Lecture 27X-Ultrafunctors

April 17, 2018

We now study functors between ultracategories.

Definition 1. Let \(\pi : \mathcal{E} \to \text{Stone}^{fr} \) and \(\pi' : \mathcal{E}' \to \text{Stone}^{fr} \) be ultracategory fibrations. A *morphism of ultracategory fibrations* from \(\mathcal{E} \) to \(\mathcal{E}' \) is a functor \(F : \mathcal{E} \to \mathcal{E}' \) with the following properties:

1. The diagram

\[
\begin{array}{ccc}
\mathcal{E} & \xrightarrow{F} & \mathcal{E}' \\
\pi \downarrow & & \downarrow \pi' \\
\text{Stone}^{fr} & & \\
\end{array}
\]

commutes. In particular, for every \(X \in \text{Stone}^{fr} \), \(F \) induces a functor \(F_X : \mathcal{E}_X \to \mathcal{E}'_X \).

2. The functor \(F \) carries locally \(\pi \)-Cartesian morphisms of \(\mathcal{E} \) to locally \(\pi' \)-Cartesian morphisms of \(\mathcal{E}' \).

We let \(\text{Mor}(\mathcal{E},\mathcal{E}') \) denote the full subcategory of \(\text{Fun}(\mathcal{E},\mathcal{E}') \times_{\text{Fun}(\mathcal{E},\text{Stone}^{op})} \{ \pi \} \) consisting of morphisms of ultracategory fibrations from \(\mathcal{E} \) to \(\mathcal{E}' \).

We will be primarily interested in the following example:

Proposition 2. Let \(\mathcal{C} \) and \(\mathcal{C}' \) be small pretopoi, and let \(f : \mathcal{C} \to \mathcal{C}' \) be a pretopos morphism (that is, a functor which preserves finite limits, finite coproducts, and effective epimorphisms). If \(X \) is a topological space and \(\mathcal{O}_X : \mathcal{C}' \to \text{Shv}(X) \) is an \(X \)-model of \(\mathcal{C}' \), then \(\mathcal{O}_X \circ f : \mathcal{C} \to \text{Shv}(X) \) is an \(X \)-model of \(\mathcal{C} \). It follows that the construction \((X,\mathcal{O}_X) \to (X,\mathcal{O}_X \circ f) \) determines a functor \(F : \text{Top}_{\mathcal{C}'} \to \text{Top}_{\mathcal{C}} \). Then:

1. The functor \(F \) carries \(\text{Stone}_{\mathcal{C}'} \) into \(\text{Stone}_{\mathcal{C}} \) and \(\text{Stone}_{\mathcal{C}'}^{fr} \) into \(\text{Stone}_{\mathcal{C}}^{fr} \).

2. The induced map \(F : \text{Stone}_{\mathcal{C}'} \to \text{Stone}_{\mathcal{C}} \) is a morphism of ultracategory fibrations.

Proof. It is clear that \(F \) carries \(\text{Stone}_{\mathcal{C}'} \) into \(\text{Stone}_{\mathcal{C}} \). Let us identify \(\text{Stone}_{\mathcal{C}}^{op} \) and \(\text{Stone}_{\mathcal{C}'}^{op} \) with the full subcategories of \(\text{Fun}(\mathcal{C},\text{Set}) \) and \(\text{Fun}(\mathcal{C}',\text{Set}) \) spanned by those functors which preserve finite limits and effective epimorphisms. Under these identifications, the functor \(F_{|\text{Stone}_{\mathcal{C}'}} : \text{Stone}_{\mathcal{C}'} \to \text{Stone}_{\mathcal{C}} \) is given by precomposition with \(f \). It follows that \(F_{|\text{Stone}_{\mathcal{C}'}} : \text{Stone}_{\mathcal{C}'} \to \text{Stone}_{\mathcal{C}} \) commutes with coproducts (since these correspond to products in \(\text{Fun}(\mathcal{C},\text{Set}) \) and \(\text{Fun}(\mathcal{C}',\text{Set}) \)). Since \(F \) carries \(\text{Mod}(\mathcal{C}')^{op} \subseteq \text{Stone}_{\mathcal{C}'} \) into \(\text{Mod}(\mathcal{C}) \subseteq \text{Stone}_{\mathcal{C}} \), it restricts to a functor \(F : \text{Stone}_{\mathcal{C}'}^{fr} \to \text{Stone}_{\mathcal{C}}^{fr} \). By construction, this functor fits into a commutative diagram

\[
\begin{array}{ccc}
\text{Stone}_{\mathcal{C}'}^{fr} & \xrightarrow{F} & \text{Stone}_{\mathcal{C}}^{fr} \\
\pi' \downarrow & & \downarrow \pi \\
\text{Stone}_{\mathcal{C}'} & & \\
\end{array}
\]

We claim that \(F \) carries locally \(\pi \)-Cartesian morphisms in \(\text{Stone}_{\mathcal{C}'}^{fr} \) to locally \(\pi \)-Cartesian morphisms in \(\text{Stone}_{\mathcal{C}}^{fr} \). Note that a morphism \(g : (X,\mathcal{O}_X) \to (Y,\mathcal{O}_Y) \) in the category \(\text{Stone}_{\mathcal{C}'}^{fr} \) is locally \(\pi' \)-Cartesian if and only if, for every isolated point \(x \in X \), the induced map \(\mathcal{O}_{Y,f(x)} \to \mathcal{O}_{X,x} \) is an isomorphism in \(\text{Mod}(\mathcal{C}') \). It then follows that \(\mathcal{O}_{Y,f(x)} \circ f \to \mathcal{O}_{X,x} \circ f \) is an isomorphism of models of \(\mathcal{C} \), so that \(F(g) \) is locally \(\pi \)-Cartesian. \(\boxed{} \)
We can now give a precise statement of Makkai’s theorem:

Theorem 3 (Strong Conceptual Completeness). Let \mathcal{C} and \mathcal{C}' be small pretopoi, and let $\text{Fun}^{\text{coh}}(\mathcal{C}, \mathcal{C}')$ denote the category of pretopos morphisms from \mathcal{C} to \mathcal{C}'. Then the preceding construction induces an equivalence of categories

$$\text{Fun}^{\text{coh}}(\mathcal{C}, \mathcal{C}') \rightarrow \text{Mor}(\text{Stone}_{\mathcal{C}'}, \text{Stone}_{\mathcal{C}})^{\text{op}}.$$

We will give the proof of Theorem 3 over the next two lectures. First, let us try to describe more concretely what it is saying. Let’s return to the case of a general pair of ultracategory fibrations

$$\pi : \mathcal{E} \rightarrow \text{Stone}^{\text{fr}} \quad \pi' : \mathcal{E}' \rightarrow \text{Stone}^{\text{fr}}.$$

Suppose we are given a continuous map $f : \beta I \rightarrow \beta J$ in Stone^{fr}. Then pullback along f induces functors

$$\mathcal{E}_{\beta J} \rightarrow \mathcal{E}_{\beta I} \quad \mathcal{E}'_{\beta J} \rightarrow \mathcal{E}'_{\beta I},$$

both of which we will denote by f^*. Condition (2) guarantees that the diagram

$$\begin{array}{ccc}
\mathcal{E}_{\beta J} & \xrightarrow{f^*} & \mathcal{E}_{\beta I} \\
\downarrow^{F_{\beta J}} & & \downarrow^{F_{\beta I}} \\
\mathcal{E}'_{\beta J} & \xrightarrow{f^*} & \mathcal{E}'_{\beta I}
\end{array}$$

Let $M = \mathcal{E}^{\text{op}}$ and $M' = \mathcal{E}'^{\text{op}}$ denote the underlying categories of \mathcal{E} and \mathcal{E}', respectively. Then F induces a functor $F_0 : M \rightarrow M'$. For every set I, we have equivalences

$$\mathcal{E}^\text{op}_{\beta I} \simeq M^I \quad \mathcal{E}'^\text{op}_{\beta I} \simeq M'^I$$

which fit into a commutative diagram

$$\begin{array}{ccc}
\mathcal{E}^\text{op}_{\beta I} & \xrightarrow{F_{\beta I}} & \mathcal{E}'^\text{op}_{\beta I} \\
\downarrow \sim & & \downarrow \sim \\
M^I & \xrightarrow{F_0^I} & M'^I.
\end{array}$$

Consequently, a morphism of ultracategory fibrations $F : \mathcal{E} \rightarrow \mathcal{E}'$ is largely determined by the underlying functor $F_0 : M \rightarrow M'$. However, the functor F_0 is not arbitrary: applying the preceding paragraph in the case where $I = *$ is a single point and J is an arbitrary set, (so that $f : \beta I \rightarrow \beta J$ determines an ultrafilter \mathcal{U} on J), we deduce that F_0 “commutes with ultraproducts indexed by \mathcal{U}”, in the sense that we have a commutative diagram

$$\begin{array}{ccc}
M^I & \xrightarrow{F_0^I} & M'^I \\
\downarrow^{P_{\mathcal{U}}} & & \downarrow^{P'_{\mathcal{U}}} \\
M & \xrightarrow{F_0} & M'.
\end{array}$$

where $P_{\mathcal{U}} : M^I \rightarrow M$ and $P'_{\mathcal{U}} : M'^I \rightarrow M'$ are the maps given by f^*. This motivates the following:

Definition 4. Let M and M' be ultracategories, equipped with functors

$$P_{\mathcal{U}} : M^I \rightarrow M \quad P'_{\mathcal{U}} : M'^I \rightarrow M'$$

where \mathcal{U} is an ultrafilter on a set I, together with isomorphisms

$$\epsilon_{I,i} : P_{\mathcal{U}} \simeq \text{ev}_i \quad \epsilon'_{I,i} : P'_{\mathcal{U}} \simeq \text{ev}_i$$
when \mathcal{U} is the principal ultrafilter associated to an element $i \in I$, and “diagonal” maps
\[
\mu_{U,V} \cdot : P^{|U|,V} \to P^U \circ \{P^{|V|}_i\}_{i \in I} \quad \mu_{U,V} \cdot : P'^{|U|,V} \to P'^U \circ \{P'^{|V|}_i\}_{i \in I}.
\]

when \mathcal{U} is an ultrafilter on a set I and $\{V_i\}_{i \in I}$ is an I-indexed collection of ultrafilters on a set J.

An ultrafunctor from M to M' consists of the following data:

- A functor $F_0 : M \to M'$.
- For every set I and every ultrafilter \mathcal{U} on a set I, an isomorphism $\gamma_\mathcal{U} : P^U \circ F_0 \simeq F_0 \circ P^U$ of functors from M' to M'.

These isomorphisms are required to satisfy the following conditions:

- If \mathcal{U} is the principal ultrafilter associated to an element $i \in I$, then the diagram
 \[
 \begin{array}{ccc}
 P'^U \circ F_0 \gamma_\mathcal{U} & \xrightarrow{\gamma_{|U|,V}} & F_0 \circ P^U \\
 \downarrow_{\epsilon_{i,i}} & & \downarrow_{\epsilon_{i,i}} \\
 \text{ev}_i \circ F_0 & \simeq & F_0 \circ \text{ev}_i
 \end{array}
 \]
 commutes (in the category of functors from M' to M').

- If \mathcal{U} is an ultrafilter on a set I and $\{V_i\}_{i \in I}$ is an I-indexed collection of ultrafilters on a set J, then the diagram
 \[
 \begin{array}{ccc}
 P'^{|U|,V} \cdot \circ F_0^J & \xrightarrow{\gamma_{|U|,V} \cdot} & F_0 \circ P^{|U|,V} \\
 \downarrow_{\mu_{U,V} \cdot} & & \downarrow_{\mu_{|U|,V} \cdot} \\
 P^{|U|} \circ \{P^{|V|}_i\} \circ F_0^J & \xrightarrow{\gamma_{|U|} \cdot} & P^{|U|} \circ F_0 \circ \{P^{|V|}_i\}_{i \in I} \\
 \downarrow_{\gamma_{|U|}} & & \downarrow_{\gamma'_{|U|}} \\
 F_0 \circ P^{|U|} & \overset{\gamma_{|U|}}{\longrightarrow} & F_0 \circ P^{|U|} \\
 \end{array}
 \]
 commutes (in the category of functors from M' to M').

Given ultrafunctors $(F_0, \{\gamma_\mathcal{U}\})$ and $(F'_0, \{\gamma'_\mathcal{U}\})$ from M to M', we will say that a natural transformation $\rho : F_0 \to F'_0$ is a morphism of ultrafunctors if, for every ultrafilter \mathcal{U} on a set I, the diagram of natural transformations
\[
\begin{array}{ccc}
 P'^{|U|,V} \cdot \circ F_0^J & \xrightarrow{\gamma_{|U|} \cdot} & F_0 \circ P^{|U|,V} \\
 \downarrow_{\gamma_{|U|}} & & \downarrow_{\gamma'_{|U|}} \\
 F_0 \circ P^{|U|} & \overset{\rho}{\longrightarrow} & F'_0 \circ P^{|U|}
 \end{array}
\]
commutes. We let $\text{Fun}_{M}^{U}(M,M')$ denote the category whose objects are ultrafunctors from M to M' and whose morphisms are morphisms of ultrafunctors.

Warning 5. Makkai introduced a notion of ultrafunctor between ultracategories which is *a priori* more restrictive than our Definition 4: that is, Makkai requires a larger collection of diagrams to commute. However, the difference turns out to be irrelevant in the primary case of interest to us (where M is the category of models of a small pretopos \mathcal{C}), by virtue of Theorem 8 below.

Example 6. Let X and X' be compact Hausdorff spaces. We saw in the previous lecture that we can think of X and X' as *ultrasets*: that is, as ultracategories with only trivial morphisms. In this situation, Definition 4 simplifies considerably: an ultrafunctor from X to X' is simply a map of sets $F_0 : X \to X'$ with the following property: for every map of sets $f : I \to X$ and every ultrafilter \mathcal{U} on I, we have $F_0(P^{|U|}(f)) = P^{|U|}(F_0 \circ f)$.
in X'. By general nonsense, it suffices to check this equality in the case where $I = X$ and f is the identity. It follows that F_0 is an ultrafunctor if and only if it is a morphism of β-algebras: that is, the diagram

$$
\begin{array}{ccc}
\beta X & \xrightarrow{\beta(F_0)} & \beta X' \\
\downarrow & & \downarrow \\
X & \xrightarrow{F_0} & X'
\end{array}
$$

commutes, where the vertical maps are the continuous extensions of id_X and $\text{id}_{X'}$, respectively. This is equivalent to the requirement that F_0 is continuous.

Let $\pi : \mathcal{E} \to \text{Stone}^{\text{fr}}$ and $\pi' : \mathcal{E}' \to \text{Stone}^{\text{fr}}$ be ultracategory fibrations, with underlying ultracategories M and M', respectively. If $F : \mathcal{E} \to \mathcal{E}'$ is a morphism of ultracategory fibrations (in the sense of Definition 1), then it is not difficult to see that the underlying functor $F_0 : M \to M'$ has the structure of an ultrafunctor (with isomorphisms γ_U defined as in the discussion preceding Definition 4). Passage from F to F_0 determines a functor

$$\text{Mor}(\mathcal{E}, \mathcal{E}') \to \text{Fun}^{\text{Ult}}(M, M')^{\text{op}}.$$

Moreover, just as an ultracategory fibration can be recovered (up to equivalence) from its underlying ultracategory, a morphism of ultracategory fibrations can be recovered (up to isomorphism) from its underlying ultrafunctor. More precisely, we can apply the analysis of Lecture 25X to obtain the following:

Proposition 7. Let $\pi : \mathcal{E} \to \text{Stone}^{\text{fr}}$ and $\pi' : \mathcal{E}' \to \text{Stone}^{\text{fr}}$ be ultracategory fibrations with underlying ultracategories $M = \mathcal{E}_{\ast}^{\text{op}}$ and $M' = \mathcal{E}'_{\ast}^{\text{op}}$. Then the preceding construction induces an equivalence of categories

$$\text{Mor}(\mathcal{E}, \mathcal{E}')^{\text{op}} \to \text{Fun}^{\text{Ult}}(M, M').$$

Combining this result with Theorem 3, we obtain the following reformulation of Theorem 3:

Theorem 8 (Strong Conceptual Completeness). Let \mathcal{C} and \mathcal{C}' be small pretopoi and let $\text{Fun}^{\text{coh}}(\mathcal{C}, \mathcal{C}')$ denote the category of pretopos morphisms from \mathcal{C} to \mathcal{C}'. Then there is a canonical equivalence of categories

$$\text{Fun}^{\text{coh}}(\mathcal{C}, \mathcal{C}') \to \text{Fun}^{\text{Ult}}(\text{Mod}(\mathcal{C}'), \text{Mod}(\mathcal{C})).$$