Lecture 14: Locales and Topoi

March 5, 2018

Recall that, if X is an object of a coherent category \mathcal{C}, then the poset $\text{Sub}(X)$ is a distributive lattice. If \mathcal{C} is a topos, we can say more.

Definition 1. A **locale** is a poset \mathcal{U} with the following properties:

(a) Every subset $S \subseteq \mathcal{U}$ has a least upper bound $\bigvee S$.

It follows from (a) that every subset $S \subseteq \mathcal{U}$ also has a greatest lower bound $\bigwedge S$, given by the least upper bound of the set $\{U \in \mathcal{U} : (\forall V \in S) U \leq V\}$ of all lower bounds for S. In particular, every pair of elements $U, V \in \mathcal{U}$ have a meet $U \land V$.

(b) For each element $V \in \mathcal{U}$ and every set of elements $\{U_\alpha\}$, we have a distributive law

$$\bigvee_{\alpha} (U_\alpha \land V) = \bigvee_{\alpha} (U_\alpha \land V).$$

Remark 2. Every locale is a distributive lattice.

Exercise 3. Let \mathcal{U} be a poset satisfying condition (a) of Definition 1. Show that \mathcal{U} is a locale if and only if it is a **Heyting algebra**: that is, if and only if for every pair of elements $U, V \in \mathcal{U}$, there is an element $(U \Rightarrow V) \in \mathcal{U}$ such that $W \leq (U \Rightarrow V)$ if and only if $U \land W \leq V$.

Example 4. Let B be a complete Boolean algebra (that is, a Boolean algebra satisfying condition (a) of Definition 1). Then B is a locale.

Example 5. Let X be a topological space and let $\mathcal{U}(X)$ be the collection of open subsets of X, partially ordered with respect to inclusion. Then $\mathcal{U}(X)$ is a locale. Moreover, the join $\bigvee U_\alpha$ of a collection of elements $U_\alpha \in \mathcal{U}(X)$ coincides with the set-theoretic union $\bigcup U_\alpha$, and the meet of a pair $U, V \in \mathcal{U}(X)$ is given by the set-theoretic intersection $U \cap V$.

Beware that the meet of an infinite set of elements $U_\alpha \in \mathcal{U}(X)$ usually does not coincide with the intersection $\bigcap U_\alpha$, because the intersection $\bigcap U_\alpha$ need not be open; instead, $\bigwedge U_\alpha$ is given by the interior of $\bigcap U_\alpha$. In particular, we generally have

$$\bigwedge_{\alpha} (U_\alpha \lor V) \neq \bigwedge_{\alpha} (U_\alpha \lor V).$$

Proposition 6. Let X be a topos and let X be an object of X. Then the poset $\text{Sub}(X)$ is a locale.

Proof. Every collection of objects $\{U_i \subseteq X\}_{i \in I}$ has a join, given by the image of the map $\bigsqcup_{i \in I} U_i \to X$. For
\(V \subseteq X \), we compute
\[
(\bigvee U_i) \wedge V = (\bigvee U_i) \times_X V \\
= \text{Im}(\prod_{i \in I} U_i \to X) \times_X V \\
= \text{Im}(\prod_{i \in I} (U_i \times_X V) \to V) \\
= \bigvee_{i \in I} U_i \wedge V.
\]

Definition 7. Let \(X \) be a topos and let \(1 \) be the final object of \(X \). Then \(\text{Sub}(1) \) is a locale. We will refer to \(\text{Sub}(1) \) as the *underlying locale* of \(X \).

In the situation of Definition 7, the poset \(\text{Sub}(1) \) can be regarded as a full subcategory of \(X \).

Definition 8. Let \(X \) be a topos. We say that \(X \) is *localic* if it is generated by \(\text{Sub}(1) \): that is, if every object \(X \in X \) admits a covering \(\{U_i \to X\} \), where each \(U_i \) is a subobject of 1.

Example 9. Let \(\mathcal{C} \) be a category which admits finite limits, equipped with a Grothendieck topology. Suppose that \(\mathcal{C} \) is a poset (that is, every object of \(\mathcal{C} \) can be identified with a subobject of the final object). Then the topos \(\text{Shv}(\mathcal{C}) \) is localic: it is generated by objects of the form \(Lh_C \), each of which is a subobject of the final object of \(\text{Shv}(\mathcal{C}) \).

Example 10. Let \(X \) be a topological space. Then the topos \(\text{Shv}(X) \) is localic (this is a special case of Example 9).

We now prove a converse to Example 9.

Exercise 11. Let \(\mathcal{U} \) be a locale. Show that \(\mathcal{U} \) admits a Grothendieck topology, where a collection of maps \(\{U_i \to X\} \) is a covering if \(X = \bigvee U_i \).

Proposition 12. Let \(X \) be a localic topos, and regard the underlying locale \(\mathcal{U} = \text{Sub}(1) \) as equipped with the Grothendieck topology of Exercise 11. Then we have a canonical equivalence \(X \simeq \text{Shv}(\mathcal{U}) \).

Proof. We can regard \(\mathcal{U} \) as an essentially small full subcategory of \(X \) which is closed under finite limits. If \(X \) is localic, then \(\mathcal{U} \) generates \(X \), so the desired result follows as in the proof of Giraud’s theorem.

We now proceed in the reverse direction.

Proposition 13. Let \(\mathcal{U} \) be a locale. Then the Yoneda embedding \(h : \mathcal{U} \to \text{Fun}(\mathcal{U}^{\text{op}}, \text{Set}) \) induces an equivalence from \(\mathcal{U} \) to the poset of subobjects of 1 in \(\text{Shv}(\mathcal{U}) \).

Proof. We first show that, for each \(U \in \mathcal{U} \), the presheaf \(h_U \) is a sheaf. Suppose we are given a covering \(\{V_i \to V\}_{i \in I} \) in \(\mathcal{U} \); we wish to show that the canonical map
\[
\forall_{i \in I} h_U(V_i) \to \prod_{i \in I} h_U(V_i) = \prod_{i,j} h_U(V_i \wedge V_j)
\]
is an equalizer diagram. Equivalently, we wish to show that \(V \leq U \) if and only if each \(V_i \leq U \), which follows from the identity \(V = \bigvee_{i \in I} V_i \).
It is clear that each \(h_U \) is a subobject of the final object of \(\text{Shv}(\mathcal{U}) \) (note that \(h_U(V) \) is a singleton for \(V \leq U \), and empty otherwise). Conversely, let \(\mathcal{F} \in \text{Shv}(\mathcal{U}) \) be a subobject of the final object, so that \(\mathcal{F}(V) \) has at most one element for each \(V \in \mathcal{U} \). Set \(U = \bigvee_{\mathcal{F}(V) \neq \emptyset} V \). Then we have a covering \(\{V \to U\}_{\mathcal{F}(V) \neq \emptyset} \). Invoking the assumption that \(\mathcal{F} \) is a sheaf, we conclude that \(\mathcal{F}(U) \neq \emptyset \). We therefore have \(\mathcal{F}(V) = \begin{cases} * & \text{if } V \leq U \\ \emptyset & \text{otherwise.} \end{cases} \), so that \(\mathcal{F} \simeq h_U \).

We can summarize Propositions 12 and 13 more informally by saying that we have an equivalence

\[
\{ \text{Localic topoi} \} \simeq \{ \text{Locales} \}.
\]

To every localic topos \(X \), we can associate the locale \(\text{Sub}(1) \) of subobjects of the final object; to any locale \(\mathcal{U} \), we can associate a topos \(\text{Shv}(\mathcal{U}) \), and these constructions are mutually inverse (up to equivalence). In fact, we can be a bit more precise.

Definition 14. Let \(\mathcal{U} \) and \(\mathcal{V} \) be locales. A *morphism of locales* from \(\mathcal{V} \) to \(\mathcal{U} \) is an order-preserving map \(f^* : \mathcal{U} \to \mathcal{V} \) such that \(f^* \) preserves finite meets and arbitrary joins (equivalently, it preserves finite limits and small colimits, if we view \(\mathcal{U} \) and \(\mathcal{V} \) as categories). We let \(\text{Fun}^*(\mathcal{U}, \mathcal{V}) \) denote the full subcategory of \(\text{Fun}(\mathcal{U}, \mathcal{V}) \) spanned by the morphisms of locales from \(\mathcal{V} \) to \(\mathcal{U} \) (note that \(\text{Fun}^*(\mathcal{U}, \mathcal{V}) \) is a poset).

Proposition 15. Let \(\mathcal{U} \) be a locale and let \(X \) be a topos with underlying locale \(\text{Sub}(1) \). Then composition with the Yoneda embedding \(h : \mathcal{U} \to \text{Shv}(\mathcal{U}) \) induces an equivalence of categories

\[
\text{Fun}^*(\text{Shv}(\mathcal{U}), X) \to \text{Fun}^*(\mathcal{U}, \text{Sub}(1)).
\]

In other words, the category of geometric morphisms from \(X \) to \(\text{Shv}(\mathcal{U}) \) is equivalent to the poset of morphisms of locales from \(\text{Sub}(1) \) to \(\mathcal{U} \).

Proof. We proved in Lecture 12 that composition with \(h \) induces an equivalence of categories \(\text{Fun}^*(\text{Shv}(\mathcal{U}), X) \to \text{Fun}^*(\mathcal{U}, X) \), where \(\text{Fun}^*(\mathcal{U}, X) \) is the full subcategory of \(\text{Fun}(\mathcal{U}, X) \) spanned by those functors \(f : \mathcal{U} \to X \) which preserve finite limits and coverings. Since every object of \(\mathcal{U} \) is a subobject of the final object, any functor \(f : \mathcal{U} \to X \) which preserves finite limits automatically carries each element of \(\mathcal{U} \) to a subobject of the final object \(1 \in X \), and can therefore be identified with a map of posets \(g : \mathcal{U} \to \text{Sub}(1) \). In this case, the assumption that \(f \) preserves finite limits translates into the assumption that \(g \) preserves finite meets, and the assumption that \(f \) preserves coverings translates into the assumption that \(g \) preserves infinite joins.

We can summarize the situation as follows: there are adjoint functors (of 2-categories)

\[
\begin{array}{ccc}
\mathcal{U} & \xrightarrow{\text{Sub}(1)} & \text{Locales} \\
\text{Topoi} & \xleftarrow{\text{Shv}(\mathcal{U})} & \text{Locales} \\
\end{array}
\]

where the construction \(\mathcal{U} \to \text{Shv}(\mathcal{U}) \) is fully faithful by virtue of Proposition 13; its essential image is the 2-category of localic topoi. It follows that for every topos \(X \), there is a universal example of a localic topos which admits a geometric morphism from \(X \), given by \(\text{Shv}(\text{Sub}(1)) \). We refer to this topos as the localic reflection of \(X \).

Example 16. Let \(X \) be a topological space equipped with an action of a (discrete) group \(G \). Then the category \(\text{Shv}_G(X) \) of \(G \)-equivariant sheaves on \(X \) is a topos. The subobjects of the final object of \(\text{Shv}(X) \) can be identified with open subsets of \(X \). It follows that subobjects of the final object of \(\text{Shv}_G(X) \) can be identified with \(G \)-equivariant open subsets of \(X \), or equivalently with open subsets of the quotient \(X/G \) (where we endow \(X/G \) with the quotient topology). It follows that there is a canonical map \(\text{Shv}_G(X) \to \text{Shv}(X/G) \) which exhibits \(\text{Shv}(X/G) \) as the localic reflection of \(\text{Shv}_G(X) \).