
PROBLEM SET IV: PROBLEMS III, IV

PATRICK RYAN

Problem 1. Let f : Rn ! R be a measurable function. Show that for each ✏ > 0,
there exists a continuous function g : Rn ! R such that the set {x 2 Rn : f (x) 6= g (x)}
has measure < ✏.

Proof. In this problem we extend the case of Lusin’s Theorem for µ (E) < 1 to
the case where E = Rn

. Let ✏ > 0 be given and partition Rn into countably many
disjoint unit boxes Ei. We see that the measure of the closure of the Ei is finite, so
we apply Lusin’s Theorem for the finite measure case to obtain closed sets Ki ✓ Ei

and continuous functions gi : Rn ! R such that f = gi on Ki and

µ

�
Ei �Ki

�
<

✏

2i+1
.

Taking Fi ✓ Ei where
µ

�
Ei � Fi

�
<

✏

2i+1
,

define a continuous bump function �i : Ei ! R that is precisely one on Ei � Fi

and goes to zero on the boundaries of Ei. Clearly then, the function gi�i : Ei ! R
is continuous, since it is the product of two continuous functions. Consider the set

Si =
�
x 2 Ei : f (x) 6= gi (x)�i (x)

 
.

By construction, we have

µ (Si) < µ

�
Ei �Ki

�
+ µ

�
Ei � Fi

�
=

✏

2i
.

Since each gi�i is zero at the boundaries of the box over which it is defined, g : Rn !
R, given by g (x) = gi (x)�i (x) for x 2 Ei, is a continuous function. Furthermore,
g and f disagree on the union of the Si. Finally,

µ

 
[

i>0

Si

!

X

i>0

µ (Si) <
X

i>0

✏

2i
= ✏.

Thus, we conclude g is our desired function. ⇤
Problem 2. Let E ✓ Rm and E

0 ✓ Rn be measurable sets. Show that E ⇥ E

0

is a measurable subset of Rm+n
, and that µRm+n (E ⇥ E

0) = µRm (E)µRn (E0) .
Here µRk denotes the Lebesgue measure on Rk

. Hint: reduce to the case where
µRm (E) < 1 and study the function S 7! µRm+n (E ⇥ S).

Proof. First we will prove two brief lemmas: ⇤
Lemma. Let B1 ⇢ Rm

, B2 ⇢ Rn
be open boxes. Then, B1 ⇥ B2 is an open box in

Rm+n
and ���(B1 ⇥B2)

���
Rm+n

=
���(B1)

���
Rm

���(B2)
���
Rn

.
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Proof. The result should be clear by writing B1, B2, and B1 ⇥ B2 as products of
intervals. ⇤

Lemma. Let E ⇢ Rm
and E

0 ⇢ Rn
be such that µ

?
Rm (E) < 1, µ

?
Rn (E0) < 1.

Then

µ

?
Rm+n (E ⇥ E

0) = µ

?
Rm (E)µ?

Rn (E0) .

Proof. Let ✏ > 0. By definition, we can find open boxes {Qi}1i=1 and {Qj}1j=1 in
Rm and Rn respectively such that

E ⇢
1[

i=1

Qi, E

0 ⇢
1[

j=1

Qj

and

1X

i=1

|Qi| = µ

? (E) + ✏,

1X

j=1

|Qj | = µ

? (E0) + ✏.

We observe that E ⇥ E

0 ⇢ [1
i,j=1Qi ⇥Qj , and µ

? (E ⇥ E

0) is the infimum of
���

1[

i,j=1

Qi ⇥Qj

��� 
1X

i,j=1

|Qi ⇥Qj |

=

 1X

i=1

|Qi|
!0

@
1X

j=1

|Qj |

1

A = (µ? (E) + ✏) (µ? (E0) + ✏) ,

so we have our result.
Now, if some E ⇢ Rm is measurable, then we can write E = G��S,G�, S ⇢ Rm

,

and µ (S) = 0. Let E = G� � S,E

0 = G

0
� � S

0
. Then

E ⇥ E

0 = (G� � S)⇥ (G0
� � S

0) = (G� ⇥G

0
� � S ⇥G

0
�)� (G� ⇥ S

0 � S ⇥ S

0) .

Since G� ⇥ G

0
� is a countable intersection of open sets, {Ui ⇥ Vj} , with G� =

\Ui, G
0
� = \Vj , then it is measurable. We now wish to show that the remaining

terms in the above decomposition (S ⇥G

0
�, G� ⇥ S

0
, S ⇥ S

0) have outer measure
zero, thus ensuring the measurability of E⇥E

0
. It suffices to show that for S 2 Rm

with µ (S) = 0, µ? (S ⇥ Rn) = 0 (by the monotonicity of outer measure). More-
over, by the countable subadditivity of outer measure, it suffices to show that
µ

? (S ⇥ [0, 1]n) = 0. But this proceeds from the second lemma, and we have that
E ⇥ E

0 is measurable.
First, assume µRm (E) = 1, µRn (E0) < 1. Then take E = ti�0Si with the Si

measurable and
P

i�0 µRm (Si) divergent. Then

µRm+n (E ⇥ E

0) = µRm+n (ti�0Si ⇥ E

0) =
X

i�0

µRm+n (Si ⇥ E

0)

= µRn (E0)
X

i�0

µRm (Si) = 1.

Thus, it suffices to prove the case where E,E

0 are of finite measure, as any case
with infinite measure collapses.

Consider the map ME (S) = µRm+n (E ⇥ S) for any S ⇢ Rn
. We check transla-

tion invariance and additivity for ME (S) and conclude it is a measure.
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For any v 2 Rn
,

ME (S + v) = µRm+n (E ⇥ (S + v)) = µRm+n ((E ⇥ S) + v

0)

= µRm+n (E ⇥ S) = ME (S) ,

where v

0 denotes the inclusion of v in Rm+n
.

For additivity,

ME (ti�0Si) = µRm+n (E ⇥ ti�0Si) = µRm+n (ti�0 (E ⇥ Si))

=
X

i�0

µRm+n (E ⇥ Si) =
X

i�0

ME (Si) .

Finally, consider ME ([0, 1]n) . Since any covering of the set E by boxes can be
extended to a covering of E⇥[0, 1]n of equivalent volume, the two sets have the same
measure in Rm+n

. Thus, ME is a measure, that is, ME (S) = µRm (E)µRn (S) ,
and we are done. ⇤


