambda(X)$.

Proof. We proceed by induction on the construction of the formula φ. There are five cases:

(i) Suppose $\varphi(\vec{x})$ has the form $x_i = x_j$, for some pair i, j with $X_i = X_j$. In this case, we can take Y to be the fiber product $X \times_{X_i \times X_j} X_i$.

(ii) Suppose that $\varphi(\vec{x})$ has the form $P_f(x_i, x_j)$, where $f : X_i \to X_j$ is a morphism in \mathcal{C}. In this case, we take Y to be the fiber product $X \times_{X_i \times X_j} X_i$ (where X_i is embedded in the product $X_i \times X_j$ as the graph of f).

(iii) Suppose that $\varphi(\vec{x})$ has the form $\varphi_0(\vec{x}) \lor \varphi_1(\vec{x})$. By our inductive hypothesis we can assume that there are subobjects $Y_0, Y_1 \subseteq X$ satisfying $\lambda(Y_0) = [\varphi_0(\vec{x})]$ and $\lambda(Y_1) = [\varphi_1(\vec{x})]$ (as subobjects of $\lambda(X)$). We then take $Y = Y_0 \lor Y_1$.

Suppose that $\varphi(\vec{x})$ has the form $\neg \psi(\vec{x})$. By the inductive hypothesis, we can choose a subobject $Y' \subseteq X$ such that $\lambda(Y') = [\psi(\vec{x})]$ as subobjects of $\lambda(X)$. Our assumption that \mathcal{C} is Boolean guarantees that Y' has a complement $Y \in \text{Sub}(X)$. Since F induces a Boolean algebra homomorphism $\text{Sub}(X) \to \text{Sub}(F(X))$, it follows that $\lambda(Y) = [\varphi(\vec{x})]$ (as subobjects of $\lambda(X)$).

Suppose that $\varphi(\vec{x})$ has the form $(\exists z)[\psi(\vec{x}, z)]$, where z is a variable of type Z. In this case, our inductive hypothesis guarantees that there exists a subobject $Y \subseteq X \times Z$ such that $\lambda(Y) = [\psi(\vec{x}, z)]$ as subobjects of $\lambda(X \times Z) \simeq \lambda(X) \times \lambda(Z)$. Let Y denote the image of the composite map $Y \hookrightarrow X \times Z \to X$. Since F preserves images, it follows that $\lambda(Y)$ is the image of the map $[\psi(\vec{x}, z)] \to F(X)$, which coincides with $[\varphi(\vec{x})]$. \qed