Lecture 10: Structure of the Fargues-Fontaine Curve

October 29, 2018

Throughout this lecture, we fix an algebraically closed perfectoid field C of characteristic p, with valuation ring O_C. Let Y denote the set of all isomorphism classes of characteristic zero untilts $y = (K, \iota)$ of C. To each nonzero element f of the ring B, we associate the “divisor”

$$
\sum_{y \in Y} \text{ord}_y(f) \cdot y
$$

(which is generally an infinite sum, though “locally” finite). We recall three results from the previous lecture (which we have not yet proved):

Theorem 1.

1. Every nonzero element $f \in B$, has finite order of vanishing $\text{ord}_y(f)$ at each point $y \in Y$.
2. Another nonzero element $g \in B$ is divisible by f if and only if $\text{Div}(f) \leq \text{Div}(g)$: that is, $\text{ord}_y(f) \leq \text{ord}_y(g)$ for each $y \in Y$.

Theorem 2.

For $n < 0$, the eigenspace B^{p^n} vanishes.

Theorem 3.

Every untilt of C is algebraically closed.

Let us now collect some consequences.

Corollary 4.

The ring B^{p^1} is a field.

In fact, the field B^{p^1} can be identified with Q_p^∞: we stated this without proof in the previous lecture, but will not need it yet.

Proof of Corollary 4.

Let f be a nonzero element of B^{p^1}; we wish to prove that f is invertible in B (in which case it is clear that the inverse f^{-1} also belongs to B^{p^1}. By virtue of Theorem 1, it will suffice to show that the divisor $\text{Div}(f)$ vanishes. Since f is fixed by the Frobenius, the divisor $\text{Div}(f)$ is likewise fixed by the Frobenius. Consequently, if $\text{Div}(f) \neq 0$, then we can write $\text{Div}(f) \geq \sum_{n \in \mathbb{Z}} \varphi^n(y)$ for some $y = (K, \iota) \in Y$. It follows from Theorem 3 that K contains a copy of Q_p^{∞}, so that we can write $\sum_{n \in \mathbb{Z}} \varphi^n(y) = \log([\epsilon])$ for some $\epsilon \in 1 + m_C$. Applying Theorem 1, we can write $f = g \cdot \log([\epsilon])$. It follows that $g \in B^{p^1} = \{0\}$, contradicting our assumption that $f \neq 0$.

Corollary 5.

For $n \geq 0$, every nonzero element $f \in B^{p^n}$ factors as a product $\lambda \log([\epsilon_1]) \cdots \log([\epsilon_n])$ for some $\lambda \in B^{p^1}$ and $\epsilon_1, \ldots, \epsilon_n \in 1 + m_C$. Moreover, the factors are uniquely determined up reordering and multiplication by elements of Q_p^∞.

Proof. We prove existence by induction on n. If $n = 0$, there is nothing to prove. We will therefore assume that $n > 0$. Note that if $\text{Div}(f) = 0$, then f is invertible (Theorem 1) and the inverse f^{-1} belongs to $B^{p^{-n}}$, contradicting Theorem 2. As in the proof of Corollary 4, we learn that f is divisible by $\log([\epsilon])$ for some
equivalently that $p \in B^{e=p^n-1}$. It follows from our inductive hypothesis that we can write $g = \lambda \log([\epsilon_1]) \cdots \log([\epsilon_n])$ for some $\lambda \in B^{e=1}$ and $\epsilon_1, \ldots, \epsilon_n \in 1 + m_C$, so that $f = \lambda \log([\epsilon_1]) \cdots \log([\epsilon_n-1]) \cdot \log([\epsilon_1])$.

To prove uniqueness, it will suffice to show for $1 \neq \epsilon \in 1 + m_C$, the element $\log([\epsilon])$ is a prime element of the graded ring $\bigoplus_{n \geq 0} B^{e=p^n}$: that is, if $\log([\epsilon])$ divides a product $f \cdot g$, then either $\log([\epsilon])$ divides f or $\log([\epsilon])$ divides g. Since $\log([\epsilon])$ is homogeneous, it suffices to check this in the case where f and g are homogeneous: that is, we may assume that $f \in B^{e=p^m}$ and $g \in B^{e=p^n}$. Choose a point $y \in Y$ belonging to the vanishing locus of $\log([\epsilon])$. Then either f or g must vanish at the point y; without loss of generality, we may assume that $f(y) = 0$. The equation $\varphi(f) = p^m f$ guarantees that the divisor $\text{Div}(f)$ is Frobenius-invariant, so we must have $\text{Div}(f) \geq \sum_{n \in \mathbb{Z}} \varphi^n(y) = \text{Div}(\log([\epsilon]))$. Applying Theorem 1, we conclude that $\log([\epsilon])$ divides f.

Let P denote the graded ring $\bigoplus_{n \geq 0} B^{e=p^n}$. Recall that the Fargues-Fontaine curve X_{FF} is defined to be the scheme $\text{Proj}(P)$. By definition, the points of X_{FF} (as a topological space) can be identified with homogeneous prime ideals $p \subseteq P$ which do not contain the “irrelevant” ideal $\bigoplus_{n>1} B^{e=p^n}$. Let us give two examples of such ideals:

- It follows from Theorem 1 that B is an integral domain. Consequently, the graded ring P is also an integral domain, so the zero ideal $(0) \subseteq P$ is prime. This prime ideal corresponds to the generic point of the Fargues-Fontaine curve X_{FF}.

- Let $(K, \iota) \in Y$ be a characteristic zero untilt of C^b, and choose an element $\epsilon \in 1 + m_C$, such that $\epsilon \neq 1$ and $\log([\epsilon])$ vanishes at K. It follows from the proof Corollary 5 that the principal ideal $(\log([\epsilon]))$ is prime, and therefore corresponds to a point of the Fargues-Fontaine curve that we will denote by x_K. Note that multiplying $\log([\epsilon])$ by a unit in Q_p does not change the principal ideal $(\log([\epsilon]))$.

Consequently, the point x_K depends only on the untilt K. Moreover, we have $x_K = x_{K'}$ if and only if K and K' belong to the same Frobenius orbit of Y.

We now show that these are the only points of the Fargues-Fontaine curve:

Proposition 6. Let x be a point of the Fargues-Fontaine curve X_{FF} which is not the generic point. Then we have $x = x_K$ for some point $(K, \iota) \in Y$. Moreover, the residue field of X_{FF} at the point x can be identified with K.

Proof. By construction, the scheme $X_{FF} = \text{Proj}(P)$ can be obtained by gluing together open affine subschemes of the form $P[1/f_1^{e=1}] = B[1/f_1^{e=1}]$, where f is a nonzero homogeneous element of P having positive degree. Let us suppose that x belongs to one of these open subschemes, and therefore corresponds to a nonzero prime ideal $p \subseteq B[1/f_1^{e=1}]$. Choose an element of p and write it as a fraction g/f for some element $g \in B^{e=p^n}$. It follows from Corollary 5 that, after scaling by a unit, we may assume that this element factors as a product $\log([\epsilon_1]) \cdots \log([\epsilon_m])$. Since p is prime, we may assume that it contains one of the factors, which we write as $\log([\epsilon])/f$. Let $y = (K, \iota) \in Y$ be a point at which $\log([\epsilon])$ vanishes. We claim that $x = x_K$, or equivalently that p is generated by $\log([\epsilon])/f$. To prove this (and the last claim of Proposition 6), it will suffice to show that the principal ideal $(\log([\epsilon])/f)$ is maximal, and that the quotient field

$$B[1/f_1^{e=1}]/(\log([\epsilon])/f)$$

can be identified with K. Since f does not vanish at K, we have a canonical ring homomorphism

$$\rho : B[1/f_1^{e=1}] \subseteq B[1/f_1] \to K.$$
we claim that \(\rho \) is a surjection whose kernel is generated by \(\frac{\log(|z|)}{f} \).

To prove surjectivity, we note that \(\rho \) is already surjective when restricted to \(\frac{1}{f} B^{x=p} \), since every element of \(K \) has the form \(\log(y^p) \) for some \(y \in 1 + m_C^p \) (see Lecture 9). To prove injectivity, we can use Corollary 5 to write every element of \(B[1/f]^{x=1} \) as a product \(\lambda \frac{\log(|w|)}{f} \cdots \frac{\log(|v|)}{f} \). If this point belongs to \(\ker(\rho) \), then some fraction \(\frac{\log(|z|)}{f} \) must be annihilated by \(\rho \). The desired result then follows from the observation that \(\frac{\log(|z|)}{f} \) and \(\frac{\log(|y|)}{f} \) differ by multiplication by some nonzero element of \(Q_p \).

Corollary 7. The construction \(y = (K, \iota) \mapsto x_K \) induces a bijection
\[Y/\varphi^Z \simeq \{ \text{Closed points of } X_{FF} \} \]

Corollary 8. The Fargues-Fontaine curve \(X_{FF} \) is a Dedekind scheme.

Proof. By definition, we can cover \(X_{FF} \) by open affine subschemes of the form \(R = B[1/f]^{x=1} \). The proof of Proposition 6 shows that every nonzero prime ideal of \(R \) is a maximal ideal generated by a single element. In particular, every prime ideal of \(R \) is finitely generated so, by a theorem of Cohen, \(R \) is Noetherian. Since every nonzero prime ideal in \(R \) is maximal, it has Krull dimension 1. Moreover, since every maximal ideal of \(R \) is generated by a single element, the ring \(R \) is regular. It follows that \(R \) is a Dedekind ring, so that \(X_{FF} \) is a Dedekind scheme. \[\square \]