
Lecture 26-Isocrystals

December 6, 2018

Throughout this lecture, we fix an algebraically closed perfectoid field C[ of characteristic p and let

X = Proj(
⊕
n≥0

Bϕ=p
n

)

be the Fargues-Fontaine curve. In Lecture 21, we explained how to construct a semistable vector bundle
E on X of any rank n > 0 and any degree m (hence of any rational slope m

n ). Namely, one can choose a
degree n extension E ⊃ Qp and a line bundle L of degree m on the curve XE ; we can then take E = ρ∗ L,
where ρ : XE → X is the projection map. Over the last few lectures, we proved that this construction is
independent of the choice of L (since a line bundle on XE is determined up to isomorphism by its degree).
Our next goal is to show that it is also independent of E.

As in the previous lecture, let us write Qp ⊆ E0 ⊆ E where E0 is an unramified extension of Qp of degree

d and E is a totally ramified extension of E0 having degree e (so that n = d · e). Then E0 = W (Fpd)[ 1p ],

and we assume that we have fixed an embedding Fpd ↪→ C[. Let π ∈ OE be a uniformizer. Let U ⊆ X
be an affine open subset given by the complement of the vanishing locus of some homogeneous element
t ∈

⊕
n>0B

ϕ=pn . Then the vector bundle E constructed above can be given by the formula

E(U) = (B[
1

t
]⊗E0

E)ϕ
d=πm

.

We now describe a variant of this construction.

Definition 1. Let k be a perfect field of characteristic p, let W (k) denote the ring of Witt vectors of k, and
set K = W (k)[ 1p ] be its fraction field. Then the Frobenius automorphism of k induces an automorphism of
K, which we will denote by ϕK .

An isocrystal (over k) is a finite-dimensional vector space V over K equipped with a Frobenius-semilinear
automorphism: that is, an isomorphism of abelian groups ϕV : V → V satisfying ϕV (λv) = ϕK(λ)ϕV (v) for
λ ∈ K and v ∈ V .

Remark 2. Our terminology is not standard; many authors use the term F -isocrystal or Frobenius isocrystal
to refer to the notion of isocrystal that we just defined.

Example 3. Let X be a smooth projective algebraic variety over a perfect field k. Then the (rationalized)
crystalline cohomology groups Hm

crys(X;W (k))[ 1p ] have a Frobenius semilinear automorphism induced by the
absolute Frobenius map ϕ : X → X, and can therefore be regarded as isocrystals over k.

Example 4. Let k be a perfect field and let T (u, v) ∈ k[[u, v]] be a formal group law over k which is not
isomorphic to the additive group. Then the associated formal group GT is determined (up to isomorphism)
by its Dieudonné module D(GF ): this is a free W (k)-module of finite rank equipped with a Frobenius
semilinear endomorphism F and an inverse-Frobenius semilinear endomorphism V satisfying FV = V F = p.
The rationalized Dieudonné module D(GF )[ 1p ] is then an isocrystal over k (the Frobenius endomorphism F

has inverse given by V
p ).
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Example 5. Let m and n be relatively prime integers, with n > 0, and let Vm
n

= Kn. Then we can equip
V with the structure of an isocrystal by defining

ϕVm
n

(x1, x2, . . . , xn) = (ϕK(x2), ϕK(x3), · · · , ϕK(xn), pmϕK(x1)).

This isocrystal is characterized by a universal property: giving a map from V into another isocrystal W
(which is K-linear and Frobenius equivariant) is equivalent to giving an element of the eigenspace Wϕn=pm .

Theorem 6 (Dieudonné-Manin Classification). Let k be an algebraically closed field of characteristic p.
Then:

• The category of isocrystals over k is semisimple. That is, every isocrystal over k can be written as a
direct sum of simple objects.

• The simple isocrystals over k are exactly those of the form Vm
n

, where m and n are relatively prime
integer with n > 0.

Construction 7. Let k = Fp be the algebraic closure of Fp in the field C[. Then the inclusion Fp ↪→ C[

extends to a map W (Fp)→ Ainf , hence to a map

K = W (Fp)[
1

p
]→ B.

Let V be an isocrystal over K. We let EV denote the quasi-coherent sheaf on X = Proj(
⊕

n≥0B
ϕ=pn)

associated to the graded module ⊕
n≥0

HomK(V,B)ϕ=p
n

.

In other words, if U is an affine open subset of X given by the complement of the vanishing locus of some
homogeneous element t ∈

⊕
n>0B

ϕ=pn , then we have

EV (U) = { φ-equivariant K-linear maps V → B[
1

t
]}.

In the special case where V = Vm
n

is the isocrystal of Example 5, we will denote the quasi-coherent sheaf
EV by O(mn ).

Example 8. Fix relatively prime integers m and n with n > 0. Let U ⊂ X be the affine open subset given
by the vanishing locus of some homogeneous element t ∈

⊕
n>0B

ϕ=pn . We then have

O(
m

n
)(U) ' (B[

1

t
])ϕ

n=pm

= (ρ∗ OXE
(m))(U)

where E is the unramified extension of Qp of degree n and ρ : XE → X is the projection map. It follows
that O(mn ) is a semistable vector bundle of degree m and rank n.

Remark 9. It follows from Example 8 and the Dieudonné-Manin classification that, for every isocrystal V
over Fp, the quasi-coherent sheaf EV of Construction 7 is a vector bundle on X (whose rank is equal to the
dimension of V as a vector space over K).

Example 10. Let E be a totally ramified extension of Qp with uniformizer π ∈ OE , let E∨ denote the dual
of E as a Qp-vector space (which we can identify with E via the trace pairing), and regard V = E∨ ⊗Qp

K
as an isocrystal via the formula

ϕV (x⊗ y) = πmx⊗ ϕK(y).
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Unwinding the definitions, we have

EV (U) = HomK(V,B[
1

t
])ϕ=1 = (E ⊗Qp

B[
1

t
])ϕ=π

m

= ρ∗ OXE
(m)

where ρ : XE → X is the projection map.

Exercise 11. Let E be a finite extension of Qp (not necessarily unramified or totally ramified), let ρ :
XE → X be the projection map, and consider the vector bundle ρ∗ OXE

(m) (which is semistable of rank n
and degree m).

• Show that ρ∗ OXE
(m) can be written as EV , where V is a suitable isocrystal over Fp (hint: take

V = E∨ ⊗Qp
K, endowed with a suitable Frobenius action which depends on m).

• If m is relatively prime to n, show that V is isomorphic to Vm
n

(hint: use the Dieudonné-Manin
classification).

• Conclude that if m and n are relatively prime, then ρ∗ OXE
(m) is isomorphic to the vector bundle

O(mn ) of Construction 7.

We can now state the classification theorem for semistable vector bundles on X in a more precise form.

Definition 12. Let µ be a rational number, which we write as µ = m
n where m and n are relatively prime

and n > 0. We say that an isocrystal V over Fp is isoclinic of slope µ if it is isomorphic to a direct sum of
copies of the isocrystal Vm

n
of Example 5.

Example 13. An isocrystal over Fp is isoclinic of slope 0 if and only if it is isomorphic to a sum of copies
of K (with the usual Frobenius action). In this case, the vector bundle EV is a sum of copies of OX : that is,
it is a trivial vector bundle on X.

Remark 14. By the Dieudonné-Manin classification, every isocrystal V over Fp splits uniquely as a direct
sum of isoclinic isocrystals (of different slopes).

Theorem 15. (1) For every vector bundle E on X, the Harder-Narasimhan filtration of E splits: that is,
E can be written (non-uniquely) as a sum of semistable vector bundles.

(2) For every rational number µ, the construction

V 7→ EV

induces an equivalence of categories

{Isoclinic isocrystals of slope µ}op → {Semistable vector bundles on X of slope µ}.

Corollary 16. Every vector bundle E on X can be obtained by applying Construction 7 to some isocrystal
V over Fp.

Warning 17. The category of vector bundles on X is not equivalent to the category of isocrystals over Fp.
The construction V 7→ EV is fully faithful when restricted to isoclinic isocrystals of some fixed slope µ, but
is not fully faithful in general. For example, let (K,ϕK) denote the field K regarded as an isocrystal via its
usual Frobenius automorphism, and let (K, pϕK) denote the field K regarded as an isocrystal via the map

x 7→ ϕK(x)
p . Then

E(K,ϕK) ' OX E(K,pϕK) ' OX(1).

There are no maps from (K, pϕK) to (K,ϕK) in the category of isocrystals, but there are plenty of maps
from OX to OX(1) in the category of vector bundles on X.

In the next lecture, we will use the following consequence of Theorem 15.

Corollary 18. Let E be a vector bundle on X which is semistable of slope 0. Then E is trivial (that is, it
is a sum of copies of OX).
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