Let \mathcal{C} be an essentially small pretopos, which we regard as fixed throughout this lecture. In Lecture 15X, we constructed a fully faithful embedding

$$\text{Shv}(\mathcal{C}) \rightarrow \text{Shv}(\text{Pro}(\mathcal{C})) \simeq \text{Shv}(\text{Pro}^{\text{op}}(\mathcal{C})) \simeq \text{Shv}(\text{Stone}_{\mathcal{C}}) \subseteq \text{Fun}(\text{Stone}_{\mathcal{C}}^{\text{op}}, \text{Set}).$$

The essential image of this embedding consists of those functors $F: \text{Stone}_{\mathcal{C}}^{\text{op}} \rightarrow \text{Set}$ which commute with filtered colimits and are sheaves with respect to the Grothendieck topology of Lecture 18X. Any such functor must satisfy the following condition:

(a) The functor $F: \text{Stone}_{\mathcal{C}}^{\text{op}} \rightarrow \text{Set}$ preserves finite products: that is, it carries finite coproducts in $\text{Stone}_{\mathcal{C}}$ to finite products in the category of sets.

In Lecture 17X, we proved that if F is a functor satisfying (a), then it commutes with filtered colimits if and only if it satisfies the following additional conditions:

(b) For every object $(X, O_X) \in \text{Stone}_{\mathcal{C}}$ and every point $x \in X$, the canonical map

$$\lim_{x \in U} F(U, O_X |_U) \rightarrow F(\{x\}, O_{X,x})$$

is bijective; here the colimit is taken over all clopen neighborhoods $U \subseteq X$ of the point x.

(c) The composite functor

$$\text{Mod}(\mathcal{C}) \hookrightarrow \text{Stone}_{\mathcal{C}}^{\text{op}} \xrightarrow{F} \text{Set}$$

commutes with filtered colimits.

Our goal in this section is to characterize those functors $F: \text{Stone}_{\mathcal{C}}^{\text{op}} \rightarrow \text{Set}$ which are sheaves. It is easy to see that if F is a sheaf, then it must satisfy condition (a) above. We will prove the following partial converse:

Theorem 1. Let $F: \text{Stone}_{\mathcal{C}}^{\text{op}} \rightarrow \text{Set}$ be a functor satisfying conditions (a) and (b). Then F is a sheaf if and only if it satisfies the following further condition:

(d) For every elementary morphism $f: M \rightarrow N$ in $\text{Mod}(\mathcal{C})$, we have an equalizer diagram

$$F(M) \rightarrow F(N) \rightrightarrows \prod F(P)$$

where the product is taken over all commutative diagrams

$$M \xrightarrow{f} N \rightrightarrows P$$

in $\text{Mod}(\mathcal{C})$.

1
Here we identify $\text{Mod}(\mathcal{C})$ with the full subcategory of $\text{Stone}^{\text{op}}_e$ spanned by those pairs (X, \mathcal{O}_X), where X is a singleton.

Warning 2. In the formulation of condition (d), the product $\prod \mathcal{F}(P)$ is an ill-defined object, because it is indexed by a proper class. However, the equalizer of the diagram $\mathcal{F}(N) \rightrightarrows \prod \mathcal{F}(P)$ is still well-defined as a subset of $\mathcal{F}(N)$.

Remark 3. Condition (d) is equivalent to the requirement that the restriction $\mathcal{F}|_{\text{Mod}(\mathcal{C})}$ is a sheaf on the category $\text{Mod}(\mathcal{C})^{\text{op}}$, where we consider a collection of morphisms $\{M \to N_i\}_{i \in I}$ in $\text{Mod}(\mathcal{C})$ to be a covering in $\text{Mod}(\mathcal{C})^{\text{op}}$ if at least one of the maps $M \to N_i$ is elementary (it follows from the amalgamation property of the previous lecture that this notion of covering defines a Grothendieck topology on $\text{Mod}(\mathcal{C})^{\text{op}}$).

Corollary 4. The topos $\text{Shv}(\mathcal{C})$ can be identified with the full subcategory of $\text{Fun}(\text{Stone}^{\text{op}}_e, \text{Set})$ spanned by those functors \mathcal{F} which satisfy conditions (a), (b), (c) and (d) above.

Before giving the proof of Theorem 1, it will be convenient to revisit a construction from Lecture 17X, which gives a convenient reformulation of conditions (a) and (b).

Notation 5. Let (X, \mathcal{O}_X) be an object of Stone_e, and let $\mathcal{F} : \text{Stone}^{\text{op}}_e \to \text{Set}$ be a functor. Let $\mathcal{U}_0(X)$ denote the collection of all clopen subsets of X. We define a functor $\mathcal{F}(\mathcal{O}_X) : \mathcal{U}_0(X)^{\text{op}} \to \text{Set}$ by the formula

$$\mathcal{F}(\mathcal{O}_X)(U) = \mathcal{F}(\mathcal{U}(U), \mathcal{O}_X|_U).$$

Note that the functor \mathcal{F} satisfies condition (a) above if and only if, for every object $(X, \mathcal{O}_X) \in \text{Stone}_e$, the functor $\mathcal{F}(\mathcal{O}_X) : \mathcal{U}_0(X)^{\text{op}} \to \text{Set}$ carries disjoint unions in $\mathcal{U}_0(X)$ to products in Set. In this case, $\mathcal{F}(\mathcal{O}_X)$ extends uniquely to a sheaf of sets on X, which we will also denote by $\mathcal{F}(\mathcal{O}_X)$.

By construction, the stalk of $\mathcal{F}(\mathcal{O}_X)$ at a point $x \in X$ is given by the direct limit $\lim_{x \in U} \mathcal{F}(\mathcal{U}(U), \mathcal{O}_X|_U)$. We therefore have a canonical map $\mathcal{F}(\mathcal{O}_X)|_x \to \mathcal{F}(\mathcal{O}_{X,x})$ (here we abuse notation by identifying the model $\mathcal{O}_{X,x}$ with the object $(\{x\}, \mathcal{O}_{X,x}) \in \text{Stone}_e$). Condition (b) can then be restated as follows:

(b') For each $(X, \mathcal{O}_X) \in \text{Stone}_e$ and each point $x \in X$, the map $\mathcal{F}(\mathcal{O}_X)|_x \to \mathcal{F}(\mathcal{O}_{X,x})$ is a bijection.

Remark 6. Let (Y, \mathcal{O}_Y) be an object of Stone_e and suppose we are given a map of Stone spaces $f : X \to Y$, so that $f^* \mathcal{O}_Y$ is an X-model of \mathcal{C}. If $\mathcal{F} : \text{Stone}^{\text{op}}_e \to \text{Set}$ is a functor satisfying condition (a), then Notation 5 determines set-valued sheaves

$$\mathcal{F}(\mathcal{O}_Y) \in \text{Shv}(Y) \quad \mathcal{F}(f^* \mathcal{O}_Y) \in \text{Shv}(X)$$

together with a comparison map $f^* \mathcal{F}(\mathcal{O}_Y) \to \mathcal{F}(f^* \mathcal{O}_Y)$ in $\text{Shv}(X)$. If \mathcal{F} satisfies condition (b), then this comparison map is an isomorphism of sheaves on X (this can be checked on stalks, where it follows from (b')).

Remark 7. Let $\mathcal{F} : \text{Stone}^{\text{op}}_e \to \text{Set}$ be a functor satisfying (a) and (b). Then, for each $(X, \mathcal{O}_X) \in \text{Stone}_e$, the canonical map

$$\mathcal{F}(X, \mathcal{O}_X) \to \prod_{x \in X} \mathcal{F}(\{x\}, \mathcal{O}_{X,x})$$

is injective. This follows from the fact that a section s of the sheaf $\mathcal{F}(\mathcal{O}_X) \in \text{Shv}(X)$ is determined by its stalks $\{s_x\}_{x \in X}$.

We can now prove the “easy” direction of Theorem 1. Let

$$\mathcal{F} : \text{Stone}^{\text{op}}_e \to \text{Set}$$
be a sheaf (so that it satisfies condition (a)), and suppose that \mathcal{F} also satisfies condition (b). We wish to show that it satisfies condition (d). Suppose we are given an elementary morphism $M \to N$ in $\text{Mod}(\mathcal{E})$. Then the induced map

$$(*) \to (\cdot, M)$$

is a covering in $\text{Stone}_\mathcal{E}$ (see Lecture 18X). It follows that the canonical map $\mathcal{F}(M) \to \mathcal{F}(N)$ is injective, and that its image consists of those elements $s \in \mathcal{F}(N)$ which satisfy the following condition:

$$(*) \text{ For every object } (X, \mathcal{O}_X) \in \text{Stone}_\mathcal{E} \text{ equipped with a pair of maps } (X, \mathcal{O}_X) \to (\cdot, N) \text{ which are coequalized by } (\cdot, N) \to (\cdot, M), \text{ the element } s \text{ belongs to the equalizer } \text{Eq}(\mathcal{F}(N) \to \mathcal{F}(X, \mathcal{O}_X)).$$

To verify (d), we must show that it suffices to check the criterion of (a) in the case where X is a single point. This follows from the injectivity of the map $\mathcal{F}(X, \mathcal{O}_X) \to \prod_{x \in X} \mathcal{F}(\{x\}, \mathcal{O}_{X,x})$ (Remark 7).

We now tackle the hard direction. Assume that $\mathcal{F} : \text{Stone}^{\text{op}}_\mathcal{E} \to \text{Set}$ satisfies conditions (a), (b), and (d); we wish to show that \mathcal{F} is a sheaf. Choose a covering $\{(X_i, \mathcal{O}_{X_i}) \to (X, \mathcal{O}_X)\}_{i \in I}$ in the category $\text{Stone}_\mathcal{E}$. For every pair $i, j \in I$, we can identify $(X_i, \mathcal{O}_{X_i}), (X_j, \mathcal{O}_{X_j})$, and (X, \mathcal{O}_X) with weakly projective pro-objects $\Gamma(X_i; \mathcal{O}_{X_i}), \Gamma(X_j; \mathcal{O}_{X_j})$, and $\Gamma(X; \mathcal{O}_X)$. We can then form the fiber product

$$\Gamma(X_i; \mathcal{O}_{X_i}) \times_{\Gamma(X; \mathcal{O}_X)} \Gamma(X_j; \mathcal{O}_{X_j})$$

in $\text{Pro}(\mathcal{E})$. This fiber product might not be weakly projective. However, if we can choose a covering by a weakly projective pro-object, which we can then write in the form $\Gamma(X_{ij}, \mathcal{O}_{X_{ij}})$ for some $(X_{ij}, \mathcal{O}_{X_{ij}}) \in \text{Stone}_\mathcal{E}$). In order to show that \mathcal{F} is a sheaf, we must verify that the diagram

$$\mathcal{F}(X, \mathcal{O}_X) \to \prod_i \mathcal{F}(X_i, \mathcal{O}_{X_i}) \to \prod_{i,j} \mathcal{F}(X_{ij}, \mathcal{O}_{X_{ij}})$$

is an equalizer diagram in the category of sets. Since every covering admits a finite subcover, it suffices to check this in the case where the set I is finite. In this case, we can form the coproducts

$$(Y, \mathcal{O}_Y) = \coprod_{i \in I} (X_i, \mathcal{O}_{X_i}) \quad (Z, \mathcal{O}_Z) = \coprod_{i,j \in I} (X_{ij}, \mathcal{O}_{X_{ij}}).$$

Using condition (a), we are reduced to showing that the diagram

$$\mathcal{F}(X, \mathcal{O}_X) \to \mathcal{F}(Y, \mathcal{O}_Y) \Rightarrow \mathcal{F}(Z, \mathcal{O}_Z)$$

is an equalizer diagram of sets.

Let \mathcal{G} denote the direct image of $\mathcal{F}(\mathcal{O}_Y) \in \text{Shv}(Y)$ along the projection map $Y \to X$, and let \mathcal{H} denote the direct image of $\mathcal{F}(\mathcal{O}_Z)$ along the projection $Z \to X$. We then have a commutative diagram

$$\mathcal{F}(\mathcal{O}_X) \to \mathcal{G} \Rightarrow \mathcal{H}$$

in $\text{Shv}(X)$, and we wish to show that it becomes an equalizer diagram in Set after taking global sections. To prove this, it will suffice to show that the above diagram is an equalizer in $\text{Shv}(X)$. This can be checked stalkwise: that is, we are reduced to showing that the map

$$\mathcal{F}(\mathcal{O}_X)_x \to \mathcal{G}_x \Rightarrow \mathcal{H}_x$$

is an equalizer diagram of sets, for each point $x \in X$. Let $Y_x \subseteq Y$ and $Z_x \subseteq Z$ denote the inverse images of x. Using (b) (in the form of Remark 7), we are reduced to showing that the diagram

$$\mathcal{F}({\{x\}}, \mathcal{O}_{X,x}) \Rightarrow \mathcal{F}(Y_x, \mathcal{O}_Y |_{Y_x}) \Rightarrow \mathcal{F}(Z_x, \mathcal{O}_Z |_{Z_x})$$

is an equalizer diagram of sets.
Since the map \((Y, \mathcal{O}_Y) \to (X, \mathcal{O}_X)\) is a covering, Lecture 18X shows that we can choose a point \(y \in Y_z\) for which the map of stalks \(\mathcal{O}_{X,z} \to \mathcal{O}_{Y,y}\) is elementary. Using condition \((d)\), we deduce that the composite map

\[\mathcal{F}(\{x\}, \mathcal{O}_{X,x}) \xrightarrow{\psi} \mathcal{F}(Y_z, \mathcal{O}_Y | Y_z) \to \mathcal{F}(\{y\}, \mathcal{O}_{Y,y}) \]

is injective, so that \(\psi\) is injective. We will complete the proof by showing that every element \(s\) of the equalizer

\[\text{Eq}(\mathcal{F}(Y_z, \mathcal{O}_Y | Y_z) \Rightarrow \mathcal{F}(Z_x, \mathcal{O}_Z | Z_x)) \]

belongs the image of \(\psi\). Let \(s_y \in \mathcal{F}(\{y\}, \mathcal{O}_{Y,y})\) denote the stalk of \(s\) at the point \(y\). We first claim that \(s_y\) belongs to the image of the composite map

\[\mathcal{F}(\{x\}, \mathcal{O}_{X,x}) \xrightarrow{\psi} \mathcal{F}(Y_z, \mathcal{O}_Y | Y_z) \to \mathcal{F}(\{y\}, \mathcal{O}_{Y,y}). \]

By virtue of \((d)\), it will suffice to prove the following:

\((s')\) Given a model \(P \in \text{Mod}(\mathfrak{C})\) and a commutative diagram of models

\[\mathcal{O}_{X,x} \to \mathcal{O}_{Y,y} \Rightarrow P, \]

the stalk \(s_y\) belongs to the equalizer \(\text{Eq}(\mathcal{F}(\mathcal{O}_{Y,y}) \Rightarrow \mathcal{F}(P)). \)

Let us identify \(P\) with an object of \(\text{Pro}(\mathfrak{C})\), and form a pullback diagram

\[
\begin{array}{ccc}
P & \xrightarrow{} & \Gamma(Z; \mathcal{O}_Z) \\
\downarrow & & \downarrow \\
\bar{P} & \xrightarrow{} & \Gamma(Y; \mathcal{O}_Y) \times_{\Gamma(X; \mathcal{O}_X)} \Gamma(Y; \mathcal{O}_Y).
\end{array}
\]

in \(\text{Pro}(\mathfrak{C})\). Here the right vertical map is an effective epimorphism, so the left vertical map is an effective epimorphism as well. The object \(\bar{P}\) might not be weakly projective. However, we can choose an effective epimorphism \(Q \to \bar{P}\), where \(Q\) is weakly projective. We can then write \(Q = \Gamma(W, \mathcal{O}_W)\), for some object \((W, \mathcal{O}_W)\) in \(\text{Stone}_\mathfrak{C}\). By construction, the map \((W, \mathcal{O}_W) \to (\ast, P)\) is a covering in \(\text{Stone}_\mathfrak{C}\). Using Lecture 18X, we see that there exists a point \(w \in W\) for which the map of models \(P \to \mathcal{O}_{W,w}\) is elementary. Using condition \((d)\), we see that the map \(\mathcal{F}(P) \to \mathcal{F}(\mathcal{O}_{W,w})\) is injective. Consequently, to verify \((s')\), we are free to replace \(P\) by \(\mathcal{O}_{W,w}\). Let \(z \in Z\) denote the image of \(w\) under the map \((W, \mathcal{O}_W) \to (Z, \mathcal{O}_Z)\) in \(\text{Stone}_\mathfrak{C}\), so that the diagram of \((s')\) refines to a diagram

\[\mathcal{O}_{X,x} \to \mathcal{O}_{Y,y} \Rightarrow \mathcal{O}_{Z,z} \to P. \]

We are therefore reduced to showing that \(s_y\) belongs to the equalizer \(\text{Eq}(\mathcal{F}(\mathcal{O}_{Y,y}) \Rightarrow \mathcal{F}(\mathcal{O}_{Z,z}))\), which follows from our assumption that \(s \in \text{Eq}(\mathcal{F}(Y_z, \mathcal{O}_Y | Y_z) \Rightarrow \mathcal{F}(Z_x, \mathcal{O}_Z | Z_x)). \)

The above argument shows that we can write \(s_y\) as the image of an element \(\bar{s} \in \mathcal{F}(\{x\}, \mathcal{O}_{X,x})\). We will complete the proof by showing that \(\psi(\bar{s}) = s\). For this, it will suffice to show that \(\psi(\bar{s})\) and \(s\) have the same image in the stalk \(\mathcal{F}(\{y'\}, \mathcal{O}_{Y,y'})\) for each point \(y'\) in the fiber \(Y_x\). Using the amalgamation property of the previous lecture, we see that there exists a commutative diagram of models \(\sigma : \)

\[
\begin{array}{ccc}
\mathcal{O}_{X,x} & \xrightarrow{} & \mathcal{O}_{Y,y} \\
\downarrow & & \downarrow \\
\mathcal{O}_{Y,y'} & \xrightarrow{} & N.
\end{array}
\]
where the bottom horizontal map is elementary. As above, we can form a pullback diagram

\[
\begin{array}{ccc}
\tilde{N} & \rightarrow & \Gamma(Z;\mathcal{O}_Z) \\
\downarrow & & \downarrow \\
N & \rightarrow & \Gamma(Y;\mathcal{O}_Y) \times_{\Gamma(X;\mathcal{O}_X)} \Gamma(Y;\mathcal{O}_Y)
\end{array}
\]

in \text{Pro}(\mathcal{C}) and choose an effective epimorphism \(\Gamma(V;\mathcal{O}_V) \rightarrow \tilde{N}\) for some \((V,\mathcal{O}_V) \in \text{Stone}_\mathcal{C}\). The map \((V,\mathcal{O}_V) \rightarrow (\ast, N)\) is a covering, so there exists some point \(v \in V\) for which the map of models \(N \rightarrow \mathcal{O}_{V,v}\) is elementary. Our assumption that \(s\) belongs to the equalizer \(\text{Eq}(\mathcal{F}(Y_x;\mathcal{O}_Y|_{Y_x}) \Rightarrow \mathcal{F}(Z_x;\mathcal{O}_Z|_{Z_x}))\) then implies that the stalks \(s_y = \psi(s)_y\) and \(s_{y'}\) have the same image in \(\mathcal{F}(\{v\};\mathcal{O}_{V,v})\). It follows that \(\psi(s)_y\) and \(s_{y'}\) have the same image in \(\mathcal{F}(\{v\};\mathcal{O}_{V,v})\). Since the composite map \(\mathcal{O}_{Y,y'} \rightarrow N \rightarrow \mathcal{O}_{V,v}\) is elementary, assumption \((d)\) guarantees the injectivity of \(\mathcal{F}(\{y\};\mathcal{O}_{Y,y'}) \rightarrow \mathcal{F}(\{v\};\mathcal{O}_{V,v})\), so that we must have \(\psi(s)_y = s_{y'}\), as desired.