Lecture 17: Algebraic Closure of Untilts

November 9, 2018

Our goal in this lecture is to prove the following result, which we have used several times without proof:

Theorem 1. Let K be a perfectoid field. If the tilt K^\flat is algebraically closed, then K is algebraically closed.

We will prove Theorem 1 using an approximation argument which is similar to (but much easier than) the strategy of the last two lectures. The key point is to prove the following:

Proposition 2. Let K be a perfectoid field such that the tilt K^\flat is algebraically closed, and let $f(x) = x^n + a_1 x^{n-1} + \cdots + a_n \in K[x]$ be a non-constant irreducible polynomial. Let y be an element of K. Then there exists an element $y' \in K$ satisfying

$$|y - y'|_K \leq |f(y)|_K^{1/n} \quad |f(y')|_K \leq |pf(y)|_K.$$

Proof of Theorem 1 from Proposition 2. Let K be a perfectoid field such that K^\flat is algebraically closed. We assume that K has characteristic zero (otherwise there is nothing to prove). We wish to show that every non-constant polynomial $f(x) \in K[x]$ has a root in K. Without loss of generality, we may assume that $f(x)$ is monic and irreducible of degree $n > 0$. Replacing $f(x)$ by $p^nf(x)$ for $d > 0$, we may assume that the coefficients of f belong to \mathcal{O}_K. Setting $y_0 = 0$, it follows that $f(y_0) \in \mathcal{O}_K$, or equivalently that $|f(y_0)|_K \leq |p|^n|_K$. Applying Proposition 2, we deduce that there exists $y_1 \in K$ satisfying $|y_0 - y_1|_K \leq |f(y_0)|_K^{1/n} \leq |p|^n|_K$ and $|f(y_1)|_K \leq |pf(y_0)|_K \leq |p|^n|_K$. Applying Proposition 2 to the element y_1, we obtain an element $y_2 \in \mathcal{O}_K$ satisfying $|y_1 - y_2|_K \leq |f(y_1)|_K^{1/n} \leq |p|^n|_K$ and $|f(y_2)|_K \leq |pf(y_1)|_K \leq |p|^2|_K$. Proceeding in this way, we obtain a sequence of elements $y_0 = 0, y_1, y_2, \ldots \in K$ satisfying

$$|y_m - y_{m+1}|_K \leq |p|^m|_K^{1/n} \quad |f(y_m)|_K \leq |p|^m|_K.$$

It follows from the first inequality (and the completeness of K) that the sequence $\{y_m\}$ converges to an element $y \in K$. Then

$$|f(y)|_K = \lim_{m \to \infty} |f(y_m)|_K = 0,$$

so that y is a root of f. \qed

For the proof of Proposition 2, we will use the following result from the theory of valued fields:

Theorem 3. Let K be a field which is complete with respect to a non-archimedean absolute value $|\cdot|_K$, and let L be a finite extension field of K. Then $|\cdot|_K$ can be extended uniquely to an absolute value on the field $|\cdot|_L$.

Remark 4. In the situation of Theorem 3, the absolute value $|\cdot|_L$ is given concretely by the formula

$$|x|_L = |N_{L/K}(x)|^{1/\deg(L/K)}_K,$$
where \(N_{L/K} : L \rightarrow K \) denotes the norm map and \(\deg(L/K) \) denotes the degree of the field extension \(K \hookrightarrow L \). To prove this, we are free to enlarge \(L \) and may thereby assume that \(L \) is a normal extension of \(K \). In this case, we can write

\[
N_{L/K}(x) = \prod_{\gamma \in \text{Gal}(L/K)} \gamma(x)^{d_0},
\]

where \(d_0 \) is the inseparable degree of \(L \) over \(K \). We therefore have

\[
|N_{L/K}(x)|_{K}^{1/\deg(L/K)} = \prod_{\gamma \in \text{Gal}(L/K)} |\gamma(x)|_{L}^{1/|\text{Gal}(L/K)|}.
\]

The desired identity then follows from formula \(|x|_{L} = |\gamma(x)|_{L} \) for \(\gamma \in \text{Gal}(L/K) \) (by virtue of the uniqueness asserted in Theorem 3).

Warning 5. In the situation of Theorem 3, one cannot drop the assumption that \(K \) is complete. If \(K \) is not complete, then the norm \(| \bullet |_{K} \) can generally be extended in many different ways to extension fields \(L \) over \(K \), and the formula \(|x|_{L} = |N_{L/K}(x)|_{K}^{1/\deg(L/K)} \) of Remark 4 need not define an absolute value on \(L \).

Corollary 6. Let \(L \) be a field which is complete with respect to a non-archimedean absolute value \(| \bullet |_{L} \), and let \(f(x) = x^n + a_1 x^{n-1} + \cdots + a_n \) be an irreducible polynomial with coefficients in \(K \). If \(a_n \) belongs to \(\mathcal{O}_K \), then each \(a_i \) belongs to \(\mathcal{O}_L \).

Proof. Let \(L \) be a finite normal extension of \(K \) over which the polynomial \(f(x) \) factors as a product \(f(x) = (x - r_1) \cdot (x - r_2) \cdots (x - r_n) \). Equip \(L \) with the absolute value \(| \bullet |_{L} \) of Theorem 3. Since the roots \(r_i \) are conjugate by the action of the Galois group \(\text{Gal}(L/K) \), they must all have the same absolute value; that is, there exists a real number \(\lambda \) satisfying \(|r_i|_{L} = \lambda \) for all \(i \). Then \(a_n = (-1)^n \prod_{i=1}^{n} r_i \). Consequently, if \(a_n \) belongs to \(\mathcal{O}_K \), then each \(r_i \) belongs to \(\mathcal{O}_L \). It follows that the polynomial

\[
f(x) = \prod_{i=1}^{n} (x - r_i)
\]

has coefficients in \(\mathcal{O}_L \), so that each \(a_i \) belongs to \(\mathcal{O}_L \cap K = \mathcal{O}_K \) as desired. \(\square \)

Proof of Proposition 2. Let \(K \) be a perfectoid field such that the tilt \(K^b \) is algebraically closed, and let \(f(x) = x^n + a_1 x^{n-1} + \cdots + a_n \in K[x] \) be a non-constant irreducible polynomial. We wish to show that, for each element \(y \in K \), we can find another point \(y' \in K \) satisfying

\[
|y - y'|_K \leq |f(y)|_K^{1/n} \quad |f(y')|_K \leq |pf(y)|_K.
\]

Replacing \(f(x) \) by the polynomial \(f(x + y) \), we can reduce to the case \(y = 0 \); in this case, we wish to show that there exists \(y' \in K \) satisfying

\[
|y'|_K \leq |f(0)|_K^{1/n} \quad |f(y')|_K \leq |pf(0)|_K.
\]

Let us assume that \(f(0) \neq 0 \) (otherwise, we can take \(y' = 0 \) and there is nothing to prove). Note that the value group of \(K \) is the same as the value group of \(K^b \), and is therefore divisible (since \(K^b \) is algebraically closed). We can therefore choose an element \(c \in K \) satisfying \(|c|_K = |f(0)|_K^{1/n} \). In this case, we can rewrite the inequalities above as

\[
\left| \frac{y'}{c} \right|_K \leq 1 \quad \frac{1}{cn} f\left(c \cdot \frac{y'}{c}\right)|_K \leq |p|_K.
\]

Replacing \(f(x) \) by the monic polynomial \(\frac{1}{c^n} f(cx) \) (and \(y' \) by \(\frac{y'}{c} \)), we can reduce to the case where \(|f(0)|_K = 1 \). In this case, we wish to show that there exists \(y' \in K \) satisfying

\[
|y'|_K \leq 1 \quad |f(y')|_K \leq |p|_K.
\]

2
Write \(f(x) = x^n + a_1 x^{n-1} + \cdots + a_n \). Our assumption that \(|f(0)|_K = 1\) guarantees that \(a_n\) belongs to \(\mathcal{O}_K\). Applying Corollary 6, we see that each of the coefficients \(a_i\) belongs to \(\mathcal{O}_K\). We can therefore choose elements \(b_i \in \mathcal{O}_K^\circ\) satisfying \(b_i^2 \equiv a_i \pmod{p}\). Set

\[
g(x) = x^n + b_1 x^{n-1} + b_2 x^{n-2} + \cdots + b_n \in K^\circ[x].
\]

Since \(K^\circ\) is algebraically closed, the polynomial \(g(x)\) factors as a product

\[
g(x) = (x - r_1) \cdots (x - r_n)
\]

for some \(r_1, r_2, \ldots, r_n \in K^\circ\). Note that we have

\[
|r_1|_{K^\circ} \cdots |r_n|_{K^\circ} = |(-1)^n b_n|_{K^\circ} \leq 1.
\]

It follows that there must exist \(r \in \{r_1, \ldots, r_n\}\) satisfying \(|r|_{K^\circ} \leq 1\), so that \(r\) belongs to \(\mathcal{O}_K^\circ\). Setting \(y' = r^\#\), we have \(|y'|_K = |r|_{K^\circ} \leq 1\), and

\[
f(y') = y'^n + a_1 y'^{n-1} + \cdots + a_n
\]

\[
\equiv y^n + b_1^\# y^{n-1} + \cdots + b_n^\# \pmod{p}
\]

\[
= (r^\#)^n + b_1^\# (r^\#)^{n-1} + \cdots + b_n^\#
\]

\[
\equiv (g(r))^\# \pmod{p}
\]

\[
= 0
\]

so that \(|f(y')|_K \leq |p|_K\), as desired. \(\square\)