Lecture 6: Definition of the Fargues-Fontaine Curve

October 29, 2018

Throughout this lecture, we fix a perfectoid field C° of characteristic p, with valuation ring \mathcal{O}_C°. Fix an element $\pi \in C^\circ$ with $0 < |\pi|_{C^\circ} < 1$. We let \mathbf{A}_{inf} denote the ring of Witt vectors $W(\mathcal{O}_C^\circ)$. In the previous lecture, we defined the Gauss norm $|\bullet|_p : \mathbf{A}_{inf}[\frac{1}{p}, \frac{1}{|\pi|}] \to \mathbb{R}_{\geq 0}$, for every real number $\rho \in (0, 1)$. By definition, it is given by the formula $|\sum c_n p^n|_\rho = \sup \{|c_n|_{C^\circ} \cdot \rho^n\}$. For every pair of real numbers $0 < a \leq b < 1$, we let $B_{[a, b]}$ denote the completion of $\mathbf{A}_{inf}[\frac{1}{p}, \frac{1}{|\pi|}]$ with respect to the pair of norms $|\bullet|_a$ and $|\bullet|_b$.

Exercise 1. Show that, for $0 < a \leq c < b < 1$, we have $|f|_c \leq \sup \{|f|_a, |f|_b\}$. Consequently, the completion of $\mathbf{A}_{inf}[\frac{1}{p}, \frac{1}{|\pi|}]$ with respect to any finite collection of Gauss norms $|\bullet|_{\rho_0}, \cdots, |\bullet|_{\rho_n}$ is given $B_{[a, b]}$, where $a = \min\{\rho_i\}$ and $b = \max\{\rho_i\}$.

Recall that the ring B is defined as the inverse limit $\lim_{\leftarrow} B_{[a, b]}$, where $[a, b]$ ranges over the collection of all closed intervals contained in $(0, 1)$. Equivalently, we can describe B as the completion of $\mathbf{A}_{inf}[\frac{1}{p}, \frac{1}{|\pi|}]$ with respect to all of the Gauss norms $|\bullet|_\rho$ (for $0 < \rho < 1$). This inverse limit inherits a topology, and each of the norms $|\bullet|_\rho$ on $\mathbf{A}_{inf}[\frac{1}{p}, \frac{1}{|\pi|}]$ admits a unique continuous extension to B (which we will also denote by $|\bullet|_\rho$).

Moreover, a sequence $\{f_n\}_{n \geq 0}$ converges to $f \in B$ if and only if $\lim_{n \to \infty} |f - f_n|_\rho = 0$ for all $\rho \in (0, 1)$. By virtue of Exercise 1, the collection of real numbers ρ which satisfies this condition is convex (so it suffices to check convergence for real numbers of the form $\frac{n}{N}$ and $\frac{N}{n}$, for example).

Warning 2. The ring B is a topological vector space over \mathbb{Q}_p, but it is not a p-adic Banach space: its topology cannot be defined by a single norm. It is instead an example of a p-adic Frechet space. However, it can still be regarded as a completion of $\mathbf{A}_{inf}[\frac{1}{p}, \frac{1}{|\pi|}]$ in the following sense: every element $f \in B$ can be realized as the limit of a sequence $\{f_n\}$, where each f_n belongs to $\mathbf{A}_{inf}[\frac{1}{p}, \frac{1}{|\pi|}]$. For example, we can take any sequence satisfying

$$|f - f_n|_{\frac{1}{n}} \leq \frac{1}{n} \quad |f - f_n|_{1 - \frac{1}{n}} \leq \frac{1}{n}$$

for $n > 1$.

Let us describe these completion a little bit more concretely. Let V be a \mathbb{Q}_p-vector space equipped with a non-archimedean norm $|\bullet|_V$. Suppose we are given a collection of vectors $\{v_i\}_{i \in I}$ in V with the property that, for every real number $\epsilon > 0$, we have $|v_i|_V \leq \epsilon$ for all but finitely many $i \in I$. In this case, the sum $\sum_{i \in I} v_i$ converges (absolutely) in the completion \widehat{V} of V with respect to the norm $|\bullet|_V$.

Exercise 3. Let V be a \mathbb{Q}_p-vector space equipped with a norm $|\bullet|_V$, and suppose we are given a sequence of points $v_0, v_1, v_2, \ldots \in V$. Show that the following conditions are equivalent:

- The sequence $\{v_n\}_{n \geq 0}$ is a Cauchy sequence (with respect to the metric $d(v, w) = |v - w|_V$).
- $\lim_{n \to \infty} |v_n - v_{n-1}|_V = 0$.
- The sum $v_0 + \sum_{n>0}(v_n - v_{n-1})$ is (absolutely) convergent in the completion \widehat{V} of V.

If these conditions are satisfied, then the limit \(\lim_{n \to \infty} v_n \) (in the completion \(\hat{V} \) of \(V \)) coincides with \(v_0 + \sum_{n>0} (v_n - v_{n-1}) \). Consequently, any element of \(\hat{V} \) can be written as an (absolutely convergent) sum of elements of \(V \).

Variant 4. Let \(\hat{V} \) be the completion of a \(\mathbb{Q}_p \)-vector space \(V \) with respect to a pair of norms \(| \cdot |_V \) and \(| \cdot |_{V'} \). In this case, a sum \(\sum_{i \in I} v_i \) converges in \(\hat{V} \) provided that \(\lim |v_i|_V = \lim |v_i|_{V'} = 0 \).

Let us now specialize to the case of interest to us.

Example 5 (Teichmüller Expansions). Suppose we are given a formal sum

\[
\sum_{n \in \mathbb{Z}} [c_n] p^n,
\]

where each \(c_n \) is an element of \(C^\flat \). Then:

- The sum converges for the Gauss norm \(| \cdot |_\rho \) if and only if
 \[
 \lim_{n \to \infty} |c_n|_{C^\flat} p^n = 0 \quad \text{and} \quad \lim_{n \to \infty} |c_{-n}|_{C^\flat} p^{-n} = 0.
 \]

- The sum converges in \(B_{[a,b]} \) if and only if it converges for the Gauss norms \(| \cdot |_a \) and \(| \cdot |_b \). That is, if and only if we have
 \[
 \lim_{n \to \infty} |c_n|_{C^\flat} b^n = 0 \quad \text{and} \quad \lim_{n \to \infty} |c_{-n}|_{C^\flat} a^n = 0.
 \]

- The sum converges in \(B \) if and only if it converges with respect to the Gauss norm \(| \cdot |_\rho \) for every \(\rho \in (0,1) \). This is equivalent to the statement
 \[
 \limsup_{n>0} |c_n|_{C^\flat}^{1/n} \leq 1 \quad \text{and} \quad \lim_{n \to \infty} |c_{-n}|_{C^\flat}^{1/n} = 0.
 \]

Remark 6 (Complex-Analytic Analogue). Let \(f \) be a holomorphic function defined on the punctured unit disk \(D^\times = \{ z \in \mathbb{C} : 0 < |z| < 1 \} \). Then \(f \) admits a Laurent series expansion

\[
f(z) = \sum c_n z^n,
\]

where the coefficients \(c_n \) are complex numbers satisfying the conditions

\[
\limsup_{n>0} |c_n|^{1/n} \leq 1 \quad \text{and} \quad \lim_{n \to \infty} |c_{-n}|^{1/n} = 0.
\]

Conversely, for any sequence \(\{c_n\}_{n \in \mathbb{Z}} \) of complex numbers satisfying these conditions, the sum \(\sum c_n z^n \) determines a holomorphic function on \(D^\times \).

Warning 7. It follows from Example 5 that every collection \(\{c_n\}_{n \in \mathbb{Z}} \) of elements of \(C^\flat \) satisfying the conditions

\[
\limsup_{n>0} |c_n|_{C^\flat}^{1/n} \leq 1 \quad \text{and} \quad \lim_{n \to \infty} |c_{-n}|_{C^\flat}^{1/n} = 0
\]

determines an element of the ring \(B \), given by \(\sum_{n \in \mathbb{Z}} [c_n] p^n \). However, it is not clear that every element of \(B \) can be represented in this way, or that such representations are unique when they exist.

Recall that \(C^\flat \) is a perfect field of characteristic \(p \), so the Frobenius map

\[
\varphi : C^\flat \to C^\flat \quad \varphi(c) = e^p
\]
is an automorphism of C^p. This automorphism restricts to an automorphism of the valuation ring O_C^p, and therefore induces an automorphism of the ring of Witt vectors $\mathbf{A}_{\inf} = W(O_C^p)$. We will denote both of these automorphisms also by φ. Note that $\varphi([\pi]) = [\pi]^p$, so that inverting $[\pi]$ has the same effect as inverting $\varphi([\pi])$. Consequently, the Frobenius automorphism of \mathbf{A}_{\inf} extends to an automorphism of $\mathbf{A}_{\inf}[\frac{1}{p}, \frac{1}{p}]$, which we will again denote by φ. On Teichmüller expansions, it is given by the formula

$$\varphi\left(\sum_{n, \gg -\infty} [c_n]p^n \right) = \sum_{n, \gg -\infty} [c_n^p]p^n.$$

In particular, we have

$$|\varphi\left(\sum_{n, \gg -\infty} [c_n]p^n \right)|_p = \sup\{|c_n|_{C^p}^p p^n \} = (\sup\{|c_n|_{C^p} p^{n/p}\})^p = | \sum_{n, \gg -\infty} [c_n]p^n |_{\rho^{1/p}},$$

which we can write more simply as

$$|\varphi(f)|_{\rho^p} = (|f|_{\rho})^p.$$

It follows that the automorphism φ of $\mathbf{A}_{\inf}[\frac{1}{p}, \frac{1}{p}]$ extends to an isomorphism $B_{[a, b]} \simeq B_{[\rho, \rho^p]}$. Passing to the inverse limit over all intervals $[a, b] \subseteq (0, 1)$, we obtain an automorphism of the ring B, which we will (once again) denote by φ.

Notation 8. For every integer n, we let $B^{\varphi=p^n}$ denote the subset of B consisting of those elements x satisfying $\varphi(x) = p^n x$.

Note that if f belongs to $B^{\varphi=p^n}$ and g belongs to $B^{\varphi=p^m}$, then we have $\varphi(fg) = \varphi(f) \cdot \varphi(g) = (p^m f) \cdot (p^n g) = p^{n+m} fg$, so that fg belongs to $B^{\varphi=p^{n+m}}$. It follows that we can regard the sum

$$\bigoplus_{n \in \mathbb{Z}} B^{\varphi=p^n}$$

as a graded ring. We can now finally define the main object of study in this course:

Definition 9. The Fargues-Fontaine curve is the scheme $\text{Proj}(\bigoplus_{n \geq 0} B^{\varphi=p^n})$.

To get a feeling for what is going on, let’s try to write down some elements of the graded ring $\bigoplus_{n \in \mathbb{Z}} B^{\varphi=p^n}$. Suppose that f is an element of B which admits a convergent Teichmüller expansion

$$f = \sum_{n \in \mathbb{Z}} [c_n]p^n,$$

so that

$$\lim_{n \to \infty} |c_n|^{1/n} = 1 \quad \lim_{n \to -\infty} |c_{-n}|^{1/n} = 0.$$

In this case, the elements $p^k f$ and $\varphi(f)$ also admits convergent Teichmüller expansions

$$p^k f = \sum_{n \in \mathbb{Z}} [c_n]p^{n+k} = \sum_{n \in \mathbb{Z}} [c_{n-k}]p^n,$$

$$\varphi(f) = \sum_{n \in \mathbb{Z}} [c_n^p]p^n.$$

Consequently, to satisfy the equation $\varphi(f) = p^k f$, it is sufficient (but perhaps not necessary) to have a termwise equality of Teichmüller expansions $c_{n-k} = c_n^p$.

Example 10. Suppose that \(k < 0 \). Then, for each \(n \in \mathbb{Z} \), the sequence

\[
 c_{n+k} = c_n^{1/p}, \quad c_{n+2k} = c_n^{1/p^2}, \quad c_{n+3k} = c_n^{1/p^3}, \quad \ldots
\]
is required to converge to zero. It follows that \(c_n = 0 \) for all \(n \). In other words, there are no “obvious” nonzero elements of \(B^e=p^k \) for \(k < 0 \). (We will see in Lecture 11 that there are no nonzero elements at all: that is, the ring \(\bigoplus_{n \in \mathbb{Z}} B^e=p^k \) is nonnegatively graded.)

Example 11. Suppose that \(k = 0 \). In this case, for a Teichmüller expansion \(\sum_{n \in \mathbb{Z}} [c_n]p^n \) to represent an element of \(B^e=p^k \), it is sufficient to have \(c_n = c_n^p \) for all \(n \): that is, each coefficient belongs to the subfield \(F_p \subseteq C^p \). In this case, the convergence condition on the coefficients \(c_n \) just demands that \(c_n = 0 \) for \(n \ll 0 \). These are exactly the Teichmüller expansions of elements of \(Q_p = W(F_p)[\frac{1}{p}] \). We therefore obtain a map \(Q_p \to B^e=p^0 \). We will see later that this map is an isomorphism.

Example 12. Suppose that \(k > 0 \). In this case, the condition \(c_{n-k} = c_n^p \) shows that the entire sequence is determined by a finite number of terms \(c_0, c_1, \ldots, c_{k-1} \). Moreover, for the Teichmüller expansion to converge, each of these coefficients must belong to \(m_C^e \). Via this procedure, we can write down a large number of elements of \(B^e=p^k \) (beware that it is not clear if these elements are distinct, or if all elements of \(B^e=p^k \) can be obtained in this way).

Example 13. In the case \(k = 1 \), we see that every element \(c \in m_C^e \) determines an element of \(B^e=p^k \), given by the formula \(\sum_{n \in \mathbb{Z}} [c_n^{1/p^n}]p^n \). We will study these elements in the next lecture.

Remark 14. Note that every element of the ring \(A_{\text{inf}}[\frac{1}{p}, \frac{1}{\pi}] \) admits a unique Teichmüller expansion \(\sum_{n \gg -\infty} [c_n]p^n \), and therefore belongs to \(A_{\text{inf}}[\frac{1}{p}, \frac{1}{\pi}]^{e=p^k} \) if and only if \(c_{n-k} = c_n^p \) for all \(n \). If \(k \neq 0 \), the vanishing of \(c_n \) for \(n \ll 0 \) implies the vanishing of \(c_n \) all \(n \). In other words, the graded ring

\[
 \bigoplus_n A_{\text{inf}}[\frac{1}{p}, \frac{1}{\pi}]^{e=p^n}
\]
is just the field \(Q_p \). To obtain interesting elements of the ring \(\bigoplus_{n \in \mathbb{Z}} B^e=p^n \), it is important to complete the vector space \(A_{\text{inf}}[\frac{1}{p}, \frac{1}{\pi}] \) by allowing “essential singularities at \(p = 0 \)."