Throughout this lecture, we let \mathcal{C} denote an essentially small coherent category with disjoint coproducts (for example, a small pretopos). In the previous lecture, we proved that $\text{Pro}(\mathcal{C})$ is also a coherent category with disjoint coproducts. In particular, we can endow $\text{Pro}(\mathcal{C})$ with a finitary Grothendieck topology, where a finite collection of morphisms $\{U_i \to X\}$ is a covering if the induced map $\coprod U_i \to X$ is an effective epimorphism. We let $\text{Shv}(\text{Pro}(\mathcal{C}))$ denote the category of sheaves with respect to this topology.

Warning 1. The category $\text{Shv}(\text{Pro}(\mathcal{C}))$ is not a topos (note that $\text{Pro}(\mathcal{C})$ is not small).

Example 2. Let X be a quasi-compact and quasi-separated scheme, and let Sch^et_X denote the category of quasi-compact, quasi-separated schemes U equipped with an étale map $U \to X$. Then Sch^et_X is an essentially small coherent category, and $\text{Shv}(\text{Pro}(\text{Sch}^\text{et}_X))$ can be identified with the category of pro-étale sheaves on X introduced by Bhatt-Scholze.

Similarly, Scholze’s category of pro-étale sheaves on a (quasi-compact, quasi-separated) perfectoid space X can be realized as $\text{Shv}(\text{Pro}(\mathcal{C}))$, where \mathcal{C} is the category of (quasi-compact, quasi-separated) perfectoid spaces which are étale over X.

Our first goal is to understand the relationship of $\text{Shv}(\text{Pro}(\mathcal{C}))$ with the topos $\text{Shv}(\mathcal{C})$.

Proposition 3. Let \mathcal{C} be as above and let $\mathcal{F}: \text{Pro}(\mathcal{C})^{\text{op}} \to \text{Set}$ be a functor. Then:

1. If \mathcal{F} is a sheaf on the category $\text{Pro}(\mathcal{C})$, then the restriction $\mathcal{F}|_{\mathcal{C}}^{\text{op}}$ is a sheaf on \mathcal{C}.
2. If $\mathcal{F}|_{\mathcal{C}}^{\text{op}}$ is a sheaf on \mathcal{C} and the functor \mathcal{F} commutes with filtered colimits, then \mathcal{F} is a sheaf on $\text{Pro}(\mathcal{C})$.

Proof. We will prove (2) and leave (1) as an exercise for the reader. Assume that $\mathcal{F}|_{\mathcal{C}}^{\text{op}}$ is a sheaf and that \mathcal{F} commutes with filtered colimits; we wish to show that \mathcal{F} is a sheaf. For this, we must prove the following:

(a) The functor \mathcal{F} carries finite coproducts in $\text{Pro}(\mathcal{C})$ to products of sets.

(b) For each effective epimorphism $U \to X$ in $\text{Pro}(\mathcal{C})$, the diagram

$$\mathcal{F}(X) \to \mathcal{F}(U) \rightrightarrows \mathcal{F}(U \times_X U)$$

is an equalizer.

We begin with (a). Suppose we are given a finite collection of objects $C_1, \ldots, C_n \in \text{Pro}(\mathcal{C})$, each of which is the limit of a pro-system $\{C_{i,\alpha}\}$ in \mathcal{C}; without loss of generality, we may assume that each of these pro-systems is indexed by the same category. Then the coproduct $C_1 \amalg \cdots \amalg C_n$ is given by the limit of the pro-system $\{C_{1,\alpha} \amalg \cdots \amalg C_{n,\alpha}\}$. Since \mathcal{F} carries filtered limits in $\text{Pro}(\mathcal{C})$ to filtered colimits of sets, we are reduced to showing that the canonical map

$$\lim_{\alpha} \mathcal{F}(C_{1,\alpha} \amalg \cdots \amalg C_{n,\alpha}) \to \prod_{1 \leq i \leq n} \lim_{\alpha} \mathcal{F}(C_{i,\alpha})$$

is an isomorphism.
is an isomorphism, which follows from the fact that filtered colimits of sets commute with products and our assumption that $\mathcal{F}|_{\mathcal{C}^{op}}$ is a sheaf.

We now prove (b). Let $f : U \to X$ be an effective epimorphism in $\text{Pro}(\mathcal{C})$. Then we can write f as the limit of a diagram $\{f_\alpha : U_\alpha \to X_\alpha\}$ of effective epimorphisms in \mathcal{C}. Using our assumption that \mathcal{F} is compatible with filtered limits in $\text{Pro}(\mathcal{C})$, we are reduced to showing that the diagram

$$\lim_{\alpha} \mathcal{F}(X_\alpha) \to \lim_{\alpha} \mathcal{F}(U_\alpha) \Rightarrow \lim_{\alpha} \mathcal{F}(U_\alpha \times_{X_\alpha} U_\alpha).$$

This follows from our assumption that $\mathcal{F}|_{\mathcal{C}^{op}}$ is a sheaf, since the collection of equalizer diagrams in Set is closed under filtered colimits. \qed

The universal property of $\text{Pro}(\mathcal{C})$ implies that any presheaf $\mathcal{F}_0 \in \text{Fun}(\mathcal{C}^{op}, \text{Set})$ admits an essentially unique extension to a presheaf $\mathcal{F} \in \text{Fun}(\text{Pro}(\mathcal{C})^{op}, \text{Set})$ which preserves filtered colimits. It follows from Proposition 3 that \mathcal{F}_0 is a sheaf if and only if \mathcal{F} is a sheaf. This proves the following:

Proposition 4. Let $\text{Shv}_c(\text{Pro}(\mathcal{C}))$ denote the full subcategory of $\text{Shv}(\text{Pro}(\mathcal{C}))$ consisting of those sheaves $\mathcal{F} : \text{Pro}(\mathcal{C})^{op} \to \text{Set}$ which preserve filtered colimits. Then the restriction functor $\mathcal{F} \mapsto \mathcal{F}|_{\mathcal{C}^{op}}$ induces an equivalence of categories $\text{Shv}_c(\text{Pro}(\mathcal{C})) \to \text{Shv}(\mathcal{C})$.

Proposition 4 is the starting point of a strategy for understanding the topos $\text{Shv}(\mathcal{C})$: its objects can also be understood as sheaves on the larger coherent category $\text{Pro}(\mathcal{C})$, satisfying a certain continuity condition. This is convenient because $\text{Pro}(\mathcal{C})$ contains many useful objects that do not belong to \mathcal{C}.

Definition 5. Recall that a model of \mathcal{C} is a morphism of coherent categories $M : \mathcal{C} \to \text{Set}$: that is, a functor which satisfies the following axioms:

1. The functor M commutes with finite limits.
2. The functor M carries effective epimorphisms in \mathcal{C} to surjections of sets.
3. The functor M preserves finite coproducts.

Let $\text{Mod}(\mathcal{C})$ denote the full subcategory of $\text{Fun}(\mathcal{C}, \text{Set})$ spanned by the models of \mathcal{C}. By definition, $\text{Pro}(\mathcal{C})$ is the opposite of the full subcategory of $\text{Fun}(\mathcal{C}, \text{Set})$ spanned by those functors which satisfy condition (1). We can therefore identify $\text{Mod}(\mathcal{C})^{op}$ with a full subcategory of $\text{Pro}(\mathcal{C})$. Note that objects of $\text{Mod}(\mathcal{C})^{op}$ very rarely belong to \mathcal{C} itself (regarded as a full subcategory of $\text{Pro}(\mathcal{C})$ via the Yoneda embedding).

We will say that an object $M \in \text{Pro}(\mathcal{C})$ is weakly projective if it satisfies conditions (1) and (2). We let $\text{Pro}^{wp}(\mathcal{C})$ denote the full subcategory of $\text{Pro}(\mathcal{C})$ spanned by the weakly projective objects.

Example 6. Any model of \mathcal{C} is weakly projective when viewed as an object of $\text{Pro}(\mathcal{C})$. That is, we have inclusions

$$\text{Mod}(\mathcal{C}) \subseteq \text{Pro}^{wp}(\mathcal{C})^{op} \subseteq \text{Pro}(\mathcal{C})^{op} \subseteq \text{Fun}(\mathcal{C}, \text{Set}).$$

Example 7. Suppose that \mathcal{C} is the category of finite sets. Then every effective epimorphism in \mathcal{C} admits a section, so condition (2) of Definition 5 is automatic: that is, we have $\text{Pro}^{wp}(\mathcal{C}) = \text{Pro}(\mathcal{C})$.

Remark 8. By definition, an object $X \in \text{Pro}(\mathcal{C})$ is weakly projective if and only if, for every effective epimorphism $C \to D$ in \mathcal{C}, the map $\text{Hom}_{\text{Pro}(\mathcal{C})}(X, C) \to \text{Hom}_{\text{Pro}(\mathcal{C})}(X, D)$ is surjective: that is, every map from X to D factors through C. It follows that $\text{Pro}^{wp}(\mathcal{C})$ is closed under (possibly infinite) coproducts in $\text{Pro}(\mathcal{C})$.

Beware that the map $\text{Hom}_{\text{Pro}(\mathcal{C})}(X, C) \to \text{Hom}_{\text{Pro}(\mathcal{C})}(X, D)$ is generally not surjective if we assume only that $C \to D$ is an effective epimorphism in \mathcal{C} (this is the motivation for the using the modifier “weakly” to describe the condition of Definition 4).

Remark 9. The full subcategory $\text{Pro}^{wp}(\mathcal{C}) \subseteq \text{Pro}(\mathcal{C})$ is closed under filtered inverse limits (since the collection of surjections in Set is closed under filtered direct limits).
The following result allows us to “resolve” any object of Pro(ℂ) by weakly projective objects:

Proposition 10. For every object \(X \in \text{Pro}(ℂ) \), there exists an effective epimorphism \(ρ_X : λ(X) \to X \) in \(\text{Pro}(ℂ) \) where \(λ(X) \) is weakly projective. Moreover, we can arrange that \(λ(X) \) is a functor of \(X \), that \(ρ_X \) is a natural transformation of functors, and that the functor \(λ \) commutes with filtered limits.

Proof. We use the small object argument of Quillen. Let \(λ \) be a natural transformation of functors, and that the functor \(λ \) admits finite limits. In general, the category \(\text{Pro}(ℂ) \) need not admit finite limits. In such cases, we must replace condition \((T1)\) appearing in Lecture 8 with the following:

\((T1')\) For every covering \(\{ U_i \to X \}_{i \in I} \) in \(\text{Pro}(ℂ) \) and every morphism \(Y \to X \) in \(ℂ \), there exists a covering \(\{ V_j \to Y \} \) for which each of the maps \(V_j \to Y \) factors through some \(U_i \).

We also need to revise the notion of sheaf. A functor \(ℱ : ℂ^{\text{op}} \to \text{Set} \) is said to be a sheaf if, for every covering \(\{ U_i \to X \} \) in \(ℂ \), the canonical map

\[ℱ(X) \to \lim_{(U_i)} ℱ(U) \]

is a bijection, where the limit is taken over the sieve on \(X \) generated by the objects \(U_i \) (see Definition 13 of Lecture 9).

Example 12. Let \(ℂ \) be the category of finite sets. Then \(\text{Pro}^{\text{wp}}(ℂ) = \text{Pro}(ℂ) \) can be identified with the category of Stone spaces. The preceding topology can be described as follows: a finite collection of maps of Stone spaces \(\{ Y_i \to X \} \) is a covering if and only if the induced map \(\coprod Y_i \to X \) is surjective.

Proposition 13. The construction \(ℱ \mapsto ℱ|_{\text{Pro}^{\text{wp}}(ℂ)} \) induces an equivalence of categories \(\text{Shv}(\text{Pro}(ℂ)) \to \text{Shv}(\text{Pro}^{\text{wp}}(ℂ)) \). Moreover, a sheaf \(ℱ : \text{Pro}(ℂ)^{\text{op}} \to \text{Set} \) commutes with filtered colimits if and only if \(ℱ|_{\text{Pro}^{\text{wp}}(ℂ)} \) commutes with filtered colimits.

Proof. Let \(ℱ \in \text{Shv}(\text{Pro}(ℂ)) \). For each object \(X \in \text{Pro}(ℂ) \), let \(λ(X) \) be defined as in Proposition 11, and set \(µ(X) = λ(λ(X) \times_X λ(X)) \). We then have an equalizer diagram

\[ℱ(X) \to ℱ(λ(X)) \rightrightarrows ℱ(µ(X)) \]
so that we can functorially recover \(F(X) \) from the values of \(F \) on weakly projective objects. This gives an explicit left inverse to the restriction functor

\[
\text{Shv}(\text{Pro}(\mathcal{C})) \to \text{Shv}(\text{Pro}^{\text{wp}}(\mathcal{C})) \quad F \mapsto F|_{\text{Pro}^{\text{wp}}(\mathcal{C})^{\text{op}}};
\]

we leave it to the reader to verify that it is a right inverse as well.

It is clear that if \(F \) commutes with filtered colimits, then so does the restriction \(F|_{\text{Pro}^{\text{wp}}(\mathcal{C})^{\text{op}}} \). The converse follows from the formula

\[
F(X) = \text{Eq}(F(\lambda(X)) \Rightarrow F(\mu(X))),
\]

since the constructions \(X \mapsto \lambda(X) \) and \(X \mapsto \mu(X) \) both preserve filtered inverse limits (as functors from \(\text{Pro}(\mathcal{C}) \) to itself).

Corollary 14. Let \(\text{Shv}_c(\text{Pro}^{\text{wp}}(\mathcal{C})) \) be the full subcategory of \(\text{Shv}(\text{Pro}^{\text{wp}}(\mathcal{C})) \) spanned by those sheaves \(F : \text{Pro}^{\text{wp}}(\mathcal{C})^{\text{op}} \to \text{Set} \) which preserve filtered colimits. Then there is a canonical equivalence of categories \(\text{Shv}(\mathcal{C}) \simeq \text{Shv}_c(\text{Pro}^{\text{wp}}(\mathcal{C})) \).

Proof. Combine Propositions 14 and 4.