Lecture 26-Isocrystals

December 6, 2018

Throughout this lecture, we fix an algebraically closed perfectoid field C^{\flat} of characteristic p and let

$$X=\operatorname{Proj}(\bigoplus_{n\geq 0}B^{\varphi=p^n})$$

be the Fargues-Fontaine curve. In Lecture 21, we explained how to construct a semistable vector bundle \mathcal{E} on X of any rank n>0 and any degree m (hence of any rational slope $\frac{m}{n}$). Namely, one can choose a degree n extension $E\supset \mathbf{Q}_p$ and a line bundle \mathcal{L} of degree m on the curve X_E ; we can then take $\mathcal{E}=\rho_*\mathcal{L}$, where $\rho:X_E\to X$ is the projection map. Over the last few lectures, we proved that this construction is independent of the choice of \mathcal{L} (since a line bundle on X_E is determined up to isomorphism by its degree). Our next goal is to show that it is also independent of E.

As in the previous lecture, let us write $\mathbf{Q}_p \subseteq E_0 \subseteq E$ where E_0 is an unramified extension of \mathbf{Q}_p of degree d and E is a totally ramified extension of E_0 having degree e (so that $n = d \cdot e$). Then $E_0 = W(\mathbf{F}_{p^d})[\frac{1}{p}]$, and we assume that we have fixed an embedding $\mathbf{F}_{p^d} \hookrightarrow C^{\flat}$. Let $\pi \in \mathcal{O}_E$ be a uniformizer. Let $U \subseteq X$ be an affine open subset given by the complement of the vanishing locus of some homogeneous element $t \in \bigoplus_{n \geq 0} B^{\varphi = p^n}$. Then the vector bundle \mathcal{E} constructed above can be given by the formula

$$\mathcal{E}(U) = (B[\frac{1}{t}] \otimes_{E_0} E)^{\varphi^d = \pi^m}.$$

We now describe a variant of this construction.

Definition 1. Let k be a perfect field of characteristic p, let W(k) denote the ring of Witt vectors of k, and set $K = W(k)[\frac{1}{p}]$ be its fraction field. Then the Frobenius automorphism of k induces an automorphism of K, which we will denote by φ_K .

An isocrystal (over k) is a finite-dimensional vector space V over K equipped with a Frobenius-semilinear automorphism: that is, an isomorphism of abelian groups $\varphi_V: V \to V$ satisfying $\varphi_V(\lambda v) = \varphi_K(\lambda)\varphi_V(v)$ for $\lambda \in K$ and $v \in V$.

Remark 2. Our terminology is not standard; many authors use the term F-isocrystal or Frobenius isocrystal to refer to the notion of isocrystal that we just defined.

Example 3. Let X be a smooth projective algebraic variety over a perfect field k. Then the (rationalized) crystalline cohomology groups $\mathrm{H}^m_{\mathrm{crys}}(X;W(k))[\frac{1}{p}]$ have a Frobenius semilinear automorphism induced by the absolute Frobenius map $\varphi:X\to X$, and can therefore be regarded as isocrystals over k.

Example 4. Let k be a perfect field and let $T(u,v) \in k[[u,v]]$ be a formal group law over k which is not isomorphic to the additive group. Then the associated formal group \mathbf{G}_T is determined (up to isomorphism) by its $Dieudonn\acute{e}\ module\ \mathbf{D}(\mathbf{G}_F)$: this is a free W(k)-module of finite rank equipped with a Frobenius semilinear endomorphism F and an inverse-Frobenius semilinear endomorphism V satisfying FV = VF = p. The rationalized Dieudonn\'e module $\mathbf{D}(\mathbf{G}_F)[\frac{1}{p}]$ is then an isocrystal over k (the Frobenius endomorphism F has inverse given by $\frac{V}{p}$).

Example 5. Let m and n be relatively prime integers, with n > 0, and let $V_{\frac{m}{n}} = K^n$. Then we can equip V with the structure of an isocrystal by defining

$$\varphi_{V_{\frac{m}{n}}}(x_1, x_2, \dots, x_n) = (\varphi_K(x_2), \varphi_K(x_3), \dots, \varphi_K(x_n), p^m \varphi_K(x_1)).$$

This isocrystal is characterized by a universal property: giving a map from V into another isocrystal W (which is K-linear and Frobenius equivariant) is equivalent to giving an element of the eigenspace $W^{\varphi^n=p^m}$.

Theorem 6 (Dieudonné-Manin Classification). Let k be an algebraically closed field of characteristic p. Then:

- The category of isocrystals over k is semisimple. That is, every isocrystal over k can be written as a direct sum of simple objects.
- The simple isocrystals over k are exactly those of the form $V_{\frac{m}{n}}$, where m and n are relatively prime integer with n > 0.

Construction 7. Let $k = \overline{\mathbf{F}}_p$ be the algebraic closure of \mathbf{F}_p in the field C^{\flat} . Then the inclusion $\overline{\mathbf{F}}_p \hookrightarrow C^{\flat}$ extends to a map $W(\overline{\mathbf{F}}_p) \to \mathbf{A}_{\mathrm{inf}}$, hence to a map

$$K = W(\overline{\mathbf{F}}_p)[\frac{1}{p}] \to B.$$

Let V be an isocrystal over K. We let \mathcal{E}_V denote the quasi-coherent sheaf on $X = \operatorname{Proj}(\bigoplus_{n \geq 0} B^{\varphi = p^n})$ associated to the graded module

$$\bigoplus_{n>0} \operatorname{Hom}_K(V,B)^{\varphi=p^n}.$$

In other words, if U is an affine open subset of X given by the complement of the vanishing locus of some homogeneous element $t \in \bigoplus_{n>0} B^{\varphi=p^n}$, then we have

$$\mathcal{E}_V(U) = \{ \phi \text{-equivariant } K \text{-linear maps } V \to B[\frac{1}{t}] \}.$$

In the special case where $V = V_{\frac{m}{n}}$ is the isocrystal of Example 5, we will denote the quasi-coherent sheaf \mathcal{E}_V by $\mathcal{O}(\frac{m}{n})$.

Example 8. Fix relatively prime integers m and n with n > 0. Let $U \subset X$ be the affine open subset given by the vanishing locus of some homogeneous element $t \in \bigoplus_{n>0} B^{\varphi=p^n}$. We then have

$$\mathcal{O}(\frac{m}{n})(U) \simeq (B[\frac{1}{t}])^{\varphi^n = p^m}
= (\rho_* \mathcal{O}_{X_E}(m))(U)$$

where E is the unramified extension of \mathbf{Q}_p of degree n and $\rho: X_E \to X$ is the projection map. It follows that $\mathcal{O}(\frac{m}{n})$ is a semistable vector bundle of degree m and rank n.

Remark 9. It follows from Example 8 and the Dieudonné-Manin classification that, for every isocrystal V over $\overline{\mathbf{F}}_p$, the quasi-coherent sheaf \mathcal{E}_V of Construction 7 is a vector bundle on X (whose rank is equal to the dimension of V as a vector space over K).

Example 10. Let E be a totally ramified extension of \mathbf{Q}_p with uniformizer $\pi \in \mathcal{O}_E$, let E^{\vee} denote the dual of E as a \mathbf{Q}_p -vector space (which we can identify with E via the trace pairing), and regard $V = E^{\vee} \otimes_{\mathbf{Q}_p} K$ as an isocrystal via the formula

$$\varphi_V(x \otimes y) = \pi^m x \otimes \varphi_K(y).$$

Unwinding the definitions, we have

$$\mathcal{E}_V(U) = \operatorname{Hom}_K(V, B[\frac{1}{t}])^{\varphi = 1} = (E \otimes_{\mathbf{Q}_p} B[\frac{1}{t}])^{\varphi = \pi^m} = \rho_* \, \mathcal{O}_{X_E}(m)$$

where $\rho: X_E \to X$ is the projection map.

Exercise 11. Let E be a finite extension of \mathbf{Q}_p (not necessarily unramified or totally ramified), let $\rho: X_E \to X$ be the projection map, and consider the vector bundle $\rho_* \mathcal{O}_{X_E}(m)$ (which is semistable of rank n and degree m).

- Show that $\rho_* \mathcal{O}_{X_E}(m)$ can be written as \mathcal{E}_V , where V is a suitable isocrystal over $\overline{\mathbf{F}}_p$ (hint: take $V = E^{\vee} \otimes_{\mathbf{Q}_p} K$, endowed with a suitable Frobenius action which depends on m).
- If m is relatively prime to n, show that V is isomorphic to $V_{\frac{m}{n}}$ (hint: use the Dieudonné-Manin classification).
- Conclude that if m and n are relatively prime, then $\rho_* \mathcal{O}_{X_E}(m)$ is isomorphic to the vector bundle $\mathcal{O}(\frac{m}{n})$ of Construction 7.

We can now state the classification theorem for semistable vector bundles on X in a more precise form.

Definition 12. Let μ be a rational number, which we write as $\mu = \frac{m}{n}$ where m and n are relatively prime and n > 0. We say that an isocrystal V over $\overline{\mathbf{F}}_p$ is *isoclinic of slope* μ if it is isomorphic to a direct sum of copies of the isocrystal $V_{\frac{m}{n}}$ of Example 5.

Example 13. An isocrystal over $\overline{\mathbf{F}}_p$ is isoclinic of slope 0 if and only if it is isomorphic to a sum of copies of K (with the usual Frobenius action). In this case, the vector bundle \mathcal{E}_V is a sum of copies of \mathcal{O}_X : that is, it is a trivial vector bundle on X.

Remark 14. By the Dieudonné-Manin classification, every isocrystal V over $\overline{\mathbf{F}}_p$ splits uniquely as a direct sum of isoclinic isocrystals (of different slopes).

Theorem 15. (1) For every vector bundle \mathcal{E} on X, the Harder-Narasimhan filtration of \mathcal{E} splits: that is, \mathcal{E} can be written (non-uniquely) as a sum of semistable vector bundles.

(2) For every rational number μ , the construction

$$V \mapsto \mathcal{E}_V$$

induces an equivalence of categories

{Isoclinic isocrystals of slope μ } $^{\text{op}} \rightarrow \{Semistable vector bundles on X of slope <math>\mu$ }.

Corollary 16. Every vector bundle \mathcal{E} on X can be obtained by applying Construction 7 to some isocrystal V over $\overline{\mathbf{F}}_p$.

Warning 17. The category of vector bundles on X is not equivalent to the category of isocrystals over $\overline{\mathbf{F}_p}$. The construction $V \mapsto \mathcal{E}_V$ is fully faithful when restricted to isoclinic isocrystals of some fixed slope μ , but is not fully faithful in general. For example, let (K, φ_K) denote the field K regarded as an isocrystal via its usual Frobenius automorphism, and let $(K, p\varphi_K)$ denote the field K regarded as an isocrystal via the map $x \mapsto \frac{\varphi_K(x)}{p}$. Then

$$\mathcal{E}_{(K,\varphi_K)} \simeq \mathcal{O}_X \qquad \mathcal{E}_{(K,p\varphi_K)} \simeq \mathcal{O}_X(1).$$

There are no maps from $(K, p\varphi_K)$ to (K, φ_K) in the category of isocrystals, but there are plenty of maps from \mathcal{O}_X to $\mathcal{O}_X(1)$ in the category of vector bundles on X.

In the next lecture, we will use the following consequence of Theorem 15.

Corollary 18. Let \mathcal{E} be a vector bundle on X which is semistable of slope 0. Then \mathcal{E} is trivial (that is, it is a sum of copies of \mathcal{O}_X).