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WHITNEY STRATIFIED CHAINS AND COCHAINS
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R. MARK GORESKY

ABSTRACT. This paper contains the technical constructions necessary for a “geo-
metric cycle” definition of cohomology and homology in the context of Whitney
stratifications. Cup and cap products are interpreted as the transverse intersection
of geometric cocycles and cycles.

1. Introduction. The purpose of this paper is to develop a geometric theory of
cycles, cocycles and intersections within the “category” of Whitney stratifications.
Whitney stratifications form an important class of spaces because: (1) they arise
naturally in the study of algebraic, analytic and subanalytic varieties, polyhedra,
and singularities of smooth mappings; (2) they are preserved under transversal
intersections and the “perturbation” techniques of differential topology can be
used to make them transverse; (3) they determine currents by integration [22]; and
(4) their local topological structure has been explicitly described by Thom [20] and
Mather [13].

The main theorems are 4.7 and 6.2:

Let X be a compact Whitney stratified set. The cobordism group of embedded
normally oriented Whitney stratified subsets which are “transverse to the singular-
ities” of X coincides with the integral cohomology of X, and transverse intersection
of these geometric cocycles corresponds to the cup product.

This theorem reflects a principle (popularized by Dennis Sullivan) that “cup
product is transverse intersection of cocycles with normal geometry”, although it is
difficult to find a correctly stated version of this principle in the literature. An
attempt at a geometric theory of cocycles was made by Whitney [25] who did not
have the techniques needed to make his results rigorous. Using different methods,
Buoncristiano, Rourke, and Sanderson [1] have been more successful in the P.L.
context: one must observe that in the cas¢ of ordinary cohomology, the Mock
bundles can be taken to be embedded subsets. It is also well known that the
generalized “dual cells” in a simplicial complex form geometric representatives of
cohomology classes, although the cup product is not so easily interpreted as an
intersection since the dual cells are not always transverse to each other.

In 8.2 we identify a “universal” geometric cocycle in a stratification of the
Eilenberg-Mac Lane space K(Z, n), thus answering a question of Thom [21].

This paper is partly concerned with addressing the technical difficulties involved
in manipulating Whitney stratified sets. For example, the “push-forward problem”
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is still open: to find natural sufficient conditions on a Whitney stratified subset X
of a smooth compact manifold M, such that for almost every smooth mapping f:
M — N the image f(X) has a Whitney stratification which is compatible with that
of X.

Our main technical theorem appears in the appendix, which is the heart of the
proof of the main theorems 3.4 and 4.7. It is not known at present whether every
Whitney stratified set admits a triangulation such that every simplex satisfies the
Whitney conditions. We prove that every Whitney stratified set can be deformed to
one which has a Whitney cellulation, and the whole deformation can be made to
satisfy the Whitney conditions.

An essential step in the proof of the main theorem 4.7 is Theorem 3.4: The
cobordism group based on (embedded) compact oriented Whitney stratified sub-
sets of a smooth manifold M coincides with the integral homology of M. This
notion of “geometric chain” resembles Poincaré’s original definition of chain
(which he was forced to modify in the interests of rigor). Geometric cycle theorems
exist in many other categories: in the P.L. [1], the real analytic [9] and the
subanalytic [10] categories, and in the context of currents [3], so this result is not
surprising. However there are situations where naturally occurring geometric cycles
may have a Whitney stratification even though they do not have a natural P.L. or
subanalytic structure, for example in the study of generic singularities of smooth
maps (3.7). It is also a long standing conjecture than any minimal “surface”
representing a given homology class in a Riemannian manifold, has a Whitney
stratification. Theorem 3.4 also provides a good context in which to ask questions
like the following: what is the maximum codimension of the singularity set of any
geometric cycle which represents a given homology class in a given manifold? (This
refines the question answered by Thom [19] on the representability of homology
classes by submanifolds.)

In §9 we consider related “s-fibre” Morse functions on a stratified set X and
show that X has the homotopy type of a CW complex with one cell of dimension A
for each critical point of index A.

I am very happy to thank Bob MacPherson for his advice and encouragement.
He conjectured many of the results in this paper, helped to clarify some of the
technical details, and persuaded me to write them down. I have also profited from
useful conversations with Clint McCrory, Richard Porter, and Dennis Sullivan.

2. Whitney stratifications. In this section we review the main results of Thom and
Mather [5], [13], [14], [20] and fix notation. All manifolds are C*.

DEFINITION. A tubular neighborhood T, of a submanifold N of a manifold M
consists of (a) a choice of Riemannian metric on the fibres of the normal bundle 7:
E — N and (b) a smooth embedding ¢: E; — M where E; = {v € E|{v, v) <8},
such that Ty = ¢(E) is a neighborhood of N in M and ¢ takes the zero section of
E identically to N. This determines a tubular “distance function” py(x) =
(¢7!(x), $7'(x)> and tubular “projection” my = ¢ o 7 ° ¢~': Ty, — N. Let Ty(e) =
{x € Tylp(x) < e} and Sy(e) = {x € Tylp(x) = ¢}, fore < &.

A Whitney stratification of a closed subset X of a smooth manifold M is a
filtration of X by closed subsets X, C X, C - - - C X, such that each X, — X,_, is



WHITNEY STRATIFIED CHAINS AND COCHAINS 177

a (possibly empty) locally finite union of i-dimensional submanifolds of M (the
components of which are called the strata of dimension i), such that each pair of
strata satisfies Whitney’s condition B [4], [11], [18]. It follows that if S and T are
strata and S N T # & then S c T and we write S < T. The subset X, together
with this structure is called a Whitney object; X; is called its i-skeleton. Each such
Whitney object X C M admits a system of control data which consists of a tubular
neighborhood T, (in M) of each stratum A, with the following properties:

(1) The map (74, py): T, — A X [0, €) has surjective differential when restricted
to any stratum B > 4.

(2) For each B > A the relations 7, ° mz = m,, and p, ° w5 = p, hold whenever
both sides of the equation are defined.

(3) For all & sufficiently small, the sphere bundles S,(¢) are multi-transverse,

which means that if 4,, 4,, ..., 4, is any collection of strata, and B,, B,, ..., B,
is any disjoint collection, that the intersection S, (¢) N - - - NS, (¢) is transverse
to the intersection Sp(e) N - - - N Sp(e), and is also transverse to any other

stratum C of X.

A Whitney substratified object W C X is a closed subset with a Whitney
stratification (this makes sense since W C M) such that each stratum of W is
contained in a single stratum of X. (W is not necessarily a union of strata of X.)

3. Geometric chains and homology. In this section we fix a Whitney object X (in
some manifold) and construct a homology theory whose cycles are embedded
oriented Whitney objects in X and whose homologies are embedded oriented
cobordisms in X X [0, 1]. The main result (Theorem 3.4) identifies this homology
theory with the ordinary integral homology of X, in the case that X is a manifold.

3.1. DEFINITION. A geometric k chain £ in X consists of a compact k dimensional
Whitney substratified object || C X (called the support of £) together with an
orientation of |¢| which is a choice of an orientation and multiplicity of each
k-dimensional stratum (however we identify a given orientation and multiplicity
with the opposite orientation and negative multiplicity, and allow nonorientable
components provided their multiplicity is 0). The set of orientations of |£| is just the
group H,(|£], [£[,-0)-

The reduction of a geometric k chain £ is the geometric chain whose support is
the closure of the union of all components of |§| — |¢|,_, which have been assigned
a nonzero multiplicity. We shall identify a geometric chain with its reduction.

The boundary 3¢ of a geometric k£ chain £ is the (reduction of the) geometric
k — 1 chain whose support is |£|,_, and whose orientation is induced from
H (¢, |&lk—1) = Hi—1(élk=1) = Hi (€l -1 1€l —2)-

A geometric k-cycle is a geometric k chain £ such that 9§ = 0. In this case the
orientation of £ pulls back to a unique fundamental class p, € Hy(|§[). We shall say
¢ represents the homology class [£] = i p, € H,(X) where i: |{[ - X is the inclu-
sion.

3.2. Geometric interpretation of the boundary. An orientation of £ is equivalent to
a continuous choice of orientation and multiplicity of the tangent spaces 7S for
each k-dimensional stratum S. The boundary orientation and multiplicity on the
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tangent space T,R of any k — 1 dimensional stratum R is determined geometri-
cally as follows: consider a small e-ball B centered at y € R and let S, ..., S,
denote the connected components of B N (|_£L — |&|,—1)- For each i, let x; € S; be
chosen so that the oriented secant line /; =yx; is almost orthogonal to 7, R and is
almost contained in 7, S;, and such that 7, R is almost contained in 7, S;. Then
orthogonally projecting into 7, S; gives an isomorphism 7,R ® /; — T, S;. There is
a unique orientation §; of 7, R such that the product orientation on 7,R © /; agrees
with the given orientation of 7, S;. Finally, if m; denotes the multiplicity of S, the
sum 2 m,f; is the boundary orientation and multiplicity of 7, R.

3.3. DerINITION. Two geometric k-cycles &, and &, in X are cobordant if there is a
geometric k + 1 chainn in X X R, and some ¢ > 0 such that

@ [nl € X [0, 1],

®) [nl 0 X X [0, &) = [&] X [0, ),

@lnX xA—el] =& x1—el,

(d) 9an = &, X {1} — £, X {0} (modulo reduction).

Cobordism is an equivalence relation. Let WH,(X) denote the set of cobordism
classes of geometric k-cycles in X. Cobordant cycles clearly represent the same
homology class in X, so we obtain a representation map R: WH, (X) — H,(X).

3.4. THEOREM. If X is a manifold then R is a bijection.

ProOF. Choose a smooth triangulation of X. The closure of any union of
simplices is Whitney stratified by its decomposition into simplices. Any homology
class in H,(X) has a representative as a simplicial cycle which is therefore also a
geometric cycle. Thus R is surjective.

To show R is injective, suppose &, and £, are geometric k cycles which represent
the same class in H,(X). According to appendix A.3, £ is cobordant to a geometric
k-cycle &, with conical singularities. By A.2 there is a regular cell decomposition of
X X {0} so that |§| X {0} is a union of cells and so that the closure of each cell
satisfies the Whitney conditions. Similarly £, is cobordant to a geometric cycle &)
with conical singularities, such that |£]| X {1} is a union of cells of a Whitney
cellulation of X X {1}. These cellulations extend to a Whitney cellulation of
X X [0, 1] by applying A.2 again. Therefore & and & are homologous cellular
cycles in this cellulation of X X [0, 1] and there is a cellular chain 7 such that
an = & X {1} — & X {0}. This chain n determines the desired cobordism.

3.5. Remark on relative homology. If X is a manifold with collared boundary (or
even a manifold with collared corners), define a relative geometric cycle £ to be a
compact oriented Whitney object |§] € X which respects the collaring, such that
the support of 9¢ is contained in 0X. Relative cobordisms can be similarly defined.
Relativizing the proof of 3.4 (using the relative version of appendix A.2) we obtain
a bijection between the relative geometric k cycles, WH, (X, 9X) and the relative
homology group H, (X, 3.X).

Theorem 3.4 may even be true if X is any Whitney object, but a proof would
apparently involve an extension of the techniques in the Appendix. We can at least
see that if X is a subanalytic set then WH,(X) — H,(X) is surjective since every
homology class in X has a subanalytic representative.
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3.6. Intersections in homology. Two Whitney objects X and Y in a smooth
manifold M are transverse if each stratum of X is transverse to each stratum of Y.
In this case X N Y has a Whitney stratification whose strata are (the components
of) manifolds of the form 4 N B where 4 is a stratum of X and B is a stratum of Y
[13].

THEOREM. Suppose M is an oriented n-manifold and let ¢ be a geometric i-cycle
and let m be a geometric j-cycle in M. Then there is a diffeomorphism 0: M — M
arbitrarily close to the identity such that 0(|§|) is transverse to |n|. If £ denotes this
“perturbed” cycle then [£§'] = [£] and the product orientation on |&| N |n| gives an
i + j — n dimensional intersection cycle § N n (see 6.1). Furthermore [£€ N 7] repre-
sents the Lefschetz intersection product of the classes (€] and [n] (i.e. the Poincaré
dual to the cup product in the cohomology with compact supports of M.)

Proor. This is a special case of Theorem 6.2.

3.7. EXAMPLES. (i) Any compact complex analytic subvariety W of an analytic
variety X is a geometric cycle and therefore represents a homology class in X. W
has a Whitney stratification consisting of complex analytic strata so the orientation
is canonical. The cycle condition is automatic since there are no codimension one
strata.

(ii) Suppose M" is a smooth compact submanifold of RY and let 7: R¥ R’
denote the projection to the first p coordinates. If the Gauss map g: M — G,(R") is
transverse to the appropriate Schubert variety then the singularity set =! = {x e
M |corank(dn|T M) > 1} has a Whitney stratification and becomes a (mod 2)
geometric cycle which represents the Poincaré dual of the Stiefel-Whitney class
W"=P*1(M). More generally, the singularity set of a generic (real or complex)
vector bundle map (over a smooth manifold) carries the structure of a geometric
cycle whose homology class is considered in [12].

4. Geometric cochains and cohomology. In this section, X will denote a fixed
n-dimensional Whitney object (in some manifold M) with a fixed system of control
data. We will construct a cohomology theory on X whose cycles are codimension k
normally oriented Whitney objects embedded in X which satisfy the z-fibre
condition, and whose relations are 7-fibre cobordisms of codimension k, embedded
in X X [0, 1]. The main result (4.7) identifies this geometric cohomology group
with the ordinary cohomology group H*(X).

4.1. The m-fibre condition. A substratified object W C X is said to satisfy the
w-fibre condition (with respect to the chosen system of control data on X) if for
each stratum S of X there is an ¢ > 0 such that

W N Ts(e) = n5' (W N S) N Tsle) N X.

We also assume this identification is compatible with the stratifications of W and
of 7g'(W N S) N X. (From now on, we will surpress the ¢.)

In this case, W has a costratification defined as follows: If A is a stratum of W
which is contained in a stratum S of X, define the intrinsic codimension of A to be
dim(S) — dim(4) and the intrinsic normal bundle of 4 to be the normal bundle of
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A in S. A codimension k costratum of W is defined to be (any connected
component of) the union of all the strata of W which have intrinsic codimension
equal to k. Define the p-coskeleton W to be the union of all costrata which have
codimension p or more. The W form a filtration of W by (closed) =-fibre
substratified objects.

Each codimension k costratum D of W has a normal vector bundle £, and a
tubular neighborhood T, in X, which is the image of an embedding ¢: E, — X, as
follows:

E, is the union of the intrinsic normal bundles of each stratum of D. These fit
together in a locally trivial bundle over D because D satisfies the #-fibre condition
and in fact, for each stratum S of X, E,|(D N Tg) = w¥(Ep|D N S). Similarly T,
is the union of intrinsic tubular neighborhoods of the strata of D. It can be
constructed by ascending induction on the dimension of the strata of D by
demanding that, for any v € E,|(D N Ty), mg(¢(v)) = ¢p(dmg(v)). Here dmg de-
notes the vector bundle map E,|(D N Tg) — E,|(D N S) which covers the projec-
tionwg: D N Tg— D N S.

Tubular neighborhood of a n-fibre cocycle in the annulus

4.2. Coorientations. Let D be a codimension k costratum of a #-fibre substratified
object W C X. Let E,, be the normal bundle to D with fibre inclusion j,: E, C Ep,.
A coorientation of D is a locally constant choice of orientation (i.e. generator
8, € H(E,, E, — p)) and multiplicity m, € Z of the fibres of E,, (however we
identify a given orientation and multiplicity with the reverse orientation and
negative multiplicity). Each coorientation corresponds to a unique element p, €
H*(Ep, E, — D) which is determined by the condition (j*(pp),8,> = m, for
each pointp € D.

4.3. DEFINITION. A codimension k geometric cochain 8 in X consists of a w-fibre
substratified object |§| C X (called the support of §) which has a costratification
such that all costrata have codimension > k, together with a coorientation of each
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codimension k costratum. It follows from the existence of tubular neighborhoods
(4.1) and excision, that adding the coorientations p, over all the codimension k
costrata D gives a class p, in

® HX(Tp, T, — D)= @HYX - (D -D),X— D)
= HX(X — |9]**", X — |6]).

(Here, |#]|“*' denotes the k + 1-coskeleton of |#].)

The reduction of 8 is the geometric cochain whose support is the closure of the
union of all costrata which have been assigned a nonzero multiplicity. We shall
identify cochains which have the same reduction.

4.4. The coboundary 88 of a codimension k geometric cochain 8 is the (reduction

of the) geometric cochain whose support is the coskeleton |88| =[6|**"D and
whose coorientation is the image of p, under the map &8 in the following diagram:

Hk+1(X, X — |0|k+2)

l
HY(X, X — |8<*Y) > HY(X, X — |0]) > H*(X — |9+, x — |8)) >  H**'(X, X — |9]**)
) )
Hk(X) Hk+I(X — |0|k+2’ X — |0|k+l)

(The coboundary coorientation and multiplicities on the normal bundles of the
codimension k + 1 costrata may also be defined locally using inward pointing
normal vectors as in 3.2.)

The geometric cochain 8 is a geometric cocycle if 8§ = 0. The following lemma
implies that y, lifts to a unique class in H*(X, X — ||). Its image in H*(X) is
denoted [8].

45. LemMa. HX(X, X — |0**) = H**'\(X, X — |8]**?) = 0.

PrOOF. We claim that whenever W C X is a #-fibre Whitney object of codimen-
sion ¢ and if p < ¢ then H?(X, X — W) = 0. The case ¢ = dim(X) = n is clear
since (X, X — W) is homotopic to a wedge of n-spheres. By decreasing induction
suppose codim(W) = k, so H?(X, X — W&*D) = 0 whenever p < k + 1. Then it
follows from the cohomology sequence of the triple (X, X — W**D X — W) that
HP(X, X — W)= HP(X — W**D X — W) for p <k. By excision this equals
HP(Eg, Eg — S) where Eg is the normal bundle of the costratum S = W —
W*+D_ However the Thom isomorphism gives H?(Eg, Eg — S) = 0 provided
p <k

4.6. Two codimension k geometric cocycles 8, and 8, in X are cobordant if there
is a (w-fibre) codimension k& geometric cochain n C X X R, and some ¢ > 0 such
that

@lnl c X x[0, 1],

(b) |71| N X X [0’ 8) = |00| X [O’ E)’

@l N X X (1—e1]=16] X (1 - 1],

(d) 87 = 8, x {1} — 8, x {0),

Cobordism is an equivalence relation. Define the geometric cohomology set
WH*(X) to be the set of cobordism classes of codimension k geometric cocycles. It
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is easy to see from 4.4 that cobordant cocycles represent the same cohomology
class and we obtain the representation map

R: WH*(X) - H*(X).

4.7. THEOREM. R is a bijection.

The proof of this theorem for compact X is in §7. In the noncompact case one
must use Borel-Moore homology throughout.

4.8. REMARK. If X is an “abstract stratified space” [13], [20] define geometric
cochains in X as in 4.3 to be cooriented w-fibre substratified objects which satisfy
the Whitney conditions within each stratum of X. Then Theorem 4.7 holds for such
an X because it is a fact (not proven here) that X admits a Whitney embedding X
in some Euclidean space which identifies geometric cochains in X with geometric
cochains in X.

4.9. Relative cohomology. If X is a stratified space and A4 is a closed union of
strata then X /A inherits a stratification. Cocycles of codimension k > 1 may not
intersect the singular point 4/ 4 € X /A and the same applies to cobordisms. Thus
H*(X, A) is given by codimension k geometric cocycles in X with support in
X — A, modulo cobordisms in X X [0, 1] with support in (X — 4) X [0, 1]. This is
even true when k = 0 since H%(X, A) is the reduced cohomology of X /A.

4.10. Relation to intersection homology. If X is an n dimensional stratified space,
any codimension k geometric cochain # in X intersects each stratum of X in a set
of codimension > k. Geometric n — k dimensional cycles which satisfy only this
dimensionality condition are said to have perversity 0. This is a partial relaxation of
the -fibre condition. In Goresky and MacPherson [8] it is shown that if X is a P.L.
oriented normal pseudo-manifold then the homology of the complex of geometric
chains with perversity 0 is naturally isomorphic to the cohomology of X. Further
relaxations of the =-fibre condition are considered in [8] which result in new
“homology” groups THZ(X).

5. Transversality and the pullback. In this section we show that for any controlled
stratified map f: X, — X, the induced map f*: H*(X,) > H*(X)) is given by
choosing a representative geometric cocycle in X, which is transverse to f, (whose
existence is guaranteed by 5.2) and taking the pre-image of that cocycle.

5.1. DEFINITION. Suppose X, and X, are Whitney objects (in some manifold). A
map f: X, — X, will be called stratified if, for each stratum R of X, there is a
stratum S of X, such that f(R) C S and f|R: R — S is smooth.

Suppose in addition that a system of control data is specified on X, and X,.
Then a stratified map f: X, — X, is controlled if for each stratum S of X, and R of
X, there is an & > 0 such that whenever p € Ty(¢) and f(p) € T4(¢) we have
7sf(p) = frr(p).

If f: X; — X, is a stratified map and if ¥ C X, is a Whitney substratified object
we will say f is transverse to Y provided for every stratum A4 of Y and every stratum
S, of X, either f(S)) N 4 =D or f|S,: S, - S, is transverse to 4 (here S, denotes
the stratum of X, which contains A4).
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5.2. PROPOSITION. Suppose f: X| — X, is a controlled stratified map and let Y be a
codimension k geometric cocycle in X, such that f is transverse to |Y|. Then f'(|Y|) is
a w-fibre subset of X, which admits a canonical Whitney stratification. The coorienta-
tion of Y pulls back to a coorientation on f™(|Y|) which then becomes a geometric
cocycle f\(Y) and it represents the cohomology class f*(Y]) in H*(X,).

PrROOF. The strata of f~!(| Y|) (with intrinsic codimension p) are the components
of the manifolds S, N f7'(4) where S, is any stratum of X, and 4 is any stratum of
| Y| (with intrinsic codimension p). The Whitney conditions can be easily verified
using the fact that f7'(| Y|) satisfies the #-fibre condition. For each codimension k
costratum D of Y, f7'(D) is a codimension k costratum of f ~!(] Y ) whose oriented
normal bundle, Thom class, and coboundary is the pullback of the oriented normal
bundle, Thom class and coboundary of D, by the naturality of the Thom isomor-
phism theorem. Thus [f~/(Y)] = f*[Y].

5.3. TRANSVERSALITY LEMMA. Suppose X, and X, are Whitney stratified subsets of
the manifolds M, and M, (respectively). Fix a system of control data on X, and X,
and let f: X, — X, be a stratified map. Suppose Y C X, is a geometric cocycle.
Suppose either (a) f is controlled or (b) f is the restriction of a smooth map f:
M, — M,. Then Y is cobordant to a cocycle Y' C X, such that f is transverse to Y’.

PROOF. Assume by induction on & that Y is cobordant to a cocycle Y, such that f
is transverse to Y, N (X,),, where (X,), denotes the k skeleton of X,. We will find
a controlled vector field n on X, with (controlled) flow F,: X, — X, such that
Y41 = F\(Y),) satisfies the induction hypothesis. Under either assumption (a) or
(b) above, there is a neighborhood U of (X,), such that f is transverse to Y, N U.
Let S = (Xp)41 — (Xy). By Sards’s theorem [6] there is a vector field g on S with
time 1 flow Fg: S — S such that ng vanishes near (X,), and such that f is transverse
to F5(Y,). Take 1 to be any controlled lift [5], [13] of 7.

6. Products. In this section we fix a Whitney object X with a system of control
data and show (6.2) that the cup product in H*(X) is given by transversal
intersection of geometric cochains, while the cap product (6.3) is given by transver-
sal intersection of geometric cochains with geometric chains.

6.1. DEFINITION. Let M, and M, be transversally intersecting submanifolds of a
manifold N and suppose their normal bundles », and v, are oriented. Let A:
M, N M, - M, X M, be the map A(x) = (x, x) so the normal bundle of M, N
M, is A*(v; ® »,). Define the product coorientation of M, N M, to be the pullback
of the direct sum orientation of »; ® v,.

Similarly if », is oriented and if the tangent bundle 7, of M, is also oriented
define the product orientation of the tangent bundle 7,, of M, N M, so that
712 ® v, = 7, is an isomorphism of oriented vector bundles over M, N M,.

6.2. PROPOSITION. Suppose Y| and Y, are geometric cocycles in a Whitney object
X. Then Y, is cobordant to a cocycle Y; which is transverse to Y,. In this case
Y, N Y; is a geometric cocycle under the product coorientation and [Y, N Y3] = [Y]
U [Y3].



