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Abstract

The critical points of the length function on the free loop space �(M) of a compact
Riemannian manifold M are the closed geodesics on M. The length function gives a
filtration of the homology of �(M), and we show that the Chas-Sullivan product

Hi(�) ×Hj (�)
∗� Hi+j−n(�)

is compatible with this filtration. We obtain a very simple expression for the associated
graded homology ring GrH∗(�(M)) when all geodesics are closed, or when all
geodesics are nondegenerate. We also interpret Sullivan’s coproduct ∨ (see [Su1],
[Su2]) on C∗(�) as a product in cohomology

Hi(�,�0) ×Hj (�,�0)
�� Hi+j+n−1(�,�0)

(where �0 = M is the constant loop). We show that � is also compatible with the
length filtration, and we obtain a similar expression for the ring GrH ∗(�,�0). The
nonvanishing of products σ ∗n and τ�n is shown to be determined by the rate at which
the Morse index grows when a geodesic is iterated. We determine the full ring structure
(H ∗(�,�0),�) for spheresM = Sn, n ≥ 3.
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1. Introduction

1.1
Let M be a smooth compact manifold without boundary. In [CS], M. Chas and D.
Sullivan constructed a new product structure

Hi(�) ×Hj (�)
∗� Hi+j−n(�) (1.1.1)

on the homology H∗(�) of the free loop space � of M. In [CKS], it was shown that
this product is a homotopy invariant of the underlying manifold M. In contrast, the
closed geodesics onM depend on the choice of a Riemannian metric, which we now
fix. In this article, we investigate the interaction beween the Chas-Sullivan product on
� and the energy function, or rather, its square root (see §10.6),

F (α) =
√
E(α) =

( ∫ 1

0
|α′(t)|2 dt

)1/2
,

whose critical points are exactly the closed geodesics. For any a, 0 ≤ a ≤ ∞, we
denote by

�≤a, �>a, �=a, �(a,b] (1.1.2)

those loops α ∈ � such that F (α) ≤ a, F (α) > a, F (α) = a, a < F (α) ≤ b, and
so on. (We set �<∞ = �≤∞ = � and �≤0 = �0.) In this article, we use homology
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H∗(�≤a;G) with coefficients in the ring G = Z if M is orientable and G = Z/(2)
otherwise. The following result is proven in §5.

THEOREM 1.2
The Chas-Sullivan product extends to a family of products∗

Ȟi(�
≤a) × Ȟj (�≤b)

∗−→ Ȟi+j−n(�≤a+b), (1.2.1)

Ȟi(�
≤a,�≤a′

) × Ȟj (�≤b,�≤b′
)

∗−→ Ȟi+j−n(�≤a+b,�≤max(a+b′,a′+b)), (1.2.2)

Ȟi(�
≤a,�<a) × Ȟj (�≤b,�<b)

∗−→ Ȟi+j−n(�≤a+b,�<a+b), (1.2.3)

whenever 0 ≤ a′ < a ≤ ∞ and 0 ≤ b′ < b ≤ ∞. These products are compatible
with respect to the natural inclusions �≤c′ → �≤c whenever c′ ≤ c.

We refer to Ȟi(�≤a,�<a) as the level homology group, or the homology at level a,
also called the Morse group in [SMT]. This is the group that is addressed by Morse
theory which measures the “change” in the homology of�≤v as v passes through the
value v = a (cf. §1.6). It is zero unless a is a critical value of the function F. The
product (1.2.3) is called the level homology product.

1.3
In [Su1] and [Su2], D. Sullivan constructed coproducts ∨t and ∨ on the group of
transverse chains of � (cf. §8). If the Euler characteristic of M is zero, Sullivan
showed (see [Su1], [Su2]) that ∨t vanishes on homology, and ∨ descends to a coproduct
on homology (cf. §8.4; see also [CG], [G]). Coproducts on homology correspond to
products on cohomology. In §9.1, we show that the cohomology product corresponding
to ∨t vanishes identically except possibly in low degrees, but the cohomology product
corresponding to ∨ is new and interesting and is well defined on relative cohomology,
whether or not the Euler characteristic ofM is zero. (However, the resulting ring does
not have a unit 1.)

THEOREM 1.4
Let 0 ≤ a′ < a ≤ ∞, and let 0 ≤ b′ < b < ∞. Sullivan’s operation ∨ determines a
family of products

Hi(�,�0) ×Hj (�,�0)
�−→ Hi+j+n−1(�,�0), (1.4.1)

Ȟ i(�≤a,�≤a′
) × Ȟ j (�≤b,�≤b′

)
�−→ Ȟ i+j+n−1(�≤min(a+b′,a′+b),�≤a′+b′

),
(1.4.2)

Ȟ i(�≤a,�<a) × Ȟ j (�≤b,�<b)
�−→ Ȟ i+j+n−1(�≤a+b,�<a+b), (1.4.3)

∗Here, Ȟi (�≤a) denotes Čech homology. In Lemma A.4, we show that the singular and Čech homology agree if
0 ≤ a ≤ ∞ is a regular value or if it is a nondegenerate critical value in the sense of Bott.
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which are associative and (sign-)commutative, and are compatible with the homo-
morphisms induced by the inclusions �≤c′ → �≤c whenever c′ < c. If i > n, then
Hi(�,�0) ∼= Hi(�) so equation (1.4.1) becomes a product on absolute cohomology.
The product (1.4.1) is independent of the Riemannian metric. If M admits a metric
with all geodesics closed, then the ring (H ∗(�,�0),�) is finitely generated.

The sphere Sn and the projective spaces RP n, CP n, HP n, and CaP 2 all admit such
metrics. For these spaces, the cohomology has infinite dimension as a G-module,
so the �-product is highly nontrivial. Moreover, just the existence of a product �,
satisfying Theorem 1.4 such that the ring (H ∗(�,�0),�) is finitely generated, is
already enough to answer a geometric question of Y. Eliashberg (cf. §10.4): there
exists a constant C, independent of the metric, so that

d(t1 + t2) ≤ d(t1) + d(t2) + C,

where d(t) = max{k : Image(Hk(�≤t ) → Hk(�)) �= 0}.

1.5
Theorem 1.2, which concerns the Chas-Sullivan product on homology, does not come
as a surprise to experts. It is not hard to see that the Pontrjagin product (on the homology
of the based loop space) has the same properties. So Theorem 1.4, which concerns
the �-product on cohomology, might also be anticipated. However, the analogous
statement for the cup product on cohomology is false (see §§10.3, 16.1).

1.6
In this subsection, assume that the critical values cr(F ) are discrete. Then the functional
F : � → R determines a filtration I of the chain complex for� and of its homology
H∗(�). The E1-page of the resulting spectral sequence is the “total” level homology

E1 =
⊕
p,q

E1
p,q

∼=
⊕
a∈cr(F )

Ȟ∗(�≤a,�<a).

This spectral sequence converges to H∗(�), and it determines an isomorphism of
groups

E∞ ∼= GrIH∗(�). (1.6.1)

The level homology product (1.2.3) determines a ring structure on E1, and also on all
the other pages Ek (including E∞) of the spectral sequence. However, according to
Theorem 1.2, the Chas-Sullivan (C-S) product is compatible with this filtration, so it
passes to a product on GrIH∗(�). (The product of two classes at levels a, a′ ∈ cr(F )
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is zero unless a + a′ is also a critical value of F.) The isomorphism (1.6.1) is then an
isomorphism of rings.

If the functional F is a perfect Morse function, then E1 ∼= E∞ as rings, which
gives an isomorphism of rings between the level homology and GrIH∗(�). This is
what happens when all geodesics are closed (cf. §§1.10, 13). If we use field coefficients,
then there is a further, noncanonical isomorphism GrIH∗(�) ∼= H∗(�) of groups. The
product on GrIH∗(�) may be thought of as the leading term of the product onH∗(�).

Similar comments apply to the cohomology H ∗(�,�0) with its cohomology
product �. The cohomology cup product on H ∗(�,�0) is not compatible with the
filtration I, so the analogous statements involving the cup product are false.

1.7
The critical level (see §4) of a homology class 0 �= x ∈ Hi(�) is defined to be

cr(x) = inf
{
a ∈ R : x is supported on �≤a} . (1.7.1)

The critical level of a cohomology class 0 �= X ∈ H ∗(�,�0) is defined to be

cr(X) = sup
{
a ∈ R : X is supported on �≥a} .

These are critical values of F . In Propositions 5.3 and 9.5 (cf. Corollary 10.1), we
show that the products ∗ and � satisfy the following relations:

cr(x ∗ y) ≤ cr(x) + cr(y) for all x, y ∈ H∗(�), (1.7.2)

cr(X � Y ) ≥ cr(X) + cr(Y ) for all X, Y ∈ H ∗(�,�0). (1.7.3)

For appropriate x, y,X, Y, both inequalities are sharp (i.e., they are equalities) when
M is a sphere or projective space with the standard metric (cf. §§13, 14, 15). The
inequality (1.7.2) is also sharp when all closed geodesics are nondegenerate and the
index growth (cf. §6) is minimal (cf. §12). The inequality (1.7.3) is sharp when all
closed geodesics are nondegenerate and the index growth is maximal.

1.8
A homology class η ∈ H∗(�) is said to be level-nilpotent if cr(η∗N ) < Ncr(η)
for some N > 1, where η∗N = η ∗ η ∗ · · · ∗ η (N times). A cohomology class
α ∈ H ∗(�,�0) is level-nilpotent if cr(α�N ) > Ncr(α) for some N > 1. There
are analogous notions in level homology and cohomology. A homology (resp., coho-
mology) class η in Ȟ (�≤a,�<a) (where Ȟ denotes homology, resp., cohomology)
is said to be level-nilpotent if some power vanishes: η∗N = 0 (resp., η�N = 0) in
Ȟ (�≤Na,�<Na). In §§7 and 11, we prove the following.
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THEOREM 1.9
If all closed geodesics onM are nondegenerate, then every homology class inH∗(�),
every cohomology class inH ∗(�,�0), and every level homology class and every level
cohomology class∗ in H (�≤a,�<a) is level-nilpotent (for all a ∈ R).

1.10
On the other hand, nonnilpotent classes exist when all geodesics are closed. Suppose
thatE is the energy function of a metric in which all geodesics onM are closed, simply
periodic, and have the same prime length �, as defined in §13.1. The critical points of
F = √

E are the closed geodesics, and the critical values of F are the (nonnegative)
integer multiples of �. The set of critical points with critical value r� (r ≥ 1) form a
(Morse-Bott) nondegenerate critical submanifold �r ⊂ � which is diffeomorphic to
the unit sphere bundle SM by the mapping α �→ α′(0)/r�. (For any point x ∈ M and
any unit tangent vector v ∈ TxM , there is, up to reparametrization, a unique geodesic
α that starts from x and moves in the direction v. If all geodesics are closed, then this
is a geodesic loop, so taking the speed to be |α′(0)| = r� gives an element of �.)

Let λr be the Morse index of any geodesic of length r�. Let h = λ1 + 2n − 1,
where n = dim(M). Then Hi(�≤�) = 0 for i > h. Let


 ∈ Hh(�≤�;G) ∼= G

be a generator of the top-degree homology group. In §13 and Corollary 13.7, we prove
the following.

THEOREM 1.11
The r-fold Chas-Sullivan product


∗r ∈ Hλr+2n−1(�≤r�, �<r�;G) ∼= G

generates the top-degree homology at the level r�, and more generally, the Chas-
Sullivan product with 
 induces an isomorphism

Hi(�
≤a,�<a) → Hi+h−n(�≤a+�,�<a+�)

for all degrees i and for all level values a. The energy E determines a filtration
0 = I0 ⊂ I1 ⊂ · · · ⊂ H∗(�,�0) such that Ij ∗ Ik ⊂ Ij+k. The associated graded
ring is isomorphic (with degree shifts) to the ring

GrIH∗(�,�0) ∼= H∗(SM)[T ]≥1 (1.11.1)

∗See previous footnote.
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of polynomials whose constant term is zero, where H∗(SM) denotes the homology
(intersection) ring of SM.

The full Chas-Sullivan ring H∗(�) was computed by R. Cohen, J. Jones, and J. Yan
[CJY] for spheres and projective spaces. The relatively simple formula (1.11.1) is
compatible with their computation. It seems likely that there may be other results
along these lines when the Riemannian metric has large sets of closed geodesics.

1.12
In §14 and Corollary 14.8, we prove the analogous result for the new product � in
cohomology. Suppose that all geodesics on M are closed, simply periodic, and have
the same prime length �. Then Hi(�≤�,�0) = 0 for i < λ1. Let

ω ∈ Hλ1 (�≤�,�0;G) ∼= Hλ1 (�≤�,�<�;G) ∼= G

be a generator of the lowest-degree cohomology group G = Z or Z/(2).

THEOREM 1.13
Multiplication by ω is an injective mapping. The r-fold product

ω�r ∈ Hλr (�≤r�, �<r�) ∼= G

generates the lowest-degree cohomology class at level r�, and more generally, the
product with ω induces an isomorphism

Hi(�≤a,�<a) → Hi+h−n(�≤a+�,�<a+�)

for all degrees i and all level values a.Moreover, the energy induces a filtration

Hi(�,�0) = I 0 ⊃ I 1 ⊃ I 2 ⊃ · · ·

by ideals such that I j � I k ⊂ I j+k. The associated graded ring GrIH ∗(�,�0) is
isomorphic (with degree shifts) to the ring,

H ∗(SM)[T ]≥1,

where H ∗(SM) denotes the cohomology ring of SM.

1.14. Cohomology ring of �Sn and �Sn

The full cohomology ring is computed for spheres in §15. There is a natural homo-
morphism h1 : H ∗(SM) → H ∗(�,�0) which takes the cup product onH ∗(SM) into
“level” products on H ∗(�,�0), that is, cr(h1(a) � h1(b)) = cr(h1(a)) + cr(h1(b)).
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It turns out that there are additional “above level” products (i.e., classes u, v such that
cr(u� v) > cr(u) + cr(v)) that are not detected by the theorems in §14.

1.15. Counting closed geodesics
By [VS], if M is a compact, simply connected Riemannian manifold whose coho-
mology algebra H ∗(M; Q) cannot be generated by a single element, then the Betti
numbers of � form an unbounded sequence, whence by [GrM], the manifold M
admits infinitely many prime closed geodesics. This result leaves open the case of
spheres and projective spaces (among others).

It is known (see [Ba], [F], [Hi2]) that any Riemannian metric on S2 has infinitely
many prime closed geodesics, and it is conjectured that the same holds for any
Riemannian sphere or projective space of dimension n > 2. (But see [K], [Z2] for
examples of Finsler metrics on S2 with finitely many prime closed geodesics, all of
which are nondegenerate.) It should, in principle, be possible to count the number
of closed geodesics using Morse theory on the free loop space �, but each prime
geodesic γ is associated with infinitely many critical points, corresponding to the
iterates γ m. So it would be useful to have an operation on H∗(�) which corresponds
to the iteration of closed geodesics.

If λ1 is the Morse index of a prime closed geodesic γ of length �, then by
[Bo1] (cf. Proposition 6.1), the Morse index λm of the iterate γ m can be anywhere
betweenmλ1 − (m− 1)(n− 1) andmλ1 + (m− 1)(n− 1). For nondegenerate critical
points, the Chas-Sullivan product [γ ]∗· · ·∗ [γ ] is nonzero exactly when (cf. Theorem
12.3) the index growth is minimal (i.e., when λm = mλ1 − (m − 1)(n − 1)). Here,
[γ ] ∈ Hλ1+1(�≤�,�<�) is the level homology class represented by the S1-saturation
of γ . The Pontrjagin product (on the level homology of the based loop space) is zero
unless λm = mλ1. The level cohomology product � is nonzero when the index growth
is maximal (cf. Proposition 6.1).

1.16. Geometric motivation
The Chas-Sullivan product “detects” closed geodesics with minimal index growth.
The second author was led by symmetry (cf. Lemma 6.4) to search for a cohomology
product that would detect closed geodesics with maximal index growth. It is clear
from the geometry that such a product should have degree n − 1. Assume that the
critical values of the energy are isolated. In a neighborhood of a critical orbit, the sub-
space of the finite-dimensional approximation MN (cf. §3), consisting of loops with
N geodesic pieces all of the same length, is a smooth finite-dimensional manifold.
Using Poincaré duality in this manifold and the Chas-Sullivan product on relative
“upside-down” chains (or Morse cochains) gives a product on the level cohomol-
ogy as in equation (1.4.3). This product stabilizes as N → ∞, and it extends to a
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globally defined product � which turns out to be dual to Sullivan’s operation ∨ (see
[Su1], [Su2]).

1.17. Related products
As mentioned in [Su2], the operation ∨ also gives (cf. §9.3) a (possibly noncom-
mutative) product � on the cohomology of the based loop space � such that
i∗(a � b) = i∗(a) � i∗(b), where a, b ∈ H ∗(�) and i : � → � denotes the
inclusion. In §§14.9 and 15.5, we calculate some nonzero examples of this product.

In [CS], Chas and Sullivan also defined a Lie algebra product {α, β} on the
homology H∗(�) of the free loop space. In §17, we combine their ideas with the
construction of the cohomology product � to produce a Lie algebra product on the
cohomology H ∗(�,�0). In §17.3, we use the calculations described in §1.15 to
show that these products are sometimes nonzero. Also, following [CS], we construct
products on the (T = S1)-equivariant cohomology H ∗

T (�,�0).
There is a well-known isomorphism between the Floer homology of the cotangent

bundle of M and the homology of the free loop space of M , which transforms the
pair-of-pants product into the Chas-Sullivan product on homology (see [AS1], [AS2],
[SW], [Vi], [CHV]). The cohomology product � should therefore correspond to some
geometrically defined product on the Floer cohomology; it would be interesting to
see an explicit construction of this product. (Presumably, a candidate would be some
1-parameter variation of the coproduct on chains given by the upside-down pair of
pants.)

1.18
Several of the proofs in this article require technical results that are well known to
experts (in different fields) but are difficult to find in the literature. These technical
tools are described in the appendices, as are the (tedious) proofs of Proposition 9.2 and
Theorem 17.2. The collection of products and their definitions can be rather confusing,
so in each case we have created a boxed diagram which gives a concise way to think
about the product.

2. The free loop space

2.1
Throughout this article, M denotes an n-dimensional smooth connected compact
Riemannian manifold. Let α : [a, b] → M be a piecewise smooth curve. Its length
and energy are given by

L(α) =
∫ b

a

|α′(t)| dt and E(α) =
∫ b

a

|α′(t)|2 dt.
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The Cauchy-Schwarz inequality says that L(α)2 ≤ (b − a)E(α). The formulas work
out most simply if we use the Morse function F (α) = √

E(α).
The free loop space � consists of H 1-mappings α : [0, 1] → M such that

α(0) = α(1). It admits the structure of a Hilbert manifold (see [Kl], [Cha]), so it is
a complete metric space and hence paracompact and Hausdorff. The loop space � is
homotopy equivalent to the Frechet manifold of smooth loops β : S1 → M. Denote
by �0 = �≤0 ∼= M the space of constant loops.

The energy of a loop depends on its parametrization; the length does not. Thus,
L(α) ≤ F (α) for all α ∈ �, with equality if and only if the loop is parametrized
proportionally to arc length (PPAL), meaning that |α′(t)| is constant. Every geodesic
is, by definition, parametrized proportionally to arclength. A loop α ∈ � is a critical
point of F if and only if α is a closed geodesic. Let� ⊂ � be the set of critical points
of F, and set �=a = � ∩�=a.

The index and nullity of the critical points of F coincide with those of E. Recall
(e.g., from [Kl, p. 57]) that the index of a closed geodesic γ is the dimension of a
maximal subspace of Tγ (�) on which the Hessian d2F (γ ) is negative definite, and
the nullity of γ is dim(T 0

γ �)−1, where T 0
γ � is the null space of the Hessian d2F (γ ).

The −1 is incorporated to account for the fact that every closed geodesic γ occurs
in an O(2)-orbit of closed geodesics. The critical point γ is nondegenerate if this
single orbit is a nondegenerate Morse-Bott critical submanifold or, equivalently, if
the nullity is zero. A number a ∈ R is a nondegenerate critical value if the critical
set �=a consists of nondegenerate critical orbits. In this case, there are finitely many
critical orbits in �=a , and the number a ∈ R is an isolated critical value. In §13, we
encounter a critical set�=a of dimension greater than 1 (consisting of geodesics with
nullity greater than 0), which is nondegenerate in the sense of Bott. In this case, we
say that the critical value a ∈ R is nondegenerate in the sense of Bott. To distinguish
nondegenerate from nondegenerate in the sense of Bott, we sometimes refer to the
former case with the phrase isolated nondegenerate critical orbit.

Denote by A ⊂ � the subspace of loops parametrized proportionally to arc
length (PPAL). Then F (α) = L(α) for all α ∈ A. We write A≤a (etc.) for those
α ∈ A such that F (α) ≤ a (cf. equation (1.1.2)). The following result is due to
Anosov [A].

PROPOSITION 2.2
For all a ≤ ∞, the inclusion A≤a → �≤a is a homotopy equivalence. A homotopy
inverse is the mappingA : �≤a → A≤a which associates to any path α the same path
parametrized proportionally to arclength, with the same basepoint. It follows that the
set of loops of length ≤ a also has the homotopy type of �≤a.
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2.3
The evaluation mapping evs : � → M is given by evs(α) = α(s). The figure-eight
space F = �×M � is the pullback of the diagonal under the mapping

ev0 × ev0 : �×� → M ×M. (2.3.1)

It consists of composable pairs of loops. Denote by φs : F → � the mapping that
joins the two loops at time s, that is,

φs(α, β)(t) =
{
α
(
t

s

)
for t ≤ s,

β
(
t−s
1−s
)

for s ≤ t ≤ 1.

The mapping φs is one to one. The energy of the composed loop φs(α, β) is

E
(
φs(α, β)

) = E(α)

s
+ E(β)

1 − s ,

which is minimized when

s =
√
E(α)/(

√
E(α) +

√
E(β)). (2.3.2)

LEMMA 2.4
Consider M = �0 ×M �0 to be a subspace of F = � ×M �. Then the mapping
φmin : F −M → � defined by φmin(α, β) = φs(α, β) for

s = F (α)

F (α) + F (β)

extends continuously across M , giving a mapping φmin : � ×M � → � which is
homotopic to the embedding φs : F → � for any s ∈ (0, 1), and which satisfies

F
(
φmin(α, β)

) = F (α) + F (β). (2.4.1)

If α and β are PPAL, then so is φmin(α, β).

IfA,B ⊂ �, writeA×MB = (A×B)∩(�×M�) and defineA∗B = φmin(A×MB)
to be the subset consisting of all composable loops, glued together at the energy-
minimizing time. Then �≤a ∗�≤b ⊂ �≤a+b.

2.5
By [Cha, Proposition 2.2.3] or [BO, Proposition 1.17], the figure-eight space F =
� ×M � has an n-dimensional normal bundle νF and tubular neighborhood N in
� × � (see §B.1) because the mapping (2.3.1) is a submersion whose domain is a
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Hilbert manifold. Similarly, for any a, b ∈ R, the space

F<a,<b = {(α, β) ∈ �<a ×�<b : α(0) = β(0)
}

has a normal bundle and tubular neighborhood in �<a ×�<b, and the image φs(F)
has a normal bundle and tubular neighborhood in � because it is the preimage of the
diagonal � ⊂ M ×M under the submersion

(ev0, evs) : � −−−−→ M ×M.
The normal bundle ν� of� inM×M is noncanonically isomorphic to the tangent

bundle TM, and νF is the pullback of ν�. Consequently, if M is orientable, then so
are the normal bundles ν� and νF. Throughout this article, we make the following.

Convention on orientations and coefficients
The symbol G always denotes the coefficient ring for homology or cohomology. The
symbol Ȟi(·;G) denotes Čech homology (cf. Appendix A for further details). The
symbol Hi(·,G) denotes singular homology. If M is not orientable, we take G =
Z/(2). If M is orientable, then we fix orientations for M and for ν� (hence also
for νF) and we take G = Z. We sometimes suppress mention of the coefficient
ring G.

3. The finite-dimensional approximation of Morse

3.1
In this section, we recall some standard facts concerning the finite-dimensional ap-
proximation M to the free loop space � of a smooth compact Riemannian manifold
M. This finite-dimensional approximation was described by Morse [Mo1], but his
description is rather difficult to interpret by modern standards. It was clarified by Bott
[Bo2] and further described by Milnor [Mi]. Related finite-dimensional models are
discussed in [BC].

Fix ρ > 0 less than one half the injectivity radius of M. For points x, y ∈ M
which lie at a distance less than ρ, we write |x − y| for this distance.

LEMMA 3.2
Fix N ≥ 1. Let x = (x0, x1, . . . , xN ) ∈ MN+1. Let α : [0, 1] → M be any piecewise
smooth curve such that α(i/N) = xi. If F (α) ≤ ρ√N , then |xi − xi−1| ≤ ρ for each
i = 1, 2, . . . , N , and hence, for each i, there is a unique geodesic segment from xi−1

to xi. If γ = γ (x) denotes the path obtained by patching these geodesic segments
together with γ (i/N ) = xi , then

F
(
γ (x)

) =
√
N
∑N

i=1|xi − xi−1|2.
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Proof
Let αi : [(i − 1)/N, i/N] → M denote the ith segment of the path. Then L(αi)2 ≤
E(αi)/N ≤ ρ2. Therefore |xi − xi−1| ≤ ρ. The energy of the resulting piecewise
geodesic path γ is therefore E(γ ) = �Ni=1E(γi) = N�Ni=1|xi − xi−1|2.

For N ≥ 1 and a ∈ R, let

M≤a
N = {(x0, x1, . . . , xN ) ∈ MN+1 : x0 = xN and F (γ (x)) ≤ a}.

According to Lemma 3.2, if a ≤ √
Nρ, then we have a well-defined mapping

γ : M≤a
N ↪→ �. (3.2.1)

PROPOSITION 3.3
Suppose that a ≤ √

Nρ. Then the mapping F ◦ γ : M≤a
N → R is smooth and proper.

The restrictions γ : M≤a
N ↪→ �≤a and γ : M<a

N ↪→ �<a are homotopy equivalences.
The mapping γ identifies the critical points (with values less than or equal to a) of
F ◦ γ with the critical points (with values less than or equal to a) of F . The Morse
index and nullity of each critical point are preserved under this identification. If, in
addition, a is a regular value of F or if a is a nondegenerate critical value of F in
the sense of Bott (cf. §2.1), then the spaces M≤a

N and�≤a have the homotopy types of
finite simplicial complexes.

Proof
There is a homotopy inverse h : �≤a → M≤a

N which assigns to any loop α : [0, 1] →
M the element x = (x0, . . . , xN ), where xi = α(i/N) for 0 ≤ i ≤ N. Since
F (α) ≤ a, Lemma 3.2 implies that F ◦ γ (h(α)) ≤ a. The composition h ◦ γ is
the identity. The composition γ ◦ h : �≤a → �≤a is homotopic to the identity: we
describe a homotopy HT from α ∈ �≤a to γ h(α). Given T ∈ [0, 1], there exists i
such that (i − 1)/N ≤ T ≤ i/N. The homotopy HT (α)(t) coincides with α(t) for
t ≤ (i − 1)/N. It coincides with the piecewise geodesic path γ (α)(t) for t ≥ (i/N).
For t in the interval [(i − 1)/N, i/N], the path HT (α)(t) agrees with α for t ≤ T ,
and it is geodesic on [T , i/N]. Replacing part of the curve α with a geodesic segment
between the same two points does not increase its energy, soHT : �≤a×[0, 1] → �≤a

is the desired homotopy.
If a ∈ R is a regular value, then M≤a

N is a smooth compact manifold with
boundary, so it can be triangulated; hence�≤a is homotopy equivalent to a simplicial
complex.

If the critical value a of F is nondegenerate in the sense of Bott, then a is also
a (Bott)-nondegenerate critical value of F ◦ γ. It is then possible to Whitney stratify
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M≤a
N so that M=a

N is a closed union of strata. The complete argument is standard
but technically messy; here is an outline. Each connected component of the singular
set S of F ◦ γ is a stratum. The set M=a

N − S is another stratum; it is a manifold
because it contains no critical points of F ◦ γ. Finally, M<a

N is the open stratum.
According to the generalized Morse lemma, there exist local coordinates near each
point x in the critical set, with respect to which the function F ◦ γ has the form
F (γ (x)) + �ri=1x

2
i − �si=r+1x

2
i (with the last n− s coordinates not appearing in the

formula). Using this, it is possible to see that the above stratification satisfies the
Whitney conditions.

Every Whitney stratified space can be triangulated (see [Gor], [J]), so it follows
that M≤a

N is homeomorphic to a finite simplicial complex; hence �≤a is homotopy
equivalent to a finite simplicial complex.

4. Support, critical values, and level homology

4.1
Continue with the notation M,�,F,� of §2 and the conventions of §2.5. In this
section, we describe a modern version of the Birkhoff-Hestenes minimax principle
(see [BH1], [BH2]). A class α ∈ Ȟi(�;G) is supported on a closed set A ⊂ � if
there is a class α′ ∈ Ȟi(A;G) such that α = i∗(α′), where i : A → � is the inclusion.
This implies that α �→ 0 ∈ Ȟi(�,A;G), but the converse does not necessarily hold.∗

Define the critical level cr(α) to be the infimum

cr(α) = inf
{
a ∈ R : α ∈ Image

(
Ȟi(�

≤a;G) → Hi(�;G)
)}

= inf
{
a ∈ R : α is supported on �≤a} . (4.1.1)

A nonzero homology classα normally gives rise to a nonzero classβ in level homology
at the level cr(α). Let us say that two classes α ∈ Hi(�;G) and β ∈ Ȟi(�≤a,�<a;G)
are associated if there exists an associating class ω ∈ Ȟi(�≤a;G) with

ω � α Ȟi(�
≤a) � Ȟi(�) = Hi(�)

in

β
�

Ȟi(�
≤a,�<a)

� (4.1.2)

LEMMA 4.2
Let α ∈ Hi(�;G), α �= 0. Then the following statements hold:
(1) cr(α) is a critical value of F ;
(2) cr(α) is independent of the homology theory (Čech or singular) used in the

definition;

∗This is because Čech homology does not satisfy the exactness axiom; see the “solenoid” in [ES, Chapter 10,
§4].
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(3) cr(α) = inf{a ∈ R : α ∈ ker(Hi(�) → Ȟi(�,�≤a;G))};
If a ∈ R is a nondegenerate critical value in the sense of Bott, or if G is a field, then
(4) cr(α) = a if and only if there exists 0 �= β ∈ Hi(�≤a,�<a;G) associated

with α;
(5) cr(α) < a if and only if α is associated to the zero class 0 = β ∈

Hi(�≤a,�<a;G).

Proof
For part (1), if cr(α) were a regular value, then the flow of −grad(F ) would reduce
the support of α below this value. Now, let bn ↓ cr(α) be a convergent sequence
of regular values (which exists because the regular values of F are dense in R). By
Lemma A.4, the Čech homology and singular homology of �≤bn coincide, which
proves (2); and the homology sequence for the pair (�,�≤bn) is exact, which proves
(3). If a is a nondegenerate critical value (in the sense of Bott; cf. §2.1), then the set
�≤a is a deformation retract of some open set U ⊂ � which therefore contains �≤bn

for sufficiently large n. Hence α is the image of some

ω ∈ Hi(�≤bn) → Hi(U ) ∼= Hi(�
≤a).

Moreover, the homology sequence for (�≤a,�<a) is exact, which proves (4) and (5).
If G is a field, see Lemma A.5.

4.3
Similarly, a cohomology class α ∈ Hj (�,�0;G) is supported on a closed set B ⊂
� − �0 if it maps to zero in Ȟ j (� − B,�0;G) or, equivalently, if it comes from a
class in Ȟ j (�,�− B;G). Define the critical level

cr(α) = sup
{
b : α ∈ ker

(
Hj (�,�0;G) → Ȟ j (�<b,�0;G)

)}
= sup

{
b : α is supported on �≥b}.

Let us say that the classes α ∈ Hj (�,�0;G) and β ∈ Ȟ j (�≤b,�<b;G) are associ-
ated if there exists ω ∈ Ȟ j (�,�<b;G) with

ω � α Ȟ j (�,�<b) � Hj (�,�0)

in

β
�

Ȟ j (�≤b,�<b)
� (4.3.1)

LEMMA 4.4
Let α ∈ Hj (�,�0;G), α �= 0. Then the following statements hold:
(1) cr(α) is a critical value of F ;
(2) cr(α) is independent of the homology theory used in its definition.
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If a ∈ R is a nondegenerate critical value in the sense of Bott, or if G is a field, then
(3) cr(α) = b if and only if there exits 0 �= β ∈ Hj (�≤b,�<b;G) associated with

α;
(4) cr(α) < b if and only if α is associated with the zero class 0 ∈

Hj (�≤b,�<b;G).

Proof
The proof is the same as in Lemma 4.2.

5. The Chas-Sullivan product

5.1
Throughout this section, M denotes a compact connected Riemannian manifold. We
continue with the conventions of §2.5. In [CS], a product ∗ : Hi(�) × Hj (�) →
Hi+j−n(�) on the homology of the free loop space � was defined. It has since been
reinterpreted in a number of different contexts (see [CKS], [CJ], [Co]). Recall, for
example, from [CJ] or [AS1], that it can be constructed as the following composition:

Hi(�) ×Hj (�)

Hi+j (�×�)

ε×
�

s� Hi+j (�×�,�×�− F)
τ� Hi+j−n(F)

φ∗� Hi+j−n(�)

In this diagram, ε = (−1)n(n−j ) (cf. [D, Chapter 8, §13.3], [Cha]), and × denotes
the homology cross product. The map τ is the Thom isomorphism (B.1.2) for the
normal bundle νF of F = � ×M � in � × � (see [Cha, Proposition 2.2.3], [BO,
Proposition 1.17]). The composition τ ◦s is a Gysin homomorphism (B.2.4). The map
φ = φ1/2 composes the two loops at time t = 1/2. IfM is orientable, then νF is also
orientable (see §2.4). We often substitute the homotopic mapping φmin of Lemma 2.4
for φ1/2. The construction may be summarized as passing from the left to the right in
the following diagram:

�×� � F � � (5.1.1)

It is well known that the Chas-Sullivan product is (graded) commutative, but this is
not entirely obvious since it involves reversing the order of composition of loops, and
the fundamental group of M may be noncommutative. We include the short proof
because the same method is used in §9.

PROPOSITION 5.2 ([CS, Theorem 3.3])
If a ∈ Hi(�) and b ∈ Hj (�), then b ∗ a = (−1)(i−n)(j−n)a ∗ b.
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Proof
The mapσ : �×� → �×� that switches factors satisfiesσ∗(a×b) = (−1)ij (b×a).
It restricts to an involution σ : F → F. Identifying S1 = R/Z, define χr : S1 → S1

by χr (t) = t + r. The (usual) action, χ̂ : S1 ×� → � of S1 on � is given by

χ̂r (γ ) = γ ◦ χr
for r ∈ S1. The action of χ̂1/2 preserves φ1/2(F), and in fact,

σ (γ ) = χ̂1/2(γ ) = β · α (5.2.1)

for any γ = α · β ∈ φ1/2(F) which is a composition of two loops α, β glued at time
1/2. Let μF ∈ Hn(�×�,�×�− F) be the Thom class of the normal bundle νF .
Then σ ∗(μF) = (−1)nμF. Since χr : � → � is homotopic to the identity, we have

(−1)n(n−i)b ∗ a = φ∗
(
μF ∩ (b × a)

)
= (−1)ijφ∗

(
μF ∩ σ∗(a × b)

)
= (−1)ijφ∗σ∗

(
σ ∗(μF) ∩ (a × b)

)
= (−1)ij (−1)nχ̂1/2φ∗

(
μF ∩ (a × b)

)
= (−1)ij (−1)n(−1)n(n−j )a ∗ b. �

PROPOSITION 5.3
Let α, β ∈ H∗(�;G) be homology classes supported on closed sets E,F ⊂ �,
respectively. Then α ∗ β is supported on the closed set E ∗ F = φmin(E ×M F ). In
particular,

cr(α ∗ β) ≤ cr(α) + cr(β). (5.3.1)

For any a, b with 0 ≤ a, b ≤ ∞, the Chas-Sullivan product extends to a family of
products

Ȟi(�
≤a;G) × Ȟj (�≤b;G) → Ȟi+j−n(�≤a+b;G) (5.3.2)

and, for any 0 ≤ a′ < a ≤ ∞ and 0 ≤ b′ < b ≤ ∞, to products

Ȟi(�
≤a,�≤a′

;G) × Ȟj (�≤b,�≤b′
;G) → Ȟi+j−n(�≤a+b,�≤max(a+b′,a′+b);G),

(5.3.3)

Ȟi(�
≤a,�<a;G) × Ȟj (�≤b,�<b;G) → Ȟi+j−n(�≤a+b,�<a+b;G). (5.3.4)

These products are compatible under the mappings induced by inclusion. If the set
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Hi (A, A′) × Hi (B, B′) ε× Hi+j(A × B, A′ × B ∪ A × B′)

Hi+j  (A × B, A × B – (A – A′ ) × (B – B′))
�

�

Hi+j  (A × B, A × B – (A – A′) ×M (B – B′))

Hi+j– n (A × M B, A ×M B – (A – A′) ×M (B – B′))
Thom isomorphism §B.2 τ

Hi+j– n (A * B, A′ * B ∪ A * B′) (φmin)* Hi+j– n (A × M B, A′ ×M B ∪ A ×M B′)

Figure 1. Relative Chas-Sullivan product

cr ⊂ R of critical values is discrete, then we obtain a ring structure on the level
homology ⊕

a∈cr

Ȟ∗(�≤a,�<a;R). (5.3.5)

Proof
First, we construct, for any open sets A′ ⊂ A ⊂ � and B ′ ⊂ B ⊂ �, a product

Hi(A,A
′;G) ×Hj (B,B ′;G) → Hi+j−n(A ∗ B,A ∗ B ′ ∪ A′ ∗ B) (5.3.6)

on singular homology, as shown in Figure 1.
In Figure 1, × denotes the homology cross product, ε = (−1)n(n−j ), and the

Thom isomorphism τ of Proposition B.2 is applied to the triple

(A− A′) ×M (B − B ′) ⊂ A×M B ⊂ A× B.

The hypotheses of Proposition B.2 are satisfied because A×B is a Hilbert manifold,
so A×M B has a normal bundle and tubular neighborhood in A×B, and because the
subspace (A− A′) ×M (B − B ′) is closed in A×M B.

It is easy to see that this product is compatible with the product in §5.1 since each
line in Figure 1 is pulled back from the corresponding line in §5.1. Consequently, the
following diagram commutes:

Hi(�) ×Hj (�) � Hi(A) ×Hj (B) � Hi(A,A
′) ×Hj (B,B ′)

Hi+j−n(�)
�

� Hi+j−n(A ∗ B)
�

� Hi+j−n(A ∗ B,A′ ∗ B ∪ A ∗ B ′)
�
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Now, the other products may be obtained by a limiting procedure using Lemma
A.5. The statement about the support of α ∗ β follows by taking a sequence of open
neighborhoods An ↓ E and Bn ↓ F. To construct the product (5.3.4), for example,
start with

Hi(�
<a+ε, �<a

′−δ) × Hj (�
<b+ε, �<b

′−δ)

→ Hi+j−n(�<a+b+ε−δ, �<max(a′+b+ε−δ,a+b′+ε−δ)),

where δ > ε. Taking the (inverse) limit as ε ↓ 0 gives a pairing

Ȟi(�
≤a,�<a−δ) × Ȟj (�≤b,�<b−δ) → Ȟi+j−n(�≤a+b,�<max(a′+b−δ,a+b′−δ)).

Taking the direct limit as δ ↓ 0 (and recalling from §A.2 that homology commutes
with direct limits) gives the pairing (5.3.4). The other products are similarly con-
structed. (The Chas-Sullivan product can even be constructed this way; cf. [Cha].)
This completes the proof of Proposition 5.3.

We remark that singular homology is not so well behaved with respect to supports and
intersections (see, e.g., Bredon’s example [Br1, p. 373]).

5.4
If α = [A, ∂A] and β = [B, ∂B] are the fundamental classes of manifolds (A, ∂A) ⊂
(�≤a,�≤a′

) and (B, ∂B) ⊂ (�≤b,�≤b′
) which are transverse over M (meaning that

the mappings ev0 : A → M and ev0 : B → M are transverse), then the C-S product
[α] ∗ [β] is represented by the fundamental class of the manifold

φmin(A×M B,A×M ∂B ∪ ∂A×M B) = (A ∗ B, ∂(A ∗ B)
)
.

For equations (12.5.2) and (13.5.2), we need a similar fact about homology classes
α, β which are supported on (A, ∂A) and (B, ∂B) but which are not necessarily the
fundamental classes. The following proposition is more or less the original definition
of the product ∗ from [CS].

PROPOSITION 5.5
Let (A, ∂A) and (B, ∂B) be smooth manifolds with boundary. Let (A, ∂A) →
(�<α,�<α

′
) and (B, ∂B) → (�<β,�<β

′
) be smooth embeddings, where α′ < α

and β ′ < β. Assume that the mappings ev0 : A → M and ev0 : B → M are
transverse. If M is oriented, then assume that A,B are orientable and oriented. Let
α ∈ Hi(A, ∂A) and β ∈ Hi(B, ∂B). Denote their images in the homology of � by
[α] ∈ Hi(�<a,�<a′

) and [β] ∈ Hj (�<b,�<b′
). Define

α∗β ∈ Hi+j−n(A×MB,A×M∂B∪∂A×MB) ∼= Hi+j−n(A×MB,A×MB−A′×MB
′)
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to be the image of (α, β) under the following composition:

Hi(A, ∂A) ×Hj (B, ∂B)
ε× � Hi+j (A× B,A× B − A′ × B ′)

Hi+j−n(A×M B,A×M B − A′ ×M B
′) �τ

(B.2)
Hi+j (A× B,A× B − A′ ×M B

′)
�

(5.5.1)
Then [α] ∗ [β] = (φmin)∗(α ∗ β) ∈ Hi+j−n(�<a+b,�max(a+b′,a′+b)).

Proof
The transversality assumption is equivalent to the statement that the mapping

(ev0, ev0) : A× B → M ×M

is transverse to the diagonal�.By [Cha, Proposition 2.2.3] or [BO, Proposition 1.17],
the intersection A×M B = A× B ∩ F has a tubular neighborhood in A× B (with
normal bundle νF|(A×M B).As in the proof of Proposition 5.3, this makes it possible
to apply the Thom isomorphism (B.2). Then the diagram (5.5.1) maps, term by term,
to the diagram in the proof of Proposition 5.3 where the relative C-S product is defined.
The proposition amounts to the statement that these mappings commute, which they
obviously do.

6. Index growth

Continue with the notationM,�,F,� of §2 and the conventions of §2.5.

PROPOSITION 6.1
Let γ be a closed geodesic with index λ and nullity ν. Let λm and νm denote the index
and nullity of the m-fold iterate γ m. Then νm ≤ 2(n− 1) for all m and

|λm −mλ| ≤ (m− 1)(n− 1), (6.1.1)

|λm + νm −m(λ+ ν)| ≤ (m− 1)(n− 1). (6.1.2)

The average index

λav = lim
m→∞

λm

m

exists and

|λ− λav| ≤ n− 1 and |λ+ ν − λav| ≤ n− 1. (6.1.3)
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Now, assume that γ and γ 2 are nondegenerate critical points (i.e., they lie on isolated
nondegenerate critical orbits). Then the inequalities in (6.1.3) are strict, and for any
k ≥ 0, there existsM so that if m ≥ M , then

|λm −mλ| ≤ (m− 1)(n− 1) − k, (6.1.4)

|λm + νm −m(λ+ ν)| ≤ (m− 1)(n− 1) − k. (6.1.5)

Moreover, if we let

λmin
m = mλ1 − (m− 1)(n− 1),

λmax
m = mλ1 + (m− 1)(n− 1)

be the greatest and smallest possible values for λm that are compatible with (6.1.1),
then

λm > λ
min
m =⇒ λj > λ

min
j for all j > m, (6.1.6)

λm < λ
max
m =⇒ λj < λ

max
j for all j > m. (6.1.7)

SCHOLIUM

Let r, k be positive integers. If the index growth for γ is maximal (resp., minimal) up
to level rk in the sense that for all m ≤ rk,

λm = mλ1 ± (m− 1)(n− 1),

then the iterate γ r has maximal (resp., minimal) index growth up to level k.

Much of this is standard and is well known to experts (see the references at the
beginning of Appendix D), but for completeness we include a proof based on the
following well-known results of Bott [Bo1] (cf. [Kl, §3.2.9]).

6.2. Bott’s index formula
Let M be an n-dimensional Riemannian manifold. Let γ be a closed geodesic. The
Poincaré map P (linearization of the geodesic flow at a periodic point) is in Sp(2(n−
1),R) and is defined up to conjugation. The index formula of Bott is

λm = index(γ m) =
∑

�γ
ωm=1

(ω), (6.2.1)

where the ω-index �γ is a nonnegative integer-valued function defined on the unit
circle with �γ (ω) = �γ (ω) (see also Lemma 6.5). The function �γ is constant
except at the eigenvalues of P . Its jump at each eigenvalue is determined by the
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splitting numbers S±
P (ω)εZ :

lim
ε→0+

�γ (ωe±iε) = �γ (ω) + S±
P (ω), (6.2.2)

which depend only upon the conjugacy class of P. The nullity satisfies

νm = nullity(γ m) =
∑
ωm=1

NP (ω), (6.2.3)

where NP (ω) := dim ker(P − ωI ). The numbers S±
P (ω) and NP (ω) are additive

on indecomposable symplectic blocks, and on each block

S±
P (ω)ε{0, 1}, (6.2.4)

NP (ω) − S±
P (ω)ε{0, 1}. (6.2.5)

6.3. Proof of Proposition 6.1
Assuming the above facts (6.2.1) – (6.2.5), the index-plus-nullity satisfies

λm + νm = index-plus-nullity(γ m) =
∑

ϒγ
ωm=1

(ω), (6.3.1)

lim
ε→0+

ϒγ (ωe±iε) = ϒγ (ω) − T ±
P (ω), (6.3.2)

where

ϒγ (ω) := �γ (ω) + NP (ω),

T ±
P (ω) := NP (ω) − S±

P (ω).

Thus T ±
P (ω) is additive and takes values in {0, 1} on each indecomposable block, and

−(λm + νm) and −ϒγ have the same formal properties (6.2.1) – (6.2.4) as λm and�γ .
Thus a proof of the statements about λm using only these three properties also serves
as a proof of the statements about λm + νm.

As a consequence of equations (6.2.1) – (6.2.4) we have

|�γ (ω) −�γ (τ )| ≤ n− 1 for all ω, τ. (6.3.3)

Moreover, if |�γ (ω) − �γ (τ )| = n − 1 with Reω < Re τ , then all the eigenvalues
of P lie in the unit circle with real part in [Reω ,Re τ ]. (To see this, note that each
indecomposable block has dimension at least 2.) Equation (6.1.1) and the first half of
(6.1.3) follow. Moreover,

λav = 1

2π

∫ 2π

0
�γ (eit ) dt. (6.3.4)
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Equality in (6.1.1) implies that λm = λmax
m or λm = λmin

m . Equality in the first half
of (6.1.3), together with (6.3.3) and (6.3.4), implies that |�γ (ω) − �γ (1)| = n − 1
almost everywhere on the circle, that 1 is the only eigenvalue of P , and thus that
λm = λmax

m for all m or λm = λmin
m for all m.

If γ and γ 2 are nondegenerate, then neither −1 nor 1 is an eigenvalue of P. Let
S1 ⊂ C denote the unit circle, and let

r0 = min
{
Re(ω)

∣∣ω ∈ S1 is an eigenvalue of P
}
.

Then −1 < r0 < 1, and for any ω ∈ S1,

|�γ (ω) −�γ (1)| ≤

⎧⎪⎨⎪⎩
n− 2 if Re(ω) > r0,

n− 1 if Re(ω) ≤ r0,
0 if ω = 1.

Summing over the mth roots of unity gives

|λm −mλ| ≤ (m− 1)(n− 1) − hm, (6.3.5)

where hm denotes the number ofmth roots of unityω �= 1 such that Re(ω) > r0. Thus,
choosingm ≥ M = kπ/ arccos(r0) gives equation (6.1.4), which also implies that the
inequalities in (6.1.3) are strict. Equations (6.1.6) and (6.1.7) follow. The scholium is
self-contained and straightforward. This concludes the proof of Proposition 6.1.

The following lemma is used in the proof of Theorem 12.3.

LEMMA 6.4
Fix a basepoint x0 ∈ M , and let � = �x0 = ev−1

0 (x0) be the Hilbert manifold of
loops that are based at x0. Let γ ∈ � be a closed geodesic, all of whose iterates are
nondegenerate. For any r ≥ 1, let λr be the Morse index of the iterate γ r , and let λ�r
be the index of γ r in the based loop space.
(i) Let r ≥ 1, and suppose that the index growth is maximal up to level rn, that

is,

λrn = rnλ1 + (rn− 1)(n− 1).

Then λ�r = λr.

(ii) Let r ≥ 1, and suppose that the index growth is minimal up to level rn, that is,

λrn = rnλ1 − (rn− 1)(n− 1).

Then the difference between λ�r and λr is maximal, that is, λ�r = λr − (n− 1).
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Proof
Let T ⊥

γ (0)M be the subspace that is orthogonal to the tangent vector γ ′(0). Let T ⊥
γ �

(resp., T ⊥
γ �) be the subspace of vector fields V (t) along γ with V (t) ⊥ γ ′(t) for all

t. By a standard argument, for all s ≥ 1, λs (resp., λ�s ) is the dimension of a maximal
negative subspace of T ⊥

γ s� (resp., of T ⊥
γ s (�)). LetWs ⊂ T ⊥

γ s� be a maximal negative
subspace. Let Ks be the kernel of the map

Ws

φ� T ⊥
γ (0)M × T ⊥

γ (0)M × · · · × T ⊥
γ (0)M,

V �→
(
V (0), V

(1

s

)
, . . . , V

(s − 1

s

))
.

The dimension of the image of this map is at most s(n−1), so dim(Ks) ≥ λs−s(n−1).
On the other hand, the kernel of φ on T ⊥

γ s� is the direct sum of s copies of T ⊥
γ � in a

way that is compatible with the Hessian of F, so the index of F on this kernel is sλ�1 .
Thus, for all s ≥ 1, we have

sλ�1 ≥ dim(Ks) ≥ λs − s(n− 1). (6.4.1)

Now, consider part (i). Clearly, λ�r ≤ λr , so we need to verify the opposite inequality.
Consider the geodesic γ r . By the scholium of Proposition 6.1, the index growth for γ r

is maximal up to level n. Apply equation (6.4.1) to the geodesic γ r (and take s = n)
to obtain

nλ�r ≥ λn(γ r ) − n(n− 1) = nλr − (n− 1)

or λ�r ≥ λr − ((n− 1)/n) as claimed.
Now, consider part (ii). According to the scholium of Proposition 6.1, the geodesic

γ r has minimal index growth up to level n. So it suffices to show the following: if
γ is a geodesic with minimal index growth up to level n, then λ1 = λ�1 + n − 1.
Taking s = 1 in (6.4.1) gives λ1 ≤ λ�1 + n − 1. For the reverse inequality, note that
λn ≥ λ�n ≥ nλ�1 because we can concatenate n negative vector fields along γ to obtain
a negative vector field along γ n. But λn = nλ1 − (n− 1)2, which gives

λ1 − (n− 1)2

n
= λ1 − (n− 1) + n− 1

n
≥ λ�1 .

The following lemma, due to [R] (see also [W]) is used in §§12.3 and 13.2.

LEMMA 6.5
Let γ ⊂ � be a prime geodesic. Let γ r be its r-fold iterate, and let �r ⊂ � be the
S1-saturation of γ r . Let �r → �r be the negative bundle. If r is odd, then �r → �r

is orientable and λr ≡ λ1 (mod 2). If r is even, then �r → �r is orientable if and
only if �γ (−1) = λ2 − λ1 is even, in which case λr ≡ λ1 (mod 2).
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Proof
Following [R, §§1.1, 2.2], the S1-action on � induces an S1-action on the bundle
�r → �r. The subgroup Z/(r) ⊂ S1 fixes the base space,

�r ∼= S1/
(
Z/(r)

)
.

Let E denote the fiber of �r over the basepoint γ r . The bundle �r → �r is orientable
if and only if the Z/(r)-action on the fiber E preserves the orientation. If T : E → E

denotes a generator of Z/(r), then T r = I so det(T )r = 1. Hence det(T ) = ±1 with
det(T ) = +1 if and only if �r is orientable. If r is odd, then det(T ) cannot be −1
so it is +1. If r is even, then the eigenvalues of T that are not equal to ±1 come in
complex conjugate pairs, so the sign of det(T ) is determined by the dimension of the
−1 eigenspace. But according to [Bo1] (see also [Kl, §§3.2.9, 4.1.5, pp. 128, 129]),
if ω is an rth root of unity, then �γ (ω) is the dimension of the ω-eigenspace of the
action of T on E. Hence �r is orientable if and only if �γ (−1) is even.

Similarly, �γ (ω) = �γ (ω) implies that λr ≡ �γ (1) (mod 2) if r is odd, and
λr ≡ �γ (1) +�γ (−1) if r is even.

7. Level nilpotence

7.1
Continue with the notationM,�,F,� of §2 and the conventions of §2.5. Let a ∈ R,

and let β ∈ Ȟi(�≤a,�<a;G). We say that β is level-nilpotent if there exists m such
that the Chas-Sullivan product in level homology vanishes:

0 = β∗m = β ∗ β ∗ · · · ∗ β ∈ Ȟmi+(m−1)n(�
≤ma,�<ma;G).

Let α ∈ Ȟi(�;G). We say that α is level-nilpotent if there exists m such that
cr(α∗m) < mcr(α).

LEMMA 7.2
Let α ∈ Ȟi(�;G), α �= 0, and let a = cr(α). Let β ∈ Ȟi(�≤a,�<a;G) be an
associated class. (Such a nonzero class β exists when a is a nondegenerate critical
value in the sense of Bott; cf. Lemma 4.2.) If β is level-nilpotent, then α is also
level-nilpotent.

Proof
Let ω ∈ Hi(�≤a;G) be a class that associates α and β. Then ω∗m ∈ Ȟb(�≤ma;G)
associates α∗m and β∗m, where b = mi + (m− 1)n. But β∗m = 0 if m is sufficiently
large, which implies by Lemma 4.2 that cr(α∗m) < ma.
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THEOREM 7.3
Let F : � → R as above. Suppose that all the critical orbits of F are isolated and
nondegenerate. Then every homology class α ∈ Hi(�;G) is level-nilpotent, and for
every a ∈ R, every level homology class β ∈ Hi(�≤a,�<a;G) is level-nilpotent.

Proof
By Lemma 7.2, it suffices to prove that β ∈ Hi(�≤a,�<a;G) is level-nilpotent, where
a ∈ R is a nondegenerate critical value. We suppress mention of the coefficient ringG.
The critical set�=a = �(F )∩F−1(a) consists of the S1-orbits of finitely many closed
geodesics, say, γ1, . . . , γr . Let γ denote the S1-orbit of γ. For 1 ≤ j ≤ r , letUj ⊂ �

be a neighborhood of γj , chosen so that Uj ∩ Uk = φ whenever j �= k. We may
choose the ordering so that there exists s ≤ r such thatHi(�≤a ∩Uj,�<a ∩Uj ) �= 0
if and only if 1 ≤ j ≤ s. The γj with 1 ≤ j ≤ s are the critical points that are relevant
to β, and Theorem D.2 implies that the index of γj (1 ≤ j ≤ s) is either i or i − 1.

Set�=a
0 =⋃s

j=1 γj . Using Proposition A.6, the level homology group is a direct
sum

Hi(�
≤a,�<a) ∼=

r⊕
j=1

Hi(�
≤a ∩ Uj,�<a ∩ Uj ).

Since these factors vanish for j > s, we have canonical isomorphisms

Hi(�
≤a,�<a) ∼=

s⊕
j=1

Hi(U
<a
j ∪ γj , U<aj )

∼= Hi(�
<a ∪�=a

0 ,�
<a)

using excision and homotopy equivalences. By comparing the long exact sequence
for the pair (�≤a,�<a) with the long exact sequence for the pair (�<a ∪ �=a

0 ,�
<a)

and using the five lemma, we conclude that the inclusion induces an isomorphism

Hi(�
<a ∪�=a

0 ) ∼= Hi(�
≤a).

Therefore β is supported on �<a ∪�=a
0 so for any m ≥ 1, β∗m is supported on

(�<a ∪�=a
0 )∗m ⊂ �<ma ∪ (�=a

0 )∗m.

The only critical points in (�=a
0 )∗m are them-fold iterates of the geodesics in γj (with

1 ≤ j ≤ s). Thus, using an arbitrarily brief flow along the trajectories of −∇F , we
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obtain an isomorphism

Hb
(
�<ma ∪ (�=a

0 )∗m,�<ma
) ∼=

s⊕
j=1

Hb(U
<ma
j,m ∪ γ mj , U<maj,m ) � β∗m, (7.3.1)

where the Uj,m are disjoint neighborhoods of the γ mj containing no other critical
points, and where

b = mi − (m− 1)n.

(There may be other critical points at levelma, but the support of β∗m does not contain
such points.)

We now show that each of the summands on the right-hand side of equation (7.3.1)
vanishes if m is sufficiently large. Fix j with 1 ≤ j ≤ s, and let λm denote the index
of γ mj . According to Theorem D.2, λ1 ∈ {i − 1, i} . If the j th summand in (7.3.1)
is not zero, then λm ∈ {b − 1, b}, so λm ≤ mi − (m − 1)n. If λ1 = i and m ≥ 2,
this contradicts equation (6.1.1). If λ1 = i − 1, this contradicts equation (6.1.4) with
k = 2, namely,

λm ≥ mλ1 − ((m− 1)(n− 1) − 2
) = mi − (m− 1)n+ 1,

which holds for m sufficiently large.

8. Coproducts in homology

8.1
In [Su1] and [Su2], D. Sullivan constructs operations ∨ and ∨t on the group of
transversal chains of certain path spaces. His constructions give rise to coproducts in
homology with coefficients in Q ifM is orientable and Z/(2) otherwise,

∧t : H∗(�)
u→ H∗(�×�) ∼= H∗(�) ⊗H∗(�),

∧ : H∗(�,�0)
v→ H∗

(
(�,�0) × (�,�0)

) ∼= H∗(�,�0) ⊗H∗(�,�0)

of degrees −n and −n + 1, respectively, which we now describe. The Künneth
isomorphisms in the above display require field coefficients. But the mappings u, v
can be defined over Z if M is orientable. So we may continue to use the conventions
of §2.5.

For fixed t ∈ (0, 1), the evaluation mapping (ev0, evt ) : � → M ×M (given
by α �→ (α(0), α(t))) is a submersion and hence transverse to the diagonal D so its
preimage Ft ⊂ � has a tubular neighborhood and normal bundle in � (see [Cha,
Proposition 2.2.3], [BO, Proposition 1.17]). By Proposition B.2, there is a Thom iso-
morphism τ : Hi(�,�−Ft ) → Hi−n(Ft ). The space Ft consists of loops α with a
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self-intersection α(0) = α(t) at time t. Let ct : Ft → �×� be the map that “cuts”
such a loop α ∈ Ft at the time t , giving the two loops

ct (α)(s) = (α(st), α(t + s(1 − t)).
The coproduct ∨t is obtained from the composition

Hi(�) � Hi(�,�− Ft )
τ

� Hi−n(Ft )
c∗
� Hi−n(�×�).

Sullivan comments (see [Su1], [Su2]) that this coproduct vanishes if the Euler char-
acteristic of M vanishes. In §9.1, we show that this coproduct always vanishes
(on homology) if i > 3n; in fact, the associated relative coproduct Hi(�) →
Hi−n ((�,�0) × (�,�0)) vanishes for all i.

8.2
The nontrivial homology coproduct ∨ arises from the following diagram:

�× I (ev0,ev)� M ×M

�×� �c F[0,1]

∪

�

� D
∪

�
(8.2.1)

Here, (ev0, ev) is the evaluation: (α, t) �→ (α(0), α(t)) and F[0,1] = (ev0, ev)−1(D).
The mapping c(α, t) = ct (α) is the “cutting map.”

Set I = [0, 1], and set ∂I = {0, 1} . For any A ⊂ I , let FA ⊂ � × I denote
the part of (ev0, ev)−1(D) that lies over A. (In particular, F0 ∪ F1 = � × ∂I.)
The restriction (ev0, ev)|� × (0, 1) is transverse to the diagonal D (in fact, it is a
submersion), so F(0,1) has a tubular neighborhood and normal bundle in �× (0, 1).
Unfortunately, these properties do not extend to the endpoints t = 0, 1. Nevertheless,
we have the following result, whose proof appears below.

LEMMA 8.3
The Thom isomorphism

τ : Hj
(
(�× (0, 1)),�× (0, 1) − F(0,1)

) ∼= Hj−n(F(0,1))

extends to a (relative) Gysin homomorphism

τ : Hj (�× I,�× ∂I ∪�0 × I ) → Hj−n
(
F[0,1],F0 ∪ F1 ∪ (�0 × I )

)
.



xxx dmj7329 August 27, 2009 18:38

LOOP PRODUCTS AND CLOSED GEODESICS 145

8.4
Using Lemma 8.3, Sullivan’s coproduct ∨ becomes well defined on relative homology.
It can be obtained from the Künneth formula and the composition

Hi(�,�0) ∼=Hi+1

(
(�,�0) × (I, ∂I )

) τ� Hi+1−n
(
F[0,1],F0 ∪ F1 ∪ (�0 × I )

)

Hi+1−n
(
�×�, (�×�0) ∪ (�0 ×�)

)c∗�

One would like to have a coproduct on the absolute homology of �. If j > n, then
Hj (�,�0) ∼= Hj (�) so ∨ becomes a coproduct on absolute homology for i > 3n.
What if i ≤ 3n? As mentioned in [Su1], [Su2], if the Euler characteristic χ(M) of
M vanishes, then the diagonal D lies in an isotopy Ds ⊂ M × M with D0 = D

and Ds ∩ D = φ for s �= 0. Consequently, the mapping (8.2.1) is transverse to
D′ = D1, and its preimage F′ ⊂ �× [0, 1] has F′

0 = F′
1 = φ.We therefore obtain

a coproduct on absolute homology Hi(�) (for all i ≥ 0) using the composition

Hi(�) ∼= Hi+1

(
�× (I, ∂I )

) � Hi+1−n(F′
[0,1], φ)

Hi+1−n(�×�)

c′

�

(The cutting map c′ can be defined using the isotopy and letting s → 0.) As mentioned
in [Su1] and [Su2], when χ(M) = 0, this coproduct satisfies

∨(x ∗ y) = (x ⊗ 1) ∗ ∨(y) + ∨(x) ∗ (1 ⊗ y). (8.4.1)

Unfortunately, this coproduct depends on the choice of isotopy. It is easy to see this
forM = S1, in which case � is the disjoint union

� =
∐
m∈Z

�(m),

where �(m) consists of loops α : S1 → S1 of degree m. For each m, the evaluation
map�(m) → S1 is a homotopy equivalence. Let [m] ∈ H0(�(m)) be the generator cor-
responding to the degree m mapping γ m : S1 → S1, where γ m(t) = mt (mod 1). To
calculate ∧[m], consider the deformation of the diagonal and the resulting deformation
of F[0,1],

Ds = {(u, v) ∈ M ×M : v = u+ s},
Fs

[0,1] = (ev0, ev)−1(Ds) = {(α, t) ∈ �× [0, 1] : (α(0), α(t)) ∈ Ds
}
.
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It follows that τs([m]) ∈ H0(Fs
[0,1], φ) is the homology class represented by the cycle

(γ m × [0, 1]) ∩ Fs
[0,1] = {(γ m, t) ∈ �× [0, 1] : (γ m(0), γ m(t)) ∈ Ds

}
.

This intersection consists of exactlym points, corresponding tom values of t ∈ [0, 1],
one of which is t = s/m and is close to zero. After cutting at these times and letting
s → 0, we find

∧([m]) = [0] ⊗ [m] + [1] ⊗ [m− 1] + · · · + [m− 1] ⊗ [1] if s > 0,

∧([m]) = [1] ⊗ [m− 1] + · · · + [m− 1] ⊗ [1] + [m] ⊗ [0] if s < 0.

We remark that the coproduct becomes well defined if we work modulo �0 ⊂ �(0)

(see also §16.2).

8.5. Proof of Lemma 8.3
For ε > 0 sufficiently small, let Iε = [0, ε) ∪ (1 − ε, 1] be a neighborhood of the
endpoints of the unit interval, and set

Uε = (�<ε × I ) ∪ (�× Iε) ⊂ �× I,

where �<ε denotes loops with energy less than ε. Similarly, let I o = (0, 1), and set
I oε = I o ∩ Iε and Uoε = (�<ε × I o) ∪�× I oε . The Gysin homomorphism of equation
(B.2.4), together with excision, gives mappings

Hj (�× I o, Uoε ) � Hj−n(F(0,1),F(0,1) ∩ Uoε )

Hj (�× I, Uε)
∼=
�

Hj−n(F[0,1],F[0,1] ∩ Uε)
∼=
�

which gives a mapping

lim
ε→0

Hj (�× I, Uε) → lim
ε→0

Hj−n(F[0,1],F[0,1] ∩ Uε).

Using the finite-dimensional approximation (§3) and the properties of Čech homology
described in Appendix A, it is easy to see that the singular and Čech homology coincide
in these cases, so the limits may be identified with

Hj
(
�× I, (�×∂I )∪ (�0 × I )

)
and Hj−n

(
F[0,1], (�× ∂I ) ∪ (�0 × I )

)
.

8.6. Sullivan’s path coproduct
Let P be a smooth compact manifold, and let La, Lb, Lc be compact submanifolds.
Let �ab (etc.) denote the Hilbert manifold of H 1-paths α : [0, 1] → P that start on
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La and end on Lb. Let �a∩b be the constant paths in La ∩ Lb. In [Su1] and [Su2],
Sullivan constructs a coproduct on transverse chains which gives rise to a coproduct
in homology,

Hi(�ac,�a∩c) → Hi+1−cod(Lb)

(
(�ab,�a∩b) × (�bc,�b∩c)

)
.

Its construction is parallel to that of ∨ in the preceding paragraphs, using the following
diagram in place of diagram (8.2.1):

�ac × I ev� P

�ab ×�bc � c K
∪

�

� Lb

∪

�

Here, ev is the evaluation map, so that K = ev−1(Lb) consists of pairs (α, t) with
α(t) ∈ Lb, and c is the “cutting” map. As discussed in [Su1] and [Su2], taking
P = M ×M and La = Lb = Lc = D gives the above case of the free loop space.

9. Cohomology products

9.1
We continue with the conventions of §2.5. To simplify the notation, we suppress
further mention of the coefficient ring G. Sullivan’s homology coproducts ∨t and ∨
of §8 can be converted into products on cohomology by reversing all the arrows. The
product corresponding to ∨t (t = 1/2) is the composition

Hi(�) ×Hj (�) → Hi+j (�×�)

→ Hi+j (F)
∼=−→ Hi+j+n(�,�− φ1/2(F)

)→ Hi+j+n(�)

(9.1.1)

(with φ1/2 : F → � as in §2.3) using the Thom isomorphism for the normal bundle
of the figure-eight space φ1/2(F) ⊂ �.We show below that this product is zero when
i, j > n. In the remainder of this article, we study the cohomology product

Hi(�,�0) ×Hj (�,�0)
�� Hi+j+n−1(�,�0) (9.1.2)

that arises from Sullivan’s operation ∨, that is, with respect to the Kronecker pairing,

〈x � y, a〉 = 〈x ⊗ y,∨a〉 (9.1.3)

for all x, y ∈ H ∗(�,�0) and a ∈ H∗(�,�0). In order to avoid the technical difficul-
ties involved with Lemma 8.3 (which arise because the evaluation mapping in (8.2.1)
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t
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8

Figure 2. Graph of θ1/2→s

fails to be transverse at t = 0, 1), we modify the construction slightly by using the
following mapping:

J : �× [0, 1] → � given by J (α, s) = α ◦ θ1/2→s .

Here, θ = θ1/2→s : [0, 1] → [0, 1] is the reparametrization function that is linear on
[0, 1/2], linear on [1/2, 1], has θ(0) = 0, θ(1) = 1, and θ(1/2) = s (see Figure 2
and §9.8).

Let F>0,>0 = (�−�0) ×M (�−�0) denote the set of composable pairs (α, β)
such that F (α) > 0 and F (β) > 0. The relative Thom isomorphism (B.2.1) for
cohomology gives

Hm(F,F − F≥ε,≥ε) ∼= Hm+n(�,�− φ1/2(F≥ε,≥ε)
)

and, by taking a limit as ε → 0, an isomorphism

Hm(F,F − F>0,>0) ∼= Hm+n(�,�− φ1/2(F>0,>0)
)
. (9.1.4)

The cohomology product is then the composition down the left-hand column of
Figure 3. Here,ω = (−1)j (n−1), I = [0, 1], F•,0 = �×M�0, and F0,• = �0 ×M�.

The mapping τ is the Thom isomorphism given by the cup product with the Thom
classμF of the normal bundle of φ1/2F in�, and κ is given by the Künneth theorem.
It uses the fact that J (�0 × [0, 1]) and J (�×{0, 1}) are disjoint from φ1/2(F>0,>0).

Denote the cohomology product of two classes α, β ∈ H ∗(�,�0) by α�β. The
construction may be summarized as passing from the left to the right in the following



xxx dmj7329 August 27, 2009 18:38

LOOP PRODUCTS AND CLOSED GEODESICS 149

Hi (Λ, Λ0) × Hj(Λ, Λ0) Hi (Λ) × Hj(Λ)

Hi+j (Λ × Λ, Λ × Λ0 ∪ Λ0 × Λ)

ω× ω×

Hi+j (Λ × Λ)

Hi+j (F, F•,0 ∪ F•,0) Hi+j (F)

Hi+j (F, F –F>0, >0) Hi+j (F)

Hi+j+n(Λ × Λ – φ   (F>0, >0))

τ τ(B.2.1)

1/2

(B.2.3)

Hi+j+n (Λ, Λ – φ   (�))
J* J*

Hi+j+n(Λ×I , Λ×∂I ∪Λ0 ×I)
η

Hi+j+n(Λ×I) = Hi+j+n(Λ)

Hi+j+n – 1(Λ, Λ0)

κ

1/2

Figure 3. Definition of �

diagram:

�×� � F � � �J
�× I

In Figure 3, the first horizontal mapping is an isomorphism if i, j > n since
�0

∼= M has dimension n. The mapping η is part of the long exact sequence for the
pair (�,�0) × (I, ∂I ), so it is zero. It follows that the cohomology product (9.1.1),
which is the composition down the right-hand column, vanishes if i, j > n.

PROPOSITION 9.2
The cohomology product � is associative and commutative up to a sign: if x ∈
Hi(�,�0) and y ∈ Hj (�,�0), then

y � x = (−1)(i+n−1)(j+n−1)x � y. (9.2.1)

Proof
The proof of associativity can be found in Appendix F. In this paragraph, we prove
(9.2.1). As in §5.2, let σ : �×� → �×� switch the two factors, and let χ̂r : � → �
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be the action of r ∈ S1 given by χ̂r (γ ) = γ ◦ χr , where χr (t) = r + t (mod 1). Then

χ1−s ◦ θ1/2→s = θ1/2→(1−s) ◦ χ1/2 (9.2.2)

(which may be seen from a direct calculation). For 0 ≤ r ≤ 1, define Jr : �×I → �

by

Jr (γ, s) = γ ◦ χr(1−s) ◦ θ1/2→s .

Then Jr ((�× ∂I ) ∪ (�0 × I )) ⊂ �− φ1/2(F>0,>0) because when s = 0 or s = 1
the loop Jr (γ, s) stays fixed on either [0, 1/2] or [1/2, 1]. Therefore the mapping J ∗

in Figure 3 may be replaced by J ∗
r for any r ∈ [0, 1]. However, J0 = J and

J1(γ, s) = γ ◦ χ1−s ◦ θ1/2→s = γ ◦ θ1/2→(1−s) ◦ χ1/2

= χ̂1/2

(
J (γ, 1 − s)).

So J1 reverses the s ∈ I coordinate, and it switches the front and back half of any
figure-eight loop γ ∈ F (cf. equation (5.2.1)). Let i : F → � × � denote the
inclusion; then

(−1)i(n−1)y � x = κJ ∗
0

(
μF ∪ i∗(y × x)

)
= (−1)ij κJ ∗

0

(
μF ∪ i∗σ ∗(x × y)

)
= (−1)ij (−1)nκJ ∗

0 σ
∗(μF ∪ i∗(x × y)

)
= (−1)ij (−1)nκJ ∗

1 σ
∗(μF ∪ i∗(x × y)

)
= (−1)ij (−1)n(−1)κJ ∗

0

(
μF ∪ i∗(x × y)

)
= (−1)ij+n+1(−1)j (n−1)x � y.

We remark that just as in the case of the relative cup product, the ring (H ∗(�,�0),�)
does not have a unit element 1 (see also §16.3).

9.3. Based loop space and Pontrjagin product
Fix a base point x0 ∈ M , and let � = �x0 = ev−1

0 (x0) be the (based) loop space.
It is a Hilbert submanifold of codimension n = dim(M) in �. The embedding
i : � → � has a trivial normal bundle and it induces Gysin homomorphisms
i! : Hi(�) → Hi−n(�) and i! : Hi(�, x0) → Hi+n(�,�0) (cf. equations (B.2.4)
and (C.1.1)). The Pontrjagin product

�×� •� �



xxx dmj7329 August 27, 2009 18:38

LOOP PRODUCTS AND CLOSED GEODESICS 151

(speed up by a factor of 2 and concatenate at time 1/2) is an embedding. Denote its
image (which is the based loops analog of the figure-eight space) by F� = � •�. It
is a Hilbert submanifold of�, with trivial n-dimensional normal bundle. We obtain a
fiber (or “Cartesian”) square,

�×� i×i� �×M �

�

•
�

i � �

φ1/2

�

from which it follows that the Pontrjagin product (which is not necessarily commuta-
tive) and the Chas-Sullivan product are related (see [CS, Proposition 3.4]) by

i!(a ∗ b) = i!(a) • i!(b),(
i∗(c)
) ∗ a = i∗

(
c • i!(a)

)
,

i∗i!(a) = x0 ∗ a,

for all a, b ∈ H∗(�) and c ∈ H∗(�), where x0 denotes the constant loop at the
basepoint x0 ∈ M.

As indicated in [Su1] and [Su2], Sullivan’s ∨ operation may be applied to the
chains on the based loop space. This gives rise to a cohomology product.

PROPOSITION 9.4
Replacing (�,�0) by (�, x0) in Figure 3, gives a product

Hi(�, x0) ×Hj (�, x0)
�� Hi+j+n−1(�, x0)

such that

i∗(a � b) = i∗(a) � i∗(b), (9.4.1)

i!(x) � a = i!
(
x � i∗(a)

)
, (9.4.2)

for any a, b ∈ H ∗(�,�0) and x ∈ H∗(�, x0). This product is often nontrivial.
Suppose that X, Y ⊂ � are smooth compact oriented submanifolds of dimension
i, j , respectively, and suppose that Z ⊂ � is an oriented compact submanifold of
dimension i + j + n − 1 such that the mapping J : Z × I → � is transverse to
F� = � •� and such that

J−1(F�) = (X • Y ) ×
{1

2

}
.
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Then

〈a � b, Z〉 = 〈a, [X]〉 · 〈b, [Y ]〉 (9.4.3)

for any a ∈ Hi(�, x0) and b ∈ Hj (�, x0).

The nontriviality of the product is taken up in §14.9. The rest of the proposition is
proven in Appendix C.

PROPOSITION 9.5
Let 0 ≤ a′ < a ≤ ∞, and let 0 ≤ b′ < b < ∞. Then the cohomology product
induces a family of compatible products

Hi(�<a,�<a
′
) ×Hj (�<b,�<b

′
)

�−→ Hi+j+n−1(�<c,�<c
′
), (9.5.1)

Ȟ i(�≤a,�≤a′
) × Ȟ j (�≤b,�≤b′

)
�−→ Ȟ i+j+n−1(�≤c, �≤c′), (9.5.2)

Ȟ i(�≤a,�<a) × Ȟ j (�≤b,�<b)
�−→ Ȟ i+j+n−1(�≤a+b,�<a+b), (9.5.3)

where c = min(a + b′, a′ + b) and c′ = a′ + b′. It is compatible with the homomor-
phisms induced by inclusions �<e → �<f whenever e ≤ f.

Proof
The construction of the product (9.5.1) is taken up in the next few sections. The
existence of (9.5.2) and (9.5.3) follows from (9.5.1) and §A.3.

9.6
We do not see how to prove Proposition 9.5 using the construction of §9.1 because
the mappings φ1/2 and J (which occur in the definition of �) are poorly behaved
with respect to the energy. We worked around this in Proposition 5.3 by using φmin

instead of φ1/2. But φmin is not an embedding. This does not present a problem for the
homology product, but for the cohomology product, such a substitution interferes with
the definition of the (Gysin) mapping τ in Figure 3. Our solution is to replace the free
loop space� by the space A of loops parametrized proportionally with respect to arc
length. On this (homotopy equivalent) space, the effect of φ1/2 on the energy is easy
to determine (see (9.8.3); but at the cost of having to deal with a more complicated
Thom isomorphism, see (9.1.4) vs. (9.7.2)).

Recall (see §2.1) if α ∈ A is a loop parametrized proportionally to arclength, then
F (α) = √

E(α) = L(α) is its length. Let FA = A ×M A be the associated figure-
eight space consisting of pairs of composable loops, each parametrized proportionally
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to arclength. Let A1/2 be the set of loops α ∈ � such that α|[0, 1/2] is PPAL and
α|[1/2, 1] is PPAL. Similarly, let

F<u,<v
A = {(α, β) ∈ A ×M A : L(α) < u and L(β) < v

}
,

A<u,<v
1/2 = {α ∈ A1/2 : L(α|[0, 1/2]) < u and L(α|[1/2, 1]) < v

}
,

and similarly for A=u,=v
1/2 , and so on. Then the mapping φ1/2 restricts to a closed

embedding

φ1/2 : F<u,<v
A → A<u,<v

1/2 . (9.6.1)

LEMMA 9.7
The orientations chosen in §2.5 determine a Thom isomorphism

Hi(F<u,<v
A ) ∼= Hi+n(A<u,<v

1/2 ,A<u,<v
1/2 − φ1/2(F<u,<v

A )
)

(9.7.1)

for the image φ1/2(F<u,<v
A ). If Z ⊂ F<u,<v

A is a closed subset, then this restricts to a
relative Thom isomorphism,

Hi(F<u,<v
A ,F<u,<v

A − Z) ∼= Hi+n(A<u,<v
1/2 ,A<u,<v

1/2 − φ1/2(Z)
)
. (9.7.2)

Proof
The space φ1/2(F<u,<v

A ) may be described as the preimage of the diagonal under the
mapping

(ev0, ev1/2) : A<u,<v
1/2 → M ×M.

If A1/2 were a Hilbert manifold, this would imply the existence of a normal bundle and
tubular neighborhood for φ1/2(F<u,<v

A ) in A<u,<v
1/2 . Unfortunately, A1/2 is probably

not a Hilbert manifold, and even though it may be a Banach manifold, we do not know
of any standard reference for the existence of tubular neighborhoods which can be
applied in this setting. However, we have the following commutative diagram, where
the vertical maps are homotopy equivalences (cf. Proposition 2.2):

φ1/2(F<u,<v) � �
<u,<v
1/2

M ×M
�

φ1/2(F<u,<v
A )

Q

�

�

� A<u,<v
1/2

Q

�

�

�
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Here, �<u,<v1/2 denotes the set of all α ∈ � such that E(α1) < u2 and E(α2) < v2,
where α1(t) = α(2t) (0 ≤ t ≤ 1/2) and α2(t) = α(2t − 1) (1/2 ≤ t ≤ 1). (In
other words, if α|[0, 1/2] and α|[1/2, 1] are both expanded into paths defined on
[0, 1], then their respective energies are bounded by u2 and v2.) Since � is a Hilbert
manifold, the same holds for�<u,<v1/2 ; hence φ1/2(F<u,<v) has a tubular neighborhood
and normal bundle in �<u,<v , and we have a Thom isomorphism

Hi(F<u,<v) ∼= Hi+n(�<u,<v,�<u,<v − φ1/2(F<u,<v)
)
.

The vertical homotopy equivalence in this diagram assigns to any α ∈ �
<u,<v
1/2

the same curve but with α|[0, 1/2] reparametrized proportionally to arclength and
with α|[1/2, 1] similarly reparametrized. It restricts to a homotopy equivalences
φ1/2(F<u,<v) → φ1/2(F<u,<v

A ) and also

�
<u,<v
1/2 − φ1/2(F<u,<v) → A<u,<v

1/2 − φ1/2(F<u,<v
A )

because the points α(0), α(1/2) are fixed. The Thom isomorphism (9.7.1) follows.
The relative Thom isomorphism (9.7.2) follows as in Proposition B.2.

9.8
Let I = [0, 1] denote the unit interval. The mapping J : � × I → � restricts to a
mapping JA : A × I → A1/2 which factors through the quotient A × I/R under
the equivalence relation R which, for eachm ∈ A0, collapses the interval {m} × I to
the point {m}. The resulting mapping

A × I/R → A1/2

is a homeomorphism, and in fact, the inverse mapping can be described as follows. Let
α ∈ A1/2 −A0. Let L0 denote the length of the segment α|[0, 1/2] (which is PPAL),
and letL1 denote the length of the segment α|[1/2, 1]. Set s = L0/(L0+L1).Assume
for the moment that 0 < s < 1. Let θs→1/2 = (θ1/2→s)−1 be the inverse function to
θ1/2→s ; it is linear on [0, s], linear on [s, 1], and takes the values θs→1/2(0) = 0,
θs→1/2(s) = 1/2, θs→1/2(1) = 1. Then α ◦ θs→1/2 is PPAL throughout the interval
[0, 1] so we may set

J−1
A (α) = (α ◦ θs→1/2, s).

If s = 0 (resp., s = 1), then this formula still makes sense because in this case, the
loop α is constant on [0, 1/2] (resp., on [1/2, 1]). If α0, α1 ∈ A are composable
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loops, not both constant, then the composed loop φ1/2(α0, α1) ∈ A1/2 and

J−1
A
(
φ1/2(α0, α1)

) = (φs(α0, α1), s
) = (φmin(α0, α1), s

)
, (9.8.1)

where s = L(α0)/(L(α0)+L(α1)) is the unique energy-minimizing value (cf. Lemma
2.4).

It follows that if A,B ⊂ A, then the mapping JA : A × [0, 1] → A1/2 takes

(A − A ∗ B) × [0, 1] into A1/2 − φ1/2(A×M B). (9.8.2)

For J (A0 × [0, 1]) = A0 which is contained in the right-hand side, so it suffices to
check that J (A ∗ B × [0, 1]) ⊃ φ1/2(A×M B), which follows from (9.8.1).

Similarly, the mapping JA satisfies

JA(α, s) ∈ A=sL(α),=(1−s)L(α)
1/2 (9.8.3)

which means the following: if we express JA(α, s) = φ1/2(β1, β2) as a composition
of two (not necessarily closed) paths β1, β2, each PPAL, and joined at time 1/2, then
L(β1) = sL(α) and L(β2) = (1 − s)L(α).

9.9
Define the following subsets of A × I :

T <a,<b = J−1
A (A<a,<b

1/2 )

= {(α, s) ∈ A × I : sL(α) < a and (1 − s)L(α) < b
}
,

T [a′,a),[b′,b) = J−1
A (φ1/2F[a′,a),[b′,b)

A )

= {(α, s) ∈ A × I : a′ ≤ sL(α) < a, b′ ≤ (1 − s)L(α) < b,

α(0) = α(s)
}
.

Figure 4 consists of three diagrams of L = √
E versus s ∈ [0, 1] illustrating the

curves sL = a and (1 − s)L = b which occur in the definition of T <a,<b. These
curves intersect at the point with coordinates s = a/(a + b) and L = a + b.

The diagrams on the right illustrate the corresponding regions for T [a′.a),[b′,b), where
I ′ = [a′/(a′ + b), a/(a + b′)].

Then A<c × I ′ ⊂ T <a,<b and

(A<c × ∂I ′) ∪ (A<c′ × I ′) ⊂ T <a,<b − T [a′,a),[b′,b),
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s s s

L L L

0 0 01 1 1

b
a

a + b

_____

b

b′

a

a′ 

c

c′ 

I′ 

c

b
a

b′ a′ 

a
a + b

Figure 4. The regions T <a,<b and T [a′,a),[b′,b)

where c = min(a + b′, a′ + b) and c′ = a′ + b′. In other words, we have a diagram
of pairs,

(A<c,A<c′) × (I ′, ∂I ′)

(T <a,<b, T <a,<b − T [a′,a),[b′,b))
�

(
A<a,<b

1/2 ,A<a,<b
1/2 − φ1/2(F[a′,a),[b′,b)

A )
)JA�

(9.9.1)

9.10
The product (9.5.1) is constructed in several steps. First, use the cross product,

Hi(A<a,A<a′
)×Hj (A<b,A<b′

)→Hi+j (A<a×A<b,A<a×A<b′∪A<a′×A<b);

then restrict to

Hi+j (F<a,<b
A ,F<a,<b′

A ∪ F<a′,<b
A ) = Hi+j (F<a,<b

A ,F<a,<b
A − F[a′,a),[b′,b)

A ).

Using the Thom isomorphism (9.7.2), we arrive at

Hi+j+n(A<a,<b
1/2 ,A<a,<b

1/2 − φ1/2(F[a′,a),[b′,b)
A )

)
.

Pulling back under (9.9.1) gives a class in

Hi+j+n ((A<c,A<c′) × (I ′, ∂I ′)
) ∼= Hi+j+n−1(A<c,A<c′),

as claimed.
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Taking a, b = ∞ and a′, b′ = 0 gives an equivalent construction of the coho-
mology product � using the space A rather than �, from which it is easy to see that
the products of §9.5 are compatible with the product (9.1.2). This completes the proof
of Proposition 9.5.

10. Support and critical levels

10.1
We continue with the conventions of §2.5. To simplify the notation, we suppress
further mention of the coefficient ring G. Proposition 9.5 gives the following.

COROLLARY

If α, β ∈ H ∗(�,�0), then

cr(α � β) ≥ cr(α) + cr(β). (10.1.1)

As in §§2.1 and 9.6, let A be the set of loops parametrized proportionally to arclength,
let A0 = �0 be the constant loops, and let A1/2 ⊂ � be the collection of those loops
that are PPAL on [0, 1/2] and are PPAL on [1/2, 1].We have continuous mappings

JA : A × [0, 1] → A1/2, φ1/2 : A ×M A → A1/2,

and

φmin : A ×M A → A ⊂ A1/2.

PROPOSITION 10.2
Suppose that α ∈ Hi(A,A0) is supported on a closed set A ⊂ A − A0. Suppose
that β ∈ Hj (A,A0) is supported on a closed set B ⊂ A − A0. Then α � β is
supported on the closed set A ∗ B = φmin(A×M B) ⊂ A − A0. The same holds for
Čech cohomology.

Proof
Using (9.8.2), we obtain a cohomology product

Hi(A,A − A) ×Hj (A,A − B) → Hi+j+n−1(A,A − A ∗ B)

as the composition

Hi+j (A × A,A × A − A× B) � Hi+j (FA,FA − A×M B)

Hi+j+n((A,A − A ∗ B) × (I, ∂I )
) �J

∗
A
Hi+j+n(A1/2,A1/2 − φ1/2(A×M B)

)(9.7.2) φ1/2
�

where I = [0, 1].
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10.3
We remark that the analogous fact for the cup product in cohomology is that α � β

is supported on the intersection A ∩ B. In particular, for any 0 ≤ a′ < a ≤ ∞ and
0 ≤ b′ < b ≤ ∞, the cup product gives mappings (with coefficients in Z),

Hi(�≤a,�≤a′
) ×Hj (�≤b,�≤b′

) → Hi+j (�≤min(a,b),�≤max(a′,b′)).

The inequality cr(α � β) ≥ cr(α) + cr(β) is false for M = S3 with the standard
metric (see §16.1).

10.4. On a question of Eliashberg
In a lecture at Princeton University in June 2007, Y. Eliashberg asked the following
question. LetM be a smooth compact Riemannian manifold, and let� be its free loop
space. Given 0 < t ∈ R, let d(t) be the maximal degree of an essential homology
class at level t, that is,

d(t) = max
{
k : Image

(
Hk(�

≤t ,Q) → Hk(�; Q)
) �= 0

}
. (10.4.1)

Does there exist a constantC ∈ R, independent of the metric, so that for all t1, t2 ∈ R+

the following holds:

d(t1 + t2) ≤ d(t1) + d(t2) + C?

Inequalities in the opposite direction are known. If the cohomology ring
(H ∗(�,�0; Q),�) is finitely generated, then we are able to give an affirmative answer
to this question. Moreover, in §14 we show the following: ifM admits a metric in which
all geodesics are closed, then the cohomology ring (H ∗(�),�) (with Q-coefficients if
M is orientable; with Z/(2)-coefficients otherwise) is finitely generated. This includes
the case of spheres and projective spaces.

For the remainder of this section only, we modify the conventions of §2.5 and
allow the coefficient ring G to be an arbitrary field.

THEOREM 10.5
Let M be a smooth Riemannian n-dimensional manifold. For t ∈ R+, define d(t) =
d(t ;G) by (10.4.1) but replacing the coefficients Q with the field G. Assume that the
cohomology ring (H ∗(�,�0;G),�) is finitely generated with all generators having
degree at most g. If t1, t2 ∈ R+, then

d(t1 + t2) ≤ d(t1) + d(t2) + 2n+ g − 2. (10.5.1)

Proof
Let t1, t2, t3 ∈ R+, and let di = d(ti ;G) for i = 1, 2, 3.We show that if

d3 > d1 + d2 + 2n+ g − 2, (10.5.2)
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then t3 > t1 + t2. From the definition (10.4.1) and since d3 > n = dim(�0), there
exist nonzero homology classes z′ and z, with

Hd3 (�
≤t3,�0)

i∗
� Hd3 (�,�0),

z′ � z = i∗(z′).

Let Z ∈ Hd3 (�,�0) be a cohomology class with nonzero Kronecker product,

〈Z, z〉 �= 0. (10.5.3)

The class Z is a sum of products of generators of the ring (H ∗(�,�0),�), and at
least one term in this sum has a nonzero Kronecker product with z. Replacing Z by
this term, it may be expressed as a product of generators,

Z = U1 � U2 � · · · � Uq (10.5.4)

with each deg(Ui) ≤ g.
We claim there exist X, Y ∈ H ∗(�,�0) such that Z = X � Y with deg(X) ≥

d1 + 1 and deg(Y ) ≥ d2 + 1. To see this, choose p so that

deg(U1 � U2 � · · · � Up−1) ≤ d1,

deg(U1 � U2 � · · · � Up) ≥ d1 + 1.

Take X = U1 � · · · � Up and Y = Up+1 � · · · � Uq. Then deg(Up) ≤ g, so
deg(X) ≤ d1 + g + n − 1, while deg(X � Y ) = d3 > d1 + d2 + 2n + g − 2, so
deg(Y ) > d2.

Using this claim and (10.4.1), and setting j = deg(X) and k = deg(Y ), there
exists X̂ which maps to X in the following exact sequence:

Hj (�,�≤t1 ) � Hj (�,�0) � Hj (�≤t1,�0),

X̂ � X.

Similarly, the class Y has some lift Ŷ ∈ Hk(�,�≤t2 ). Then X̂� Ŷ ∈ Hd3 (�,�t1+t2 )
maps to Z. But this implies that t3 > t1 + t2. Otherwise, �≤t3 ⊂ �≤t1+t2 so in the
following diagram,

Hd3 (�,�≤t3 ) � Hd3 (�,�0)
i∗
� Hd3 (�≤t3,�0)

Hd3 (�,�≤t1+t2 )

�

� Hd3 (�,�0)

�

� Hd3 (�≤t1+t2,�0)

�

X̂ � Ŷ � Z,
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we would have 〈Z, z〉 = 〈Z, i∗(z′)〉 = 〈i∗(Z), z′〉 = 0, which contradicts
(10.5.3).

10.6
We wish to remark on the importance of using the Morse function F rather than the
lengthL (which lacks the nice analytical properties ofE andF ) or the energyE (which
does not add when we compose loops). One could, of course, rewrite Propositions
5.3 and 9.5 and the definition (4.1.1) using E = F 2 instead of F. But the best linear
formulas involving E are (with the obvious notation)

Ȟi(�
E≤A) × Ȟj (�E≤B)

∗−→ Ȟi+j−n(�E≤2(A+B)), (10.6.1)

Ȟ i(�,�E≤A) × Ȟ j (�,�E≤B)
�−→ Ȟ i+j+n−1(�,�E≤(A+B)), (10.6.2)

and the energy-analog to (5.3.1) and (10.1.1) is

crE(x ∗ y) ≤ 2
(
crE(x) + crE(y)

)
for all x, y ∈ H∗(�), (10.6.3)

crE(X � Y ) ≥ crE(X) + crE(Y ) for all X, Y ∈ H ∗(�,�0). (10.6.4)

These formulas follow from the corresponding formulas for F and the inequality√
a2 + b2 ≤ a + b ≤

√
2(a2 + b2) (10.6.5)

when a, b ≥ 0.Because of the slack in the second inequality in (10.6.5), the homology
bounds (10.6.1) and (10.6.3) are weaker than (5.3.2) and (5.3.1), and they cannot be
sharp unless A = B (or crE(x) = crE(y)). Because of the slack in the first inequality
in (10.6.5), the cohomology formulas (10.6.2) and (10.6.4) are weaker than (9.5.1)
and (10.1.1) and are not sharp unless A = 0 or B = 0 (or unless crE(X) = 0 or
crE(Y ) = 0). Many of the results in this article depend essentially on the tautness of
(5.3.2), (5.3.1), (9.5.1), and (10.1.1).

11. Level nilpotence for cohomology

11.1
We use the notationM,�,F,� of §2 and the conventions of §2.5. We say that a class
α ∈ Hi(�,�0) is level-nilpotent if there existsm so that cr(α�m) > mcr(α).We say
that a class β ∈ Ȟ i(�≤a,�<a) is level-nilpotent if there exists m so that β�m = 0 in
Ȟmi+(m−1)(n−1)(�≤ma,�<ma).
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Let us say that two classes α ∈ Hi(�,�0) and β ∈ Ȟ i(�≤a,�<a) are associated
if there exists an associating class ω ∈ Ȟ i(�,�<a) with

ω � α Ȟ i(�,�<a) � Hi(�,�0)

in

β
�

Ȟi(�
≤a,�<a)

�

Then cr(α) > a if and only if α is associated to the zero class β = 0 ∈ Ȟ i(�≤a,�<a).

LEMMA 11.2
Suppose that α ∈ Hi(�,�0) and β ∈ Ȟ i(�≤a,�<a) are associated, where a =
cr(α). If β is level-nilpotent, then α is also level-nilpotent.

Proof
The proof is exactly parallel to that of Lemma 7.2.

THEOREM 11.3
LetM be a compact n-dimensional Riemannian manifold, and suppose that all critical
points of the function F = √

E : � → R are nondegenerate (i.e., they lie on
isolated nondegenerate critical orbits). If M is orientable, let G = Z; otherwise, let
G = Z/(2). Then every class α ∈ Hi(�,�0;G) is level-nilpotent and every class
β ∈ Hi(�≤a,�<a;G) is level-nilpotent (for any i > 0 and any a ∈ R).

Proof
The proof is similar to that of Theorem 7.3.

12. Level products in the nondegenerate case

12.1
Throughout this section, homology and cohomology are taken with coefficients in
G = Z. Let � ⊂ � be a nondegenerate critical orbit of index λ, and let U ⊂ � be
a sufficiently small neighborhood of �. Assume that the negative bundle � → � is
orientable. Then the (local, level) homology groups are

Ȟi(�
<c ∪�,�<c) ∼= Hi(�

≤c ∩ U,�<c ∩ U ) ∼=
{

Z if i = λ, λ+ 1,

0 otherwise,
(12.1.1)

and the same holds for the cohomology groups Hi(�≤c ∩ U,�<c ∩ U ).
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12.2
Now, suppose that γ ∈ � is a prime geodesic, all of whose iterates are nondegenerate.
Let a be its length. Let γ r denote the r-fold iterate, let λr denote its Morse index,
and let �r ⊂ � be its S1-saturation. Assume that the negative bundle �r over �r
is orientable (see Lemma 6.5), and let σr, τ r , σ r, τr be generators for the local level
(co)homology classes, that is,

σr ∈ Hλr , σ r ∈ Hλr+1, τ r ∈ Hλr , τr ∈ Hλr+1. (12.2.1)

As a consequence of the nilpotence results from §§7 and 11, the index λr can be
neither minimal nor maximal for all r (in the language of Proposition 6.1), and the
local level homology and cohomology rings(⊕

Hi(�
<ar∪�r,�<ar ;G), ∗

)
and

(⊕
Hi(�<ar∪�r,�<ar ;G),�

)
are not finitely generated. However, if the index growth is minimal up to the nth iterate
(with λr = λmin

r for all r ≤ n), then nontrivial (level) homology products exist; and if
the index growth is maximal up to the 2nth iterate (with λr = λmax

r for all r ≤ 2n), then
nontrivial (level) cohomology products exist, as described in the following theorem.

THEOREM 12.3
Assume that the manifold M is orientable, γ ∈ � is prime, all of its iterates are
nondegenerate, and the negative bundle �r is orientable for all r. Assume that r ≥ 2.
Then the following statements hold in the local level (co)homology group H (�<ra ∪
�r,�

<ra; Z) :
(1) (σ1)∗r = 0 and (τ1)�r = 0;
(2) some further products are described in Figures 5 and 6;
(3) if n− λ1 is even, then (σ 1)∗r = 0;
(4) if n− λ1 is even, then (τ 1)�r = 0.
Proof
We begin with the parity statements (3) and (4). In general, if σ ∈ Hk(�; Z) and
τ ∈ Hk(�; Z), then 2σ ∗ σ = 0 if n − k is odd and 2τ � τ = 0 if n − k is even.
This follows from Propositions 5.2 and 9.2, and it implies the vanishing of (σ 1)∗r and
(τ 1)�r if n− λ1 is even.

Statement (1) follows from the fact that the homology class σ1 is supported on a
closed subset A ⊂ �≤a such that A ∩ �1 consists of a single point. By Proposition
5.3, the product σ1 ∗ σ1 is supported on the set A ∗A′, where A′ ⊂ � is a support set
for σ1 that intersects�1 in a different point. Consequently, A ∗A′ ⊂ �<2a. Similarly,
the cohomology class τ1 ∈ Hλ(�≤a+ε, �<a) is supported on a closed set B ⊂ �≥a

that intersects �1 in a single point.
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(σ1)*(r−1)*σ1 (σ1)*r

λr = λr
min and λn = λn

min σr σr

λr = λr
min 0 0

Figure 5. Homology level products

(τ1)
(r−1) τ1 (τ1)

r

λrn = λrn τr τr

λr = λr 0 0

max

max

Figure 6. Cohomology level products

The zeros in the second row of each of the tables (see Figures 5 and 6) are also
easily explained. First, consider homology. By Lemma 6.5, the assumption that �r is
orientable for all r implies that all the λr have the same parity. We consider two cases.
(i) If n−λ1 is even, then λmin

2 and λ1 have opposite parity; hence λmin
r < λr for all

r > 1. In this case, (σ 1)∗r = 0 for r > 1 as above, and σ 1 ∗ σ1 = 0 because
σ 1 ∗ σ1 has degree λmin

2 < λ2.

(ii) If n− λ1 is odd, then λmin
2 and λ1 have the same parity. But all the λi have the

same parity, so if λr does not attain its minimum value (i.e., if λr �= λmin
r ), then

λmin
r + 2 ≤ λr.

In this case it follows from (12.1.1) that (σ 1)∗r = 0 and σ 1 ∗ σ1 = 0.
The cohomology calculations are similar. The remaining statements in Theorem 12.3
are proven in the next two sections.

12.4. Case of maximal index growth
In this section, we assume that λi = λmax

i for i ≤ rn. Choose x0 = γ (0) for the base
point ofM. By Lemma 6.4, the index λr equals the index λ�r of γ r in the based loop
space� = �x0, and it coincides with the index of γ r in the spaces T ⊥

γ r� and T ⊥
γ r� of

vector fields V (t) along γ r such that V (t) ⊥ γ ′(t) for all t.
Let W1 be a maximal negative subspace of T ⊥

γ � (so dim(W1) = λ1 = λ�1 ). Let
W •r

1 be the rλ1-dimensional negative subspace of Tγ r� consisting of concatenations
V1 • V2 • · · · • Vr of vector fields Vi ∈ W1. ThenW •r

1 is a maximal negative subspace
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of the kernel of

ν : T ⊥
γ r� → T ⊥

γ (0)M × · · · × T ⊥
γ (0)M,

V �→
(
V
(1

r

)
, . . . , V

(r − 1

r

))
.

Choose a maximal negative subspaceWr ⊂ T ⊥
γ r� containingW •r

1 . Then

dim(Wr ) = λ�r = λr = λmax
r = rλ1 + (r − 1)(n− 1).

It follows that the restriction of ν toWr is surjective because its kernel has dimension
rλ1.

Let Cr be the r-leafed clover consisting of loops η ∈ � such that η(0) = η(i/r)
for i = 0, 1, 2, . . . , r. The exponential map Tγ r (�) → � takesWr to a relative cycle
in (�≤ra, �≤ra−ε) which we also denote by Wr, whose (relative) homology class is
[Wr ] = σr (and [W1] = σ1).

The function J : � × [0, 1] → � extends in an obvious way to a family of
reparametrizations,

J : Wr ×
[1

r
− ε, 1

r
+ ε
]

×
[2

r
− ε, 2

r
+ ε
]

× · · · ×
[r − 1

r
− ε, r − 1

r
+ ε
]
,

which is transverse∗ to Cr and such that

J
(
Wr ×

[1

r
− ε, 1

r
+ ε
]
×· · ·×

[r − 1

r
− ε, r − 1

r
+ ε
])

∩Cr = W1 •W1 • · · · •W1

(Pontrjagin product). By (a relative version of) Proposition 9.4, we conclude that

〈τ 1 � τ 1 � · · · � τ 1, σr〉 = 〈τ 1 � τ 1 � · · · � τ 1, [Wr ]〉
= 〈τ 1, [W1]〉 · 〈τ 1, [W1]〉 · . . . · 〈τ 1, [W1]〉 = 1.

It follows that τ�r
1 = τr . The calculation for τ�(r−1)

1 � τ1 is similar. The same
technique, by explicitly displaying cycles, may be used to prove Theorem 14.2.

12.5. Case of minimal index growth
If (D�r, S�r ) denote the ε-disk and sphere bundle of the negative bundle �r → �r ,
then for sufficiently small ε > 0, the exponential mapping exp : D�r → � is a
smooth embedding whose image

(�−
r , ∂�

−
r ) = (exp(D�r ), exp(S�r )

)
∗The restriction J |Wr is transverse to Cr in the directions normal to γ ′(0) because ν|Wr is surjective. The
intervals [(i − 1)/r, i/r] take care of the tangential directions.
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is a smoothly embedded submanifold with boundary in� that “hangs down” from the
critical set �r. Its dimension is λr + 1 and its fundamental class is

σ r = [�−
r , ∂�

−
r ] ∈ Hλr+1(�<r� ∪�r,�<r�) ∼= Z,

where � denotes the length of γ.
Now, assume that λn = λmin

n . By Lemma 6.4, this implies that the difference
between λ�1 and λ1 is the maximum possible: λ1 = λ�1 + n− 1. LetW1 ⊂ T ⊥

γ � be a
maximal negative subspace. Then the mapping

ν : W1 → T ⊥
γ (0)M, ν(V ) = V (0) (12.5.1)

is surjective. Consequently,

ev0 : �−
1 → M

is a submersion in a neighborhood of the closed geodesic γ. It follows that �−
r and

�−
1 are transverse overM (in some neighborhood of γ r and γ ), and

�−
r ×M �

−
1

∼=
φmin

� �−
r ∗�−

1

is a smooth submanifold of � in a neighborhood of

�r ×M �1

∼=
φmin

� �r ∗�1 = �r+1

and is contained in �r+1 ∪ �<(r+1)�. Now, assume that the index growth is minimal
up to level r + 1 (i.e., λr+1 = (r + 1)λ1 − r(n− 1)), so that

dim(�−
r ×M �

−
1 ) = dim(�−

r+1).

Then we may apply∗ Theorem D.2 to the embeddings

�r+1 ⊂ �−
r ×M �

−
1

φmin

� �≤(r+1)�

to conclude that

[�−
r ∗�−

1 , ∂(�−
r ∗�−

1 )] = [�−
r+1, ∂�

−
r+1] ∈ Hλr+1+1(�r+1 ∪�<(r+1)�,�<(r+1)�).

∗The condition on the eigenvalues of the second derivative (in the hypotheses of Theorem D.2) is satisfied by the
energy functional, as a consequence of [Kl, Theorem 2.4.2].
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(In fact, we even obtain a local diffeomorphism τ : �−
r+1 → �−

r ∗ �−
1 between the

negative submanifolds by equation (D.3.1).) Using Proposition 5.5, we conclude that

[�−
r , ∂�

−
r ] ∗ [�−

1 , ∂�
−
1 ] = [�−

r+1, ∂�
−
r+1]

and, by induction, that

σ r+1 = σ r ∗ σ1 = (σ 1)∗r ∗ σ 1 = (σ 1)∗(r+1), (12.5.2)

as claimed. The geometric calculation of the product σr ∗ σ1 is similar. A similar
procedure is used to prove Theorem 13.4.

12.6. The nonnilpotent case
The case of isolated closed geodesics with slowest possible index growth was studied
in [Hi2]; fastest possible index growth was studied in [Hi3] in a slightly different
language because the ∗- and �-products were not available at the time. The Chas-
Sullivan homology product is modeled in the local geometry of an isolated closed
geodesic with the slowest possible growth rate. The symmetry between the geometry
in the case of slowest possible index growth (nonnilpotent level homology) and that of
fastest possible index growth (nonnilpotent level cohomology) inspired the search for
the cohomology product. We give statements here of two theorems on nonnilpotent
products that are restatements of the “complementary theorem” ([Hi3, p. 3100]) and
the theorem ([Hi3, p. 3099]).

THEOREM 12.7
Let γ be an isolated closed geodesic with nonnilpotent level homology. Let L =
length(γ ). Then for any ε > 0, if m ∈ Z is sufficiently large, there is a closed
geodesic with length in the open interval (mL,mL + ε). It follows that M has
infinitely many closed geodesics.

THEOREM 12.8
Let γ be an isolated closed geodesic with nonnilpotent level cohomology. Let L =
length(γ ). Then for any ε > 0, if m ∈ Z is sufficiently large, there exists a closed
geodesic with length in the open interval (mL−ε,mL). It follows thatM has infinitely
many closed geodesics.

13. Homology product when all geodesics are closed

13.1
In this section, we continue with the notation M,�,F,� of §2 and the conventions
of §2.5. Throughout this section, we assume that all geodesics γ are closed and simply
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periodic with the same prime length �, meaning that γ (0) = γ (1), γ ′(0) = γ ′(1), γ
is injective on (0, 1), and L(γ ) = � if γ is prime.

For r ≥ 1, denote by�r ⊂ � the critical set consisting of r-fold iterates of prime
closed geodesics. There is a diffeomorphism SM ∼= �r between the unit sphere bundle
ofM and�r,which assigns to each unit tangent vector v the r-fold iterate of the prime
geodesic with initial condition v. It follows that the nullity of each geodesic is at least
dim(�r ) − 1 = 2n − 2. Since this is the maximum nullity possible, we see that the
nullity νr of every closed geodesic is 2n−2. In particular, each�r is a nondegenerate
critical submanifold (in the sense of Bott) with critical value F (�r ) = r�, and this
accounts for all the critical points of the Morse function F = √

E.Moreover, for any
c ∈ R, the singular and Čech homology H∗(�≤c) agree by Proposition 3.3. Every
geodesic γ ∈ �r has the same index (see [Be, Theorem 7.23]), say, λr. By (6.1.1),
λr ≤ rλ1 + (r − 1)(n− 1). By (6.1.2), λr ≥ rλ1 + (r − 1)(n− 1); hence the index
growth is maximal,

λr = λmax
r = rλ1 + (r − 1)(n− 1). (13.1.1)

As in Theorem D.2, let �r → �r be the negative definite bundle. It is a real vector
bundle whose rank is λr.

PROPOSITION 13.2
IfM is orientable and all geodesics onM are closed with the same prime period, then
for any r the negative bundle �r is also orientable.

Proof
Fix r , and let γ0 ∈ �r be a basepoint. Set x0 = γ0(0) ∈ M. Using the long exact
sequence for the fibration SM → M , we see that the projection �r → M induces
an isomorphism π1(�r, γ0) ∼= π1(M,x0). If λ1 > 0, then by [Be, Theorem 7.23] the
manifold M is simply connected. So if dim(M) ≥ 3, the same is true of �r ; hence
every vector bundle on�r is orientable. If dim(M) = 2, thenM = S2 is the 2-sphere
and �r is orientable by inspection.

So we may assume that λ1 = 0. By [Be, Theorem 7.23], this implies that M is
diffeomorphic to real projective space and π1(M,x0) ∼= Z/(2). SinceM is orientable,
n = dim(M) is odd.

The bundle �r → �r is orientable if and only if its restriction to each loop in �r
is orientable, and it suffices to check this on any loop in the single nontrivial class in
π1(�r, γ0).We may even take that loop to be the canonical lift γ̃ : [0, 1] → SM,

γ̃ (t) = (γ (t), γ ′(t)/‖γ ′(t)‖)
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of a periodic prime geodesic γ : [0, 1] → M with γ (0) = x0. (Since each geodesic
is determined by its initial conditions, it follows that γ0 = γ r . This geodesic loop is
contractible inM if and only if r is even.)

It now follows from Lemma 6.5 that the bundle �r is orientable if r is odd, or
if r is even and �γ (−1) is even, where �γ is Bott’s index function (cf. §6.2). But
�γ (−1) = λ2 − λ1 = n− 1, which is even.

It follows from Theorem D.2 that a choice of orientation for �r determines an isomor-
phism

hr : Hi(�r ;G) ∼= Hi+λr (�
≤r�, �<r�;G), (13.2.1)

where G = Z ifM is orientable and G = Z/(2) otherwise (see also [O]).

13.3. The nonnilpotent homology class
Continue with the notation M,�,F,� of §2 and the conventions of §2.5. For any
c ∈ R, the long exact sequence for the pair (�≤c, �0) is canonically split by the
evaluation mapping ev0 : �≤c → �0 so we obtain a canonical isomorphism

Hi(�
≤c;G) ∼= Hi(�0;G) ⊕Hi(�≤c, �0;G). (13.3.1)

Taking c = � = F (�1) and using Theorem D.2 gives a canonical isomorphism

Hi(�
≤�;G) ∼= Hi(�0;G) ⊕Hi−λ1 (�1;G). (13.3.2)

The manifold �1 is orientable (whether or not M is) since T�1 ⊕ 1 ∼= h∗(TM) ⊕
h∗(TM). Choose an orientation of �1 with a resulting fundamental class [�1] ∈
H2n−1(�1;G). Define


 ∈ H2n−1+λ1 (�
≤�)

to be its image under the isomorphism (13.3.2). Set b = λ1 + n− 1.

THEOREM 13.4
Let M be an n-dimensional compact Riemannian manifold, all of whose geodesics
are simply periodic with the same prime length �. Then the following statements hold:
(1) the energy E : M → R is a perfect Morse-Bott function for H∗(�;G); that

is, for each r ≥ 1, every connecting homomorphism vanishes in the long exact
sequence

� Hi(�
<r�;G) � Hi(�

≤r�;G) � Hi(�
≤r�, �<r�;G) �
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(2) the product ∗
 : Hi(�,�0;G) → Hi+b(�,�0;G) with the class 
 is injec-
tive; and

(3) for all r ≥ 1, this product induces an isomorphism on level homology,

wr : Hi(�
≤r�, �<r�;G) → Hi+b(�≤(r+1)�,�<(r+1)�;G).

Proof
Assume, by induction on r , that βr : Hi(�≤r�, �0;G) → Hi(�≤r�, �<r�;G) is
surjective for all i. The case of r = 1 is handled by equation (13.3.2). Consider
the following commutative diagram, where the vertical mappings are given by the
Chas-Sullivan product ∗
:

Hi(�
<r�,�0) ⊂

αr

� Hi(�
≤r�, �0)

βr

�� Hi(�
≤r�, �<r�)

Hi+b(�<(r+1)�,�0)

ur

�

αr+1

� Hi+b(�≤(r+1)�,�0)

vr

�

βr+1

� Hi+b(�≤(r+1)�,�<(r+1)�)

wr

�

We show below that the mappingwr is an isomorphism. Assuming this for the moment,
it follows that βr+1 is surjective in all degrees. Hence the horizontal sequences in this
diagram split into short exact sequences (so the Morse function is perfect). Therefore
ur is injective if and only if vr is injective. However, vr may be identified with the
mapping ur+1 under the isomorphism Hi(�≤r�) ∼= Hi(�<(r+1)�) so it is injective by
induction. (The mapping u1 is trivially injective.) The rest of §13 is devoted to proving
that wr is an isomorphism.

THEOREM 13.5
Let M be an n-dimensional compact Riemannian manifold, all of whose geodesics
are simply periodic with the same prime length �, and continue with the conventions
of §2.5. Then, after composing with the isomorphism

hr : H∗(SM) → H∗(�≤r�, �<r�)

(where SM denotes the unit sphere bundle of the tangent bundle to M), the Chas-
Sullivan product becomes the intersection product on homology, which is to say that
the following diagram commutes:

Hi(�
≤r�, �<r�) ×Hj (�≤�,�<�)

∗� Hi+j−n(�≤(r+1)�,�<(r+1)�)

Hi−λr (SM) ×Hj−λ1 (SM)

hr×h1 ∼=�

� Hi−λr+j−λ1−2n+1(SM)

hr+1 ∼=
�

where the bottom row denotes the intersection product in homology.
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We remark that this immediately implies that wr is an isomorphism because the map-
ping wr is the C-S product with the unique top-dimensional class in H∗(�≤�,�<�)
which becomes the fundamental class [SM] ∈ H2n−1(SM) under the vertical isomor-
phism in the above diagram. But the intersection with the fundamental class is the
identity mapping H∗(SM) → H∗(SM).

Proof
The set�r ∗�1 = φr/(r+1)(�r ×M �1) consists of pairs of composable loops; the first
is an r-fold iterate of a prime geodesic, and the second is a single prime geodesic,
all parametrized proportionally with respect to arclength. This set contains �r+1 as a
submanifold of codimension n− 1. In fact, the inclusion

�r+1 → �r ∗�1 → �r ×�1 (13.5.1)

is the diagonal mapping SM → SM × SM.
Let (�−

r , ∂�
−
r ) = (exp(D�r ), exp(∂D�r )) be the negative submanifold that

hangs down from �r, as in Proposition D.2, where D�r denotes a sufficiently small
disk bundle in the negative bundle �r → �r and where ∂D�r denotes its bounding
sphere bundle. Then dim(�−

r ×M �
−
1 ) = dim(�−

r+1) so we can apply Theorem D.2
to the embeddings

�r+1 ⊂ �−
r ×M �

−
1

φmin

� �≤(r+1)�

followed by an arbitrarily brief flow under the vector field −∇F. The condition on the
eigenvalues of the second derivative (in the hypotheses of Theorem D.2) is satisfied
by the energy functional, as a consequence of [Kl, Theorem 2.4.2]. As in (D.3.1), we
obtain a local (in a neighborhood of �r+1) diffeomorphism

τ : �−
r+1 → �−

r ×M �
−
1 (13.5.2)

between the negative submanifolds (see Figure 7). By Proposition 5.5, the Chas-
Sullivan product is given by the composition down the right side of Figure 7.

On the other hand, the composition down the left side of Figure 7 is the intersection
pairing because the composition down the middle four rows is just the Gysin pullback
for the (diagonal) embedding (13.5.1). This completes the proof of Theorem 13.5 and
hence also of Theorem 13.4.

13.6
Define the filtration 0 ⊂ I0 ⊂ I1 ⊂ · · · ⊂ H∗(�,�0;G) by

Ir = Image
(
H∗(�≤r�, �0;G) → H∗(�,�0;G)

)
.



xxx dmj7329 August 27, 2009 18:38

LOOP PRODUCTS AND CLOSED GEODESICS 171

Hi (Λ≤r	 < r	, Λ ) (Λ≤	 < 	, Λ )⊗ Hj

Hi −λr (Σr ) ⊗ Hj −λ1 (Σ1)
∼=

∼=

∼=

∼=

∼=

∼=

∼=

∼=

Hi (Σ−
r , Σ−

r − Σr ) ⊗ Hj (Σ−
1 , Σ−

1 − Σ1)

Hi −λr+j −λ1 (Σr × Σ1)

×

Hi + j (Σ−
r ×Σ−

1 , Σ−
r ×Σ−

1 −Σr ×Σ1)

×

Hi −λr+j −λ1 −n (Σr ×M Σ1)

(B.2.4)

Hi + j (Σ−
r ×Σ−

1 , Σ−
r ×Σ−

1 −Σr ×M Σ1)

Hi −λr + j−λ1 −n (Σr ×M Σ1) Hi+j −n (Σ−
r ×M Σ−

1 , Σ−
r ×M Σ−

1 − Σr ×M Σ1)

(B.2.2)

Hi +j −n −λr+1
(Σr +1)

(B.2.4)

Hi+j−n (Σ−
r ×M Σ−

1 , Σ−
r ×M Σ−

1 −Σr+1)

Hi +j−n −λr+1
(Σr +1) Hi+j −n (Σ−

r+1 , Σ−
r+1 −Σr+1)

(13.5.2)

Hi +j −n (Λ≤(r +1)	 )	, Λ<(r +1 )

Figure 7. The C-S product when all geodesics are closed

By Proposition 5.3, Ir ∗ Is ⊂ Ir+s so the Chas-Sullivan product induces a product on
the associated graded group,

GrIH∗(�,�0;G) =
∞⊕
r=1

I r/I r−1 ∼=
∞⊕
r=1

H∗(�≤r�, �<r�),

which therefore coincides with the level homology ring (5.3.5). Let H∗(SM;G) be
the homology (intersection) ring of the unit sphere bundle, and let H∗(SM)[T ]≥1 =
TH∗(SM)[T ] be the ideal of polynomials with zero constant term.

COROLLARY 13.7
The mapping

� : H∗(SM;G)[T ]≥1 → GrIH∗(�,�0;G), (13.7.1)

�(aT m) = h1(a) ∗
∗(m−1) ∈ Hdeg(a)+λ1+(m−1)b(�
≤m�,�<m�;G)

is an isomorphism of rings.
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Proof
This follows immediately from Theorems 13.4 and 13.5.

14. Cohomology products when all geodesics are closed

14.1
Continue with the notation M,�,F,� of §2 and the conventions of §2.5. As in
§13.1, assume that M is compact n-dimensional and all geodesics on M are simply
periodic with the same prime length, �.Let�r ⊂ � denote the submanifold consisting
of the r-fold iterates of prime geodesics. It is a nondegenerate critical submanifold,
diffeomorphic to the unit sphere bundle SM, having index λr = rλ1 + (r − 1)(n− 1)
and critical value F (�r ) = r�. Let D�r, S�r be the unit disk bundle and unit sphere
bundle of the negative bundle �r → �r. Theorem D.2 then gives an isomorphism

hr : Hi(�r )
∼=−→ Hi+λr (�≤r�, �<r�) (14.1.1)

by identifying each with Hi+λr (D�r, S�r ). Thus, if r ≥ 2 and j < λ2, then
Hj (�≤r�, �≤(r−1)�) = 0. Since F is perfect, we obtain isomorphisms

Hj (�,�0) ∼= Hj (�≤N�,�0) ∼= · · · ∼= Hj (�≤�,�0) ∼= Hj−λ1 (�1) (14.1.2)

for all j < λ2 (if N is sufficiently large). Define

ω ∈ Hλ1 (�,�0) ∼= H 0(�1) (14.1.3)

to be the image of 1.

THEOREM 14.2
Assume that M is compact n-dimensional, and assume that all geodesics on M are
simply periodic with the same prime length �. Then
(1) the energy E : � → R is a perfect Morse function for cohomology, meaning

that for each r ≥ 1 the connecting homomorphism vanishes in the long exact
sequence

� Hi(�≤(r+1)�,�≤r�;G) � Hi(�≤(r+1)�,�0;G) � Hi(�≤r�, �0;G) �

Hi(�≤(r+1)�,�<(r+1)�;G)

∼=�

(2) the product �ω : Hi(�,�0) → Hi+b(�,�0) is injective; and
(3) this product induces an isomorphism

wr : Hi(�≤r�, �<r�) → Hi+b(�≤(r+1)�,�<(r+1)�)

for all r ≥ 1 and all i ≥ 0.
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As in the proof of Theorem 13.4, part (3) implies parts (1) and (2). Part (3) is a
consequence of the following stronger statement.

THEOREM 14.3
After composing with the isomorphism

hr : H ∗(SM) → H ∗(�≤r�, �<r�),

the cohomology product becomes the cup product on cohomology, which is to say that
the following diagram commutes (recall that λr+1 = λ1 + λr + n− 1):

Ha(�r ) ⊗Hb(�1)
hr⊗h1

� Ha+λr (�≤r�, �<r�) ⊗Hb+λ1 (�≤�,�<�)

Ha+b(�r+1)

�
�

hr+1

� Ha+b+λr+1 (�≤(r+1)�,�<(r+1)�)

�
�

The proof appears in the next few sections. In order to use Proposition 9.5 we need to
work in the space A of PPAL loops.

14.4
Fix r ≥ 1. Let r�+ = r�+ 2ε, let r�− = r�− ε, let �+ = �+ 2ε, and let �− = �− ε.
Set j = a + b + λr + λ1 so that j + n − 1 = a + b + λr+1. It is convenient to
replace the gluing map φ1/2 : A ×M A → A1/2 with the topologically equivalent
embedding φr/(r+1) : A ×M A → Ar/(r+1), which approximates φmin near�r ×�1;
in fact,

�r ∗�1 = φmin(�r ×M �1) = φr/(r+1)(�r ×M �1).

We write

F<a,<b
r/(r+1) for φr/(r+1)(F<a,<b

A ).

Similarly, we replace mapping JA : A × [0, 1] → A1/2 with the mapping

Jr : A × [0, 1] → Ar/(r+1)

given by Jr (α, s) = α ◦ θr/(r+1)→s , where Ar/(r+1) and θr/(r+1)→s are defined by
replacing 1/2 with r/(r + 1) in §9.1. The mapping A≤(r+1)� → A≤r�,≤�

r/(r+1) given by
α �→ Jr (α, r/(r + 1)) is a homotopy equivalence; its inverse assigns to a pair of
joinable PPAL paths α, β ∈ Ar/(r+1) (with α(1) = β(0) and β(1) = α(0)) with
lengths at most r� and at most �, respectively, the path φmin(α, β) obtained by joining
them at time L(α)/(L(α) + L(β)).
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Let I ′ be the closed interval

I ′ =
[ r�− ε

(r + 1)�+ ε ,
r�+ 2ε

(r + 1)�+ ε
]

as in §9.10. Then

Jr (A<(r+1)�+ε × I ′) ⊂ A<r�+,<�+
r/(r+1) ,

and Jr takes both A<(r+1)�+ε × ∂I ′ and A<(r+1)�−2ε × I ′ into the subset

A<r�+,<�+
r/(r+1) − φr/(r+1)(F[r�−,r�+),[�−,�+)

A ).

14.5
Recall from Proposition 13.2 that the negative bundle �r over�r is orientable ifM is
orientable, and that the exponential defines a diffeomorphism er of a sufficiently small
disk bundle and its bounding sphere bundle, (D�r, ∂D�r ) onto a submanifold with
boundary, (�−

r , ∂�r ) in�≤r�, such that er (D�r −�r ) ⊂ �<r� (where �r is the zero
section). Using the homotopy equivalence Q : �≤r� → A≤r� of Proposition 2.2, we
may assume that �−

r ⊂ A≤r� so we obtain isomorphisms that we also denote by

hr : Hi(�r ) ∼= Hi+λr (�−
r , ∂�

−
r ) ∼= Hi+λr (A≤r�,A<r�).

Moreover, equation (13.5.2) gives a diffeomorphism τ : �−
r+1 → �−

r ×M �
−
1

∼=
�−
r ∗�−

1 . The following diagram may help in sorting out these different spaces:

�r+1 ⊂ �−
r+1 ⊂ A≤(r+1)�

�r ∗�1

�
⊂ �−

r ∗�−
1

�
⊂ A≤r�,≤�

r/(r+1)

η
�

F[r�−,r�+),[�−,�+)
r/(r+1)

�
⊂ F<r�+,<�+

r/(r+1)

�
⊂ A<r�+,<�+

r/(r+1)

�

In order to compact the notation, for the rest of the section we write

H ∗(Y,∼ A) for H ∗(Y, Y − A).

14.6
We are now in a position to expand the diagram in Theorem 14.3. This is accomplished
in Figure 8. Here, j = a+ b+λr +λ1 so that j +n− 1 = a+ b+λr+1. Each of the
rectangles in this diagram is obviously commutative except possibly for the portion
denoted 1 , which we now explain, as it involves the somewhat mysterious degree
shift of 1, and its relationship to the mapping Jr .
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The figure-eight space F has a normal bundle in � which is isomorphic to the
(pullback of the) normal bundle of the diagonal in M ×M and hence to the tangent
bundle TM ofM. Its Thom class is denoted μTM and the Thom isomorphism (9.7.2)
is given by the cup product with this Thom class. The normal bundle of �r+1 in
�r ×M �1 is denoted ϒ. The Gysin mapping (labeled §B.4 in Figure 8) is given by
the cup product with the Thom class μϒ. The Künneth isomorphism at the lower right
corner of the diagram is given by the cup product with the generator of H 1(I ′, ∂I ′)
which may be identified with the Thom classμO of the trivial one-dimensional bundle
O on the interval I ′.

So to prove that 1 commutes, we need to compare the Thom class μTM with the
product of Thom classesμϒ∪μO. It suffices to construct a vector bundle isomorphism
J ∗
r (TM) ∼= ϒ ⊕ O.

The critical set �r+1 is a submanifold of codimension n− 1 in �r ∗�1. A point
in the latter space is an r-fold iterate of a prime closed geodesic followed by a prime
closed geodesic with the same basepoint, all parametrized proportionally with respect
to arclength, so it is determined by a triple (p, u, v), where p ∈ M and u, v ∈ Sp are
unit tangent vectors at p. This point lies in �r+1 if and only if u = v. It follows that
the normal bundle ϒ of �r+1 in �r ∗ �1 may be naturally identified with the bundle
ker(dπ) of tangents to the fibers of the projection π : SM → M. But there is another
way to view this bundle.

Let ν be the tautological (trivial) bundle over SM whose fiber at the point v ∈ Sp
is the 1-dimensional span 〈v〉 ⊂ TpM. Then π∗(TM) ∼= ν ⊕ ν⊥, where ν⊥ is the
bundle whose fiber over v ∈ Sp is v⊥. For any v ∈ Sp, the inclusion of the unit tangent
sphere Sp ⊂ TpM induces an injection ker(dπ) ↪→ TpM whose image is ν⊥. In this
way, we obtain a canonical isomorphism ϒ ∼= ν⊥ and therefore an isomorphism
π∗(TM) ∼= ϒ ⊕ ν.

Consider the restriction Jr : �r+1 × I ′ → �, say, β = Jr (α, s). Then ∂Jr
∂s

(α, s)
is a vector field along β that is a multiple of the tangent vector β ′ since the s-factor
changes only the parametrization. This gives an isomorphism between J ∗

r (ν) and
the trivial 1-dimensional tangent bundle T I ′ on �r+1 × I ′. In summary, we have
constructed an isomorphism J ∗

r (TM) ∼= ϒ ⊕ O. This completes the proof that the
diagram in Theorem 14.3 commutes, so it completes the proof of Theorem 14.2.

14.7. Level cohomology ring
Continue with the assumption that all geodesics on M are simply periodic with the
same prime length �. Define the filtration H ∗(�,�0;G) = I 0 ⊃ I 1 ⊃ · · · by

I r = Image
(
H ∗(�,�≤r�;G) → H ∗(�,�0;G)

)
.
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Each I r ⊂ H ∗(�,�0) is an ideal (with respect to the �-product) and I r � I s ⊂ I r+s .
Since the Morse function is perfect, it induces an isomorphism

GrIH ∗(�,�0) ∼=
⊕
r≥1

H ∗(�≤r�, �<r�)

between the associated graded ring and the level cohomology ring. Let H ∗(SM;G)
denote the cohomology ring of the unit sphere bundle ofM.

COROLLARY 14.8
The mapping (cf. §13.6)

 : H ∗(SM;G)[T ]≥1 → GrIH ∗(�,�0;G) =
⊕
r≥1

H ∗(�≤r�, �<r�)

given by

 (aT m) = h1(a) � ω�(m−1) ∈ H deg(a)+λ1+(m−1)b(�≤m�,�<m�;G)

is an isomorphism of rings. The ring (H ∗(�,�0;G),�) is (finitely) generated by the
class ω ∈ Hλ1 (�,�0) together with any lift to H ∗(�,�0) of h1 (H ∗(�1)) .

Proof
Just as in Corollary 13.7, the �-product on�1 may be identified with the cup product
because the diagram in §14.6 commutes, which proves the first statement. The second
statement follows.

14.9. Based loop space
Let � = �x0 ⊂ � denote the space of loops in M that are based at x0. Suppose
as above that all geodesics on M are simply periodic with the same prime length �.
Since the index growth is maximal (cf. (13.1.1)), the index of each critical point in
� is the same as that in � (cf. Lemma 6.4). The critical set ��r ⊂ � at level r�
is parametrized by the unit sphere Sn−1 ⊂ Tx0M. The arguments of the preceding
section may be applied to the based loop space with its product � (cf. Proposition
9.4), and we conclude that the cohomology algebra (H ∗(�x0, x0),�) is filtered by the
energy and the associated graded algebra is isomorphic to the polynomial algebra
H ∗(��1 )[T ], where deg(T ) = b = λ1 + n− 1 and whereH ∗(��1 ) is the cohomology
algebra of the sphere Sn−1. The restriction mapping H ∗(�) → H ∗(�) induces the
mapping on the associated graded algebras

H ∗(SM)[T ] → H ∗(Sn−1)[T ], (14.9.1)
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degree

H* (Λ)

C-J-Y

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

u0 u1 u2 u3 u4 u5 u6

a au au3au2 au4 au5 au6 au7

Figure 9. Homology of �S3

which is determined by the restriction homomorphism

H ∗(�1) → H ∗(��1 ). (14.9.2)

15. Loop products on spheres

15.1
In this section, we explicitly work out the example ofM = Sn.Throughout Section 15,
the coefficient ring G denotes either Z or Z/(2). Fix n ≥ 3, and let M = Sn with
the standard metric, having prime geodesics of length �. The index λr can be found
in [Mo1, equation (5.9), p. 324]; more recent references include [Z1], [B], or [Hi1, p.
103]:

λr = (2r − 1)(n− 1).

Set λ := λ1 = n − 1. Let i : � → � be the inclusion of the based loop space with
basepoint x0 ∈ M. The homology of the based loop space can be found, for example,
in [Fu]: Hq(�;G) = G if q = kλ (for any integer k ≥ 0) and Hq(�;G) = 0
otherwise.

Recall that� denotes the unit tangent bundle ofM = Sn; it is naturally embedded,
� → �, as the submanifold �1 of prime closed geodesics. Those that start at the
basepoint x0 constitute an (n− 1)-sphere, S = �1 ∩�.

15.2. Homology of �(S3)
In [CJY] for n odd, the Chas-Sullivan ring of Sn was computed:

H∗(�Sn)[−n] ∼=∧(a) ⊗ Z[u].

Here, deg(a) = −n, and deg(u) = n− 1, and [−n] denotes a shift of degree by −n.
This is illustrated, forM = S3 and G = Z, in Figure 9. The bottom row is the image
i∗(H∗(�; Z)) of the homology of the based loop space.

The dark S-shaped boxes are copies ofH∗(�) = (Z, 0,Z,Z, 0,Z), the homology
of the unit sphere bundle, and they consist of homology classes a with a fixed critical
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value cr(a), which illustrates Corollary 13.7. The nonnilpotent class
, which comes
from [�1], is the class u2 ∈ H7(�).

15.3. Cohomology ring of �Sn and �Sn

The proof of the following result takes up the rest of Section 15.

THEOREM

For M = Sn, up to appropriate shifts in the gradings, the cohomology rings
(H ∗(�, x0;G),�) and (H ∗(�,�0;G),�) are described as follows.
(1) For all n, H ∗(�, x0;G) ∼= G[T ]≥2.

(2) When n is odd,

H ∗(�,�0;G) ∼=∧(U ) ⊗G[T ]≥2.

(3) When n is even and G = Z/(2),

H ∗(�,�0; Z/(2)
) ∼=∧(U ) ⊗ Z/(2)[T ]≥2.

(4) When n is even and G = Z,

H ∗(�,�0; Z) ∼= H ∗(�; Z)[T ]≥1
∼= GrI (�,�0; Z).

Here, G[T ]≥r denotes the ideal (T r ) in the ring of polynomials.

LEMMA 15.4
The isomorphism h1 : Hi(�;G) → Hi+λ(�≤�,�0;G) of equation (14.1.1) lifts to a
canonical injection for 0 ≤ i ≤ 2λ+ 1,

h1 : Hi(�;G) → Hi+λ(�,�0;G) (15.4.1)

with critical values (or level), cr(h1(a)) = � for all a ∈ H ∗(�;G).

Proof
The proof is an easy induction using the fact that the energy is a perfect Morse function,
plus the fact that for every integer q ≥ 1, the rank of

⊕∞
k=1H

q(�≤(k+1)�,�≤k�;G) is
less than or equal to one. �

As above, let ω = h1(1) ∈ Hλ(�,�0;G) be the nonnilpotent class. By Theorem
14.2, the map ω� · (i.e., multiplication by ω) is injective, so every cohomology class
is (a sum of classes) of the formωa�h1(g), where g ∈ H ∗(�;G). In order to compute
the full cohomology product structure, it therefore suffices to determine all products
h1(u) � h1(v) for u, v ∈ H ∗(�;G).We start with the based loop space �Sn.
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15.5. Cohomology ring of �Sn

In this section we surpress mention of the map i∗, so we use the notation ω ∈
Hλ(�, x0;G) for the class i∗(ω). Let S ⊂ � denote the set of prime closed geodesics
that start at the basepoint; it is diffeomorphic to the unit sphere Sn−1. The mapping h1

of (15.4.1) restricts to an injection

h�1 : Hi(S;G) → Hi+λ(�, x0;G).

Let g ∈ Hn−1(S;G) be a generator, and set

X = h�1 (g) ∈ Hλ(�, x0;G).

ThenH ∗(�, x0;G) is a freeG-module with generators ω�a ∈ H (2a−1)λ(�, x0;G) for
a ≥ 1 and ω�b � X ∈ H (2b+2)λ(�, x0;G) for b ≥ 0. It remains to compute X � X

(see the bottom row in Figure 10).

LEMMA

In the cohomology ring (H ∗(�, x0;G),�), we have

X �X = ω�3. (15.5.1)

Proof
Let B → � be the space of circles, consisting of pairs (γ, V ), where γ ∈ � starts at
the basepoint x0 ∈ Sn, is parametrized proportionally to arclength, and traces out the
intersection of Sn ⊂ Rn+1 with an affine 2-plane containing x0; and where V ∈ Tx0S

n

is a unit tangent vector such that γ ′(0) = λV for some λ ≥ 0. Fix a unit tangent
vector V ∈ Tx0S

n, and let A ⊂ B be the set of loops with initial tangent direction
given by V. As explained in [Hi4], the homology of � is generated over Z at level �
by the classes

[A] ∈ Hm(�, x0) and [B] ∈ H2m(�, x0).

Then [A] generates the Pontrjagin ring (see [BS], who essentially ascribe the result
to Morse), [A] • [A] = [B], and the element [A] • [B]•k = [A • B•k] generates
H(2k+1)m(�, x0). In particular, 〈ω�3, [A • B • B]〉 = 1.We claim that

∨[A • B • B] = [A] ⊗ [A • B] + [A • B] ⊗ A+ [B] ⊗ [B]. (15.5.2)

This proves equation (15.5.1) because, using (9.1.3),

〈X �X, [A • B • B]〉 = 〈X ⊗X,∨[A • B • B]〉 = 〈X,B〉 · 〈X,B〉 = 1.
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We give a very brief outline of a geometric proof of (15.5.2). Let α · β · γ be a
loop inA•B •B such that none of α, β, γ is trivial. Then α ·β ·γ (t) = x0 if and only
if t ∈ {0, 1/3, 2/3}, and α · β · γ has a “corner” (discontinuity in the derivative) at
t = 1/3 if and only if β does not have initial tangent direction V. Similarly, α ·β ·γ has
a corner at t = 2/3 if and only if β and γ do not have the same initial tangent direction.
If we cut off the corners where tangent directions do not match up, intersections at x0

occur only when the tangent directions at t = 1/3 or t = 2/3 agree.
There is a diagram for the coproduct inH∗(�, x0) that is analogous to the diagram

(8.2.1) for the coproduct inH∗(�,�0). To calculate ∨([A•B •B]), we replace�×I
in this diagram with A • B • B and check that the required transversality holds,
obtaining a diagram

(A • B • B) × I (ev0,ev)� {x0} × Sn

�×� � c
T
∪

�

� {x0} × {x0}
∪

�
(15.5.3)

where T = (A • A • B) × {1/3} ∪ (A •W ) × {2/3} and where

W = {α · β : α′(0) = β ′(0)
}
.

The cycleW can be deformed in F� into (A •B) ∪ (B •A). This is becauseW may
be realized as the preimage of the diagonal under the mapping B × B → Sx0 × Sx0

which forgets the paths but keeps the unit vectors, where Sx0 is the unit sphere in
Tx0S

n. The diagonal is cobordant within Sx0 ×Sx0 to ({V}×Sx0 )∪ (Sx0 ×{V}). Pulling
back this cobordism gives a homology betweenW and (B •A)∪ (A•B). In summary,
cut A • A • B at t = 1/3, and cut (A • B • A) ∪ (A • A • B) at t = 2/3 to obtain
[A] ⊗ [A •B] + [A •B] ⊗ [A] + [A •A] ⊗ [B]. The last term equals [B] ⊗ [B]. �

As a consequence there are several ways to abstractly describe the ring
(H ∗(�, x0;G),�). The most obvious is the following: the ideal generated by (ω,X)
in the polynomial ringG[ω,X]/(X2 −ω3). However, another description is the ideal
G[T ]≥2 generated by T 2 in the ring of polynomials. The isomorphism between these
descriptions is obtained by setting ω = T 2 and X = T 3. This completes the proof of
item (1) in Theorem 15.3.

15.6. Odd-dimensional spheres; even spheres with G = Z/(2)
If n is odd, setG = Z or Z/(2). If n is even, setG = Z/(2).Under these assumptions,
the cohomology of the unit tangent bundle � is a free module overG with generators
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deg

H*
λ λ+1 ... ... ... ... ...2λ+1 3λ+1 4λ+1 5λ+1 6λ+12λ 3λ 4λ 5λ 6λ

GGG GGG GGG GG

Y Z

ω X ω2 ωX

ωY ωZ

ω3 ω2X

ω2Y

Figure 10. H ∗(�,�0;G)

1 ∈ H 0, x ∈ Hλ, y ∈ Hλ+1, and z ∈ H 2λ+1. Then

x � y = z, (15.6.1)

and there are no other nontrivial cup products inH ∗(�;G).Applying the isomorphism
h1 of equation (15.4.1), we obtain classes ω ∈ Hλ, X ∈ H 2λ, Y ∈ H 2λ+1, and
Z ∈ H 3λ+1, respectively, in the cohomologyH ∗(�,�0;G) (see Figure 10). We need
to compute all products among these four classes.

Figure 10 also illustrates the mappings (where i! is the Gysin map),

Hq(�, x0;G) �i
∗
Hq(�,�0;G) �i! Hq−λ(�, x0;G).

Using the spectral sequence for the map � → �, as described in [CJY] (see also
[Bro], [S], [M]), we find the following: If q = kλ (k ≥ 1), then i∗ is an isomorphism.
Thus i∗ kills the top row, and it maps the bottom row isomorphically toH ∗(�, x0;G).
If q = kλ + 1 (k ≥ 2), then i! is an isomorphism and its image is the top row. In
particular,

i!(i
∗ω) = Y and i!(i

∗X) = Z. (15.6.2)

In the cohomology of the based loop space, we have

X �X = ω�3 (15.6.3)

so the same holds in H ∗(�,�0;G). Each dark S-shaped box in Figure 10 is a copy
of H ∗(�;G). It consists of elements u ∈ H ∗(�,�0;G) with the same critical value,
cr(u). By Theorem 14.3 and equations (15.6.1) and (9.2.1),

X � Y = Y �X = ω� Z. (15.6.4)

For n ≥ 4, we also have

Z � Z = Y � Y = Y � Z = 0 (15.6.5)
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since the cohomology is trivial in degrees congruent to 2 (mod λ). For n = 3, the
same holds because, for example, Y � Y = aω � ω � X for some a ∈ G. But
i∗(ω� ω�X) �= 0, while i∗(Y � Y ) = i∗(Y ) � i∗(Y ) = 0. So a = 0.

Finally, use the projection formula (9.4.2) and equation (15.6.2) to obtain

X � Z = X � i!(X) = i!
(
i∗(X �X)

)
= i!
(
i∗(ω�3)

) = ω�2 � Y.
(15.6.6)

This gives parts (2) and (3) of Theorem 15.3 by setting ω = T 2, X = T 3,
Y = U ⊗ T 2, and Z = U ⊗ T 3. We remark that the products (15.6.3) and (15.6.6)
are “supra-level”; that is, cr(X � X) = 3� > 2cr(X) and cr(X � Z) = 3� >
cr(X) + cr(Z).

15.7. Even-dimensional spheres, Z-coefficients
Let n ≥ 4 be even. The cohomology of the unit tangent bundle is

H ∗(�; Z) ∼= Z[0] ⊕ Z/(2)[−n] ⊕ Z[1 − 2n],

where Z[−r] denotes a copy of Z in degree r . This gives rise to classes ω ∈
Hλ(�,�0), Y ∈ H 2λ+1(�,�0), and Z ∈ H 3λ+1(�,�0), respectively. For the same
reasons as above,

Z � Z = Y � Y = Y � Z = 0.

Part (4) of Theorem 15.3 follows; a more precise version is the following.

SCHOLIUM

The injection h1 of (15.4.1) induces an isomorphism of graded rings

h : H ∗(�;G)[T ]≥1 → H ∗(�,�0;G)[−m]

given by h(aT k) = h1(a) � ω�(k−1), where deg(T ) = 2m. The associated critical
value is cr(h(aT k)) = k� for any a ∈ H ∗(�;G), and the product � is level-
preserving; that is, if u, v ∈ H ∗(�,�0;G) and u � v �= 0, then cr(u � v) =
cr(u) + cr(v).

This formula says, for example, that the element xT 2 has degreem+ 4m, and it maps
to X � ω ∈ H 4m(�,�0) which is the degree 5m part of H ∗(�,�0)[−m].

15.8. Remark
The computations in this section were significantly simplified by the unique lift of
H ∗(�) ∼= H ∗(�≤�,�0) toH ∗(�,�0) as provided by Lemma 15.4. But on a manifold
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with all geodesics closed, even without such a lift, the difference between two lifts of
a given class in H ∗(�≤�,�0) is a class a ∈ H ∗(�,�0) such that cr(a) ≥ 2�. Thus
the “leading term” of the product of two classes fromH ∗(�≤�,�0) is independent of
the lift, with the result that the associated graded ring GrIH ∗(�,�0) has a canonical
structure, which is described in Corollary 14.8.

16. Three counterexamples

16.1
The manifold S3 illustrates the fact that the cup product on H ∗(�) is poorly behaved
with respect to critical levels (cf. §10.3). From Figure 9, it follows that the inclusion
i : � → � of the based loop space induces a surjection H ∗(�,�0) → H ∗(�,�0)
and an isomorphism

i∗ : H 2q(�,�0) → H 2q(�,�0) ∼= Z

for all q ≥ 0. Denote by ω ∈ H 2(�,�0) the nonnilpotent cohomology class; hence
cr(ω) = λ1 = 2. It is shown in [BT, p. 205] that the generator i∗(ω) of H 2(�,�0)
satisfies

i∗(ω) � i∗(ω) �= 0

from which it follows that ω � ω �= 0. But since deg(ω � ω) = 4 < λ2 = 6, we
may conclude that cr(ω � ω) = λ1 = 2. In particular, cr(ω � ω) �≥ cr(ω) + cr(ω).

16.2
For M = S3, the Chas-Sullivan product and Sullivan’s coproduct operation ∨ do not
satisfy the following relation from [Su1, p. 349]:

∨(x ∗ y) = (x ⊗ 1) ∗ ∨(y) + ∨(x) ∗ (1 ⊗ y). (16.2.1)

To see this, take x = y = 
 ∈ H7(�) to be the nonnilpotent class. The standard
representative for 
 is the space of all circles on S3, and it consists of simple loops.
This implies that ∨
 = 0. (One can also check that the cohomology class Z which is
dual to 
 cannot be expressed as a nontrivial product of two classes.) Consequently,
the right-hand side of (16.2.1) is zero.

On the other hand, the class ω� Z, which is dual to 
 ∗
, can be expressed as
a nontrivial product in four ways:

ω� Z = Z � ω = X � Y = Y �X
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in the notation of §15.2. The classes a ∗ u, a ∗ u∗2, u, and u∗2 are dual to ω,X, Y , and
Z, respectively. So the left-hand side of equation (16.2.1) is

∨(
 ∗
) = a ∗ u⊗ u∗2 + u∗2 ⊗ a ∗ u+ a ∗ u∗2 ⊗ u+ u⊗ a ∗ u∗2.

16.3
The Pontrjagin product is not necessarily (sign-) commutative, although the Chas-
Sullivan product is (sign-) commutative. Within the free loop space�, there is “enough
room” to move two composed loops into their composition in the opposite order. The
proof of [CS, Theorem 3.3] is reproduced in Proposition 5.2. A similar phenomenon
occurs with the cohomology product �. In fact, for x ∈ Hi and y ∈ Hj, equation
(9.2.1),

y � x = (−1)(i+n−1)(j+n−1)x � y,

holds inH ∗(�,�0) but fails inH ∗(�, x0) whenM = Sn, n is even, and x = y = X,
in the notation of §15.5.

17. Related products

17.1
Composing the Künneth isomorphism with the action S1 ×� → � gives a map

�∗ : Hi(�;G) → Hi+1(�;G) and �∗ : Hi(�;G) → Hi−1(�;G)

for any coefficient groupG. Then Chas and Sullivan [CS] defineHi(�)×Hj (�)
{·,·}−→

Hi+j−n+1(�) such that

{σ, δ} = (−1)|σ |�∗(σ ∗ δ) − (−1)|σ |�∗(σ ) ∗ δ − σ ∗�∗(δ), (17.1.1)

where |σ | = i − n if σ ∈ Hi(�). They prove that the bracket is (graded) anticommu-
tative, it satisfies the (graded) Jacobi identity, and it is a derivation in each variable;
that is,
(1) {σ, τ } = −(−1)(|σ |+1)(|τ |+1) {τ, σ };
(2) {σ, {τ, ω}} = {{σ, τ } , ω} + (−1)(|σ |+1)(|τ |+1) {τ, {σ, ω}};
(3) {σ, τ ∗ ω} = {σ, τ } ∗ ω + (−1)|τ |(|σ |+1)τ ∗ {σ, ω} .
Since�∗ preserves the energy, it follows that the bracket operation is also defined on
the relative homology groups Ȟ∗(�≤a,�≤a′

;G) and it satisfies the energy estimates
of Proposition 5.3.

Similarly, we may define Hi(�,�0) ×Hj (�,�0)
{·,·}−→ Hi+j+n−2(�,�0) by

{τ, ω} = (−1)|τ |�∗(τ � ω) − (−1)|τ |�∗(τ ) � ω − τ ��∗(ω), (17.1.2)

where |τ | = i + n− 1 if τ ∈ Hi(�).
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THEOREM 17.2
The cohomology bracket satisfies the following for any σ, τ, ω ∈ H ∗(�,�0):
(A) {τ, ω} = −(−1)(|τ |+1)(|ω|+1) {ω, τ };
(B) {σ, {τ, ω}} = {{σ, τ } , ω} + (−1)(|τ |+1)(|ω|+1) {τ, {σ, ω}};
(C) {σ, τ � ω} = {σ, τ } � ω + (−1)|τ |(|σ |+1)τ � {σ, ω} .

Proof
Part (A) follows directly from the definition. The proof of parts (B) and (C) follows
the ideas in [CS] (translated to our context) and appear in Appendix E. �

17.3. Nondegenerate case
As in Theorem 12.3, assume that the manifoldM is orientable, γ is a closed geodesic
such that all of its iterates are nondegenerate, and assume that the negative bundle
�r is orientable for all r (cf. Lemma 6.5). Let a = L(γ ). Assume that r ≥ 2. Let
σr, σ r, τr , τ r be the local (level) homology and cohomology classes described in
equation (12.2.1). In the local level (co)homology group H (�<ra ∪ �r,�<ra), we
have

�∗(σr ) = rσ r, �∗(σ r ) = 0,

�∗(τr ) = rτ r , �∗(τ r ) = 0.

Using Theorem 12.3, if λj+k = λmin
j+k , then inH∗(�<(j+k)a ∪�j+k,�<(j+k)a) we have

{σj , σk} = −(k + (−1)|σ1|j
)
σj+k,

{σj , σ k} = (−1)|σ1|kσ j+k;

while if λj+k = λmax
j+k , then in H ∗(�<(j+k)a ∪�j+k,�<(j+k)a) we have

{τj , τk} = (− k + (−1)|τ1|j
)
τj+k,

{τj , τ k} = (−1)|τ1|kτ j+k.

17.4. Equivariant homology and cohomology
As in [CS], one may consider the (T = S1)-equivariant homology HT

∗ (�) of the
free loop space �. Let ET → BT be the classifying space and universal bundle
for T = S1; it is the limit of finite-dimensional approximations S2n+1 → CP n. Let
π : �×ET → �T = �×T ET be the Borel construction. There are Gysin (exact)
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sequences (see [Sp, §5.7, p. 260]) with coefficients in Z,

� Hi+1(�)
π∗� HT

i+1(�) � HT
i−1(�)

π !
� Hi(�) � ,

� Hi
T (�)

π∗
� Hi(�)

π!

� Hi−1
T (�) � Hi+1

T (�) � .

The Chas-Sullivan “string bracket” (homology) product on equivariant homology
is defined to be (−1)i−n times the composition

HT
i (�)×HT

j (�)
π !×π !

� Hi+1(�)×Hj+1(�)
∗�Hi+j+2−n(�)

π∗�HT
i+j+2−n(�);

that is, [σ, δ] = (−1)|σ |π∗
(
π !(σ ) ∗ π∗(δ)

)
. The action of T = S1 preserves the

energy function, so the (homology) string bracket extends to products on relative
homology Ȟ T

∗ (�≤a,�≤a′
) and on level homology Ȟ T

∗ (�≤a,�<a) which satisfy the
same energy estimates as those in Proposition 5.3.

Similarly, the (cohomology) product � gives rise to a product in equivariant
cohomology as (−1)i+n−1 times the composition

Hi
T (�) ×Hj

T (�)
π∗×π∗

� Hi(�) ×Hj (�)
�� Hi+j+n−1(�)

π!� H
i+j+n−2
T (�),

or τ � ω = (−1)|τ |π! (π∗(τ ) � π∗(ω)) . It also gives products in relative equivariant
cohomology Ȟ ∗

T (�≤a,�≤b) with energy estimates as in Proposition 9.5.

17.5
The string bracket is discussed in [Ch] and [CS, p. 24] in the case whenM is a surface
of genus greater than 1.When n = 2, it gives a nontrivial map

HT
0 (�) ×HT

0 (�)
[·,·]� HT

0 (�)

which turns out to be a product discovered by Goldman [Go] and Wolpert [Wo] (see
the related [T]). In this case, the equivariant cohomology product � is also nontrivial
in degree zero,

H 0
T (�,�0) ×H 0

T (�,�0)
�� H 0

T (�,�0).

The group H 0
T (�,�0) can be identified with the set of maps from the set of free

homotopy classes of loops inM to the coefficient groupG, which take the homotopy
class of trivial loops to the identity element in G.
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Appendices

A. Čech homology and cohomology

A.1
Throughout this article, the symbols Hi and Hj denote the singular homology and
cohomology, while Ȟi and Ȟ j denote the Čech homology and cohomology as de-
scribed, for example, in [ES, §9], [D, p. 339], [Br2, p. 315] (Čech homology), and
[Sp, §6.7, Ex. 14, p. 327] (Čech cohomology).

The problem is that the space�≤a and even its finite-dimensional approximation
M≤a

N might be pathological if a is a critical value of the function F. However, for
each regular value a+ ε, the space�≤a+ε has the homotopy type of a finite simplicial
complex. Thus one might hope to describe the homology and cohomology of �≤a

using a limiting process. The Čech homology and cohomology are better behaved
under limiting processes than the singular homology and cohomology. Unfortunately,
the Čech homology does not always satisfy the exactness axiom for a homology theory
(although the Čech cohomology does satisfy the exactness axiom; see the “solenoid”
example in [ES]). We now review the relevant properties of these homology theories
that are used in this article.

A.2
Let G be an Abelian group. If A ⊂ X are topological spaces, then the composition
of any two homomorphisms in the homology sequence for the pair Ȟ∗(X,A;G) is
always zero. If X and A are compact and if G is finite or if G is a field, then the
homology sequence for Ȟ∗(X,A;G) is exact.

If a topological spaceX has the homotopy type of a finite simplicial complex, then
the natural transformationsHj (X;G) → Ȟj (X;G) and Ȟ j (X;G) → Hj (X;G) are
isomorphisms for all j.

By [H, Theorem 3.33], if a topological spaceX is an increasing union of subspaces
X1 ⊂ X2 ⊂ · · · and if every compact subset K ⊂ X is contained in some Xn, then
for all j the inclusions Xn → X induce isomorphisms

Hj (X;G) ∼= lim
−→
Hj (Xn;G) and Ȟj (X;G) ∼= lim

−→
Ȟj (Xn;G).

A.3
Let A be a closed subset of a paracompact Hausdorff space X. Let U1 ⊃ U2 ⊃ · · ·
be a sequence of subsets of X such that

⋂∞
n=1 Un = A. Then the following table

describes sufficient conditions that

Ȟ q(A;G) ∼= lim
−→
Ȟ q(Un;G) and Ȟq(A;G) ∼= lim

←−
Ȟq(Un;G) :
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Un open Un closed

cohomology no restriction X is compact
homology X is a manifold X is compact

These facts are classical, and the proofs may be found in the textbooks, for
example, [ES, §§IX, X], [Sp, §6.6, Theorems 2, 6], [D, Chapter VIII, §§6.18, 13.4,
13.16], and [Br2]. (By [Sp, §6.8, Corollary 8], the Čech cohomology coincides with
the Alexander-Spanier cohomology on the class of paracompact Hausdorff spaces.)

For the remainder of this appendix, continue with the notationM,�,F,� of §2.

LEMMA A.4
Let G be an Abelian group, and let a ∈ R. Then the natural homomorphisms

H∗(�;G) → Ȟ∗(�;G) and H∗(�<a;G) → Ȟ∗(�<a;G)

are isomorphisms. If a ∈ R is a regular value of F, or if a is a nondegenerate critical
value of F in the sense of Bott, then the morphism H∗(�≤a;G) → Ȟ∗(�≤a;G) is an
isomorphism. The same statements hold for Čech cohomology.

Proof
This follows from Proposition 3.3. The space �<a has the homotopy type of a finite-
dimensional manifold, and if a is a regular value, then�≤a is homotopy equivalent to
a finite-dimensional compact manifold with boundary.

LEMMA A.5
If a′ < a ∈ R, then the inclusion �≤a → �≤a+ε induces canonical isomorphisms

Ȟi(�
≤a;G) ∼= lim

0←−ε
Hi(�

<a+ε ;G), (A.5.1)

Ȟi(�
≤a,�≤a′

;G) ∼= lim
0←−ε

Hi(�
<a+ε, �<a

′+ε ;G), (A.5.2)

with Čech homology on the left and singular homology on the right. If G is a field,
if α ∈ Hi(�;G), and if a = cr(α) is its critical level (§4), then there exists ω ∈
Ȟi(�≤a;G) which maps to α.

Proof
By Proposition 3.3, the space �≤a is homotopy equivalent to the finite-dimensional
space M≤a

N which is contained in a manifold. Therefore

Ȟi(�
≤a) ∼= Hi(M≤a

N ) = lim
0←−ε

Hi(M<a+ε
N ) ∼= lim

0←−ε
Hi(�

≤a+ε)
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which proves (A.5.1). The relative case (A.5.2) is similar. Now, suppose that G is a
field, and let bn ↓ a = cr(α) be a convergent sequence of regular values of F. Then
Ȟi(�≤a;G) is the limit of the sequence of finite-dimensional vector spaces

Hi(�
≤b1 ) ← Hi(�

≤b2 ) ← Hi(�
≤b3 ) ← · · · ,

and for each n ≥ 1, there is an element ωn ∈ Hi(�≤bn) that maps to α. Let
Hn = Image(Hi(�≤bn ;G) → Hi(�≤b1 ;G)). These form a decreasing chain of finite-
dimensional vector spaces that therefore stabilize after some finite point, say,

HN = Image
(
Hi(�

≤bN ;G) → Hi(�
≤b1 ;G)

) =
∞⋂
n=1

Hn = Ȟi(�
≤a;G).

It then suffices to take ω ∈ HN to be the image of ωN ∈ Hi(�≤bN ;G).

PROPOSITION A.6
Fix c ∈ R. Let U ⊂ � be a neighborhood of �=c. The inclusions

(�<c ∪�=c) ∩ U ↪→ �<c ∪�=c ↪→ �≤c

induce isomorphisms on Čech homology,

Ȟi
(
(�<c ∪�=c) ∩ U,�<c ∩ U ;G

) � Ȟi(�
≤c ∩ U,�<c ∩ U ;G)

Ȟi(�
<c ∪�=c, �<c;G)

β
�

α � Ȟi(�
≤c,�<c;G)

γ
�

τ � lim
0←ε

Hi(�
<c+ε, �<c;G)

Proof
It follows from excision that the relative homology group Ȟi((�<c∪�c)∩U,�<c∩U )
is independent of U. Taking U = � gives the isomorphism β. The same argument
applies to the isomorphism γ. The mapping τ is an isomorphism by §A.3. Finally, the
mapping α is an isomorphism because the inclusion (�<c ∪�c,�<c) → (�≤c, �<c)
is a homotopy equivalence. A homotopy inverse is given by the time t flow ψt :
�≤c → �≤c of the vector field −grad(F ), for any choice of t > 0 (cf. [Kl, §1], [C,
§I.3]). �

B. Thom isomorphisms

B.1
The constructions in this article necessitate the use of various relative versions of the
Thom isomorphism for finite- and infinite-dimensional spaces in singular and Čech
homology and cohomology. In this section, we review these standard facts.
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Recall that a neighborhood N of a closed subset X of a topological space Y is a
tubular neighborhood if there exists a finite-dimensional (normal) real vector bundle
π : E → X, and a homeomorphism ψ : E → N ⊂ Y which takes the zero section
to X by the identity mapping. In this case, excising Y −N gives an isomorphism

H (E,E −X;G) ∼= H (N,N −X;G) ∼= H (Y, Y −X;G),

where H denotes either singular homology or cohomology (with coefficients in an
Abelian group G) and where E − X is the complement of the zero section. Let us
take the coefficient group to beG = Z if the normal bundle E is orientable (in which
case, we fix an orientation), and G = Z/(2) otherwise. The Thom class

μE ∈ Hn(E,E −X;G)

is the unique cohomology class that evaluates to 1 on the chosen homology generator
of each fiber π−1(x). The cup product with this class gives the Thom isomorphism in
cohomology,

Hi(X;G) ∼= Hi(E;G) → Hi+n(E,E −X;G) ∼= Hi+n(Y, Y −X;G), (B.1.1)

and the cap product with this class gives the Thom isomorphism in homology,

Hi(X;G) ∼= Hi(E;G) ← Hi+n(E,E −X;G) ∼= Hi+n(Y, Y −X;G) (B.1.2)

(see [Sp, Chapter 5, §7, p. 259]). The same results hold for Čech homology and
cohomology. We need to establish relative versions of these isomorphisms.

PROPOSITION B.2
Let A ⊂ X be closed subsets of a topological space Y. Assume that X has a tubular
neighborhood N in Y corresponding to a homeomorphism φ : E → N of a normal
bundle E → X of fiber dimension n. If E is orientable, then choose an orientation
and set G = Z (otherwise, set G = Z/(2)). Then the Thom isomorphism induces an
isomorphism

Hi(X,X − A;G) ∼= Hi+n(Y, Y − A;G), (B.2.1)

in singular cohomology, and an isomorphism

Hi(X,X − A;G) ∼= Hi+n(Y, Y − A;G), (B.2.2)

in singular homology. Taking A = X gives Gysin homomorphisms

Hi(X;G) ∼= Hi+n(Y, Y −X;G) → Hi+n(Y ;G), (B.2.3)

Hi+n(Y ;G) → Hi+n(Y, Y −X;G) ∼= Hi(X;G), (B.2.4)
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denoted h! and h!, respectively, where h : X → Y denotes the inclusion. If U ⊂ Y is
open, then taking A = X −X ∩ U gives Gysin homomorphisms

Hi(X,X ∩ U ;G) ∼= Hi+n(Y, Y − A;G) → Hi+n(Y,U ;G), (B.2.5)

Hi+n(Y,U ;G) → Hi+n(Y, Y − A;G) ∼= Hi(X,X ∩ U ;G). (B.2.6)

Proof
We describe the argument for (B.2.1); the argument for (B.2.2) is the same, with the
arrows reversed. We suppress the coefficient groupG in order to simplify the notation
in the following argument. LetEA = π−1(X−A) ⊂ E, and letE0 = E−X. The sets
E0, EA are open inX so they form an excisive pair∗ giving the excision isomorphism

Hi(E0 ∪ EA,E0)
∼=−−−−→ Hi(EA,E0 ∩ EA).

The cup product with the Thom class μE ∈ Hn(E,E0; Z) gives a mapping

Hi(X,X − A) ∼= Hi(E,EA) → Hi+n(E,E0 ∪ EA)

which we claim is an isomorphism. This follows from the five lemma and the exact
sequence of the triple

E0 ⊂ (E0 ∪ EA) ⊂ E.

In fact, the diagram in Figure 11 commutes.

H i+n (E , E0 ∪ EA) −−−−→ Hi+n (E , E 0) −−−−→ H i+n

H i+n
(E 0 ∪EA, E 0)

(E A , E0 ∩ EA )
⏐
⏐ ∼=

⏐
⏐ ∼

=
⏐
⏐

Hi (E , E A ) −−−−→ Hi (E) −−−−→ H i (EA)

Hi (X , X − A) −−−−→ H i (X) −−−−→ H i (X − A)

=

Figure 11

∗A pair A,B ⊂ X is excisive if A∪B = Ao ∪Bo, where Ao denotes the relative interior of A in A∪B (cf. [Sp,
p. 188]).
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So the left-hand vertical mapping is an isomorphism. Since A is closed in Y , we
may excise Y −N from Y − A to obtain an isomorphism

Hi+n(Y, Y−A) ∼= Hi+n(N,N−A) ∼= Hi+n(E,E0∪EA).

B.3
We also need in §7 the following standard facts concerning the Thom isomorphism.
Suppose that E1 → A and E2 → A are oriented vector bundles of ranks d1 and
d2. If both are oriented, let G = Z (and choose orientations of each); otherwise, let
G = Z/(2) be the coefficient group for homology. Let E = E1 ⊕ E2. The diagram
of projections

E −−−−→ E1⏐⏐# ⏐⏐#π1

E2
π2−−−−→ A

gives identifications E ∼= π∗
1 (E2) ∼= π∗

2 (E1) of the total space E as a vector bundle
π∗

1 (E2) over E1 (resp., as a vector bundle π∗
2 (E1) over E2). The Thom class μ2 ∈

Hd2 (E2, E2 − A) pulls up to a class

π∗
1 (μ2) ∈ Hd2 (E,E − E1)

and similarly with the indices reversed. Then the relative cup product

Hd1 (E,E − E1) ×Hd2 (E,E − E2) → Hd1+d2
(
E, (E − E1) ∪ (E − E2)

)
= Hd1+d2 (E,E − A)

takes (π∗
1 (μ2), π∗

2 (μ1)) to the Thom class

μE = π∗
1 (μ2) � π∗

2 (μ1).

Consequently, the Thom isomorphism for E is the composition of the Thom isomor-
phisms

Hi(A)
�μ1

� Hi+d1 (E1, E1 − A)
�μ2

� Hi+d1+d2 (E,E − A).
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COROLLARY B.4
In the situation of Proposition B.2, suppose that A ⊂ X ⊂ Y are closed sets, suppose
thatA has a tubular neighborhood inX with oriented normal bundleϒ of rankm, and
suppose thatX has a tubular neighborhood inY with oriented normal bundleE of rank
n. Then μE⊕ϒ = π∗

ϒ (μE) � π∗
E(μϒ ) is a Thom class in Hn+m(E ⊕ϒ,E ⊕ϒ −A)

and the composition of Thom isomorphisms across the bottom, in the diagram

Hi(X)
∼= � Hi+n(Y, Y −X)

Hi(A)
�

(B.1.1)

�μϒ

� Hi+m(X,X − A)
(B.2.1)

�μE

� Hi+n+m(Y, Y − A)

ψ
�

is the Thom isomorphism � (μE⊕ϒ ). The diagram gives rise to a Gysin homomor-
phism ψ : Hr (Y, Y − X) → Hr+m(Y, Y − A) which may be interpreted as the cup
product with the Thom class

μϒ ∈ Hm(ϒ,ϒ − A) ∼= Hm(X,X − A) ∼= Hm
(
E,E − π−1

E (A)
)

in the following sequence of homomorphisms

Hr (Y, Y −X) Hr+m(Y, Y − A)

Hr (E,E −X)

∼=
�

∪μϒ
� Hr+m (E, (E − π−1

E (A)) ∪ (E −X)
)=Hr+m(E,E − A)

∼= �

C. Proof of Proposition 9.4

As in §9.3, let � be the space of loops that are based at the point x0 ∈ M , and let
i : � → � denote the inclusion. The relative Gysin homomorphism i! : Ha(�, x0) →
Ha+n(�,�0) is defined to be the composition (for sufficiently small ε > 0),

Ha(�,�<ε) = Ha(�,�−�≥ε) ∼= Ha+n(�,�−�≥ε) → Ha+n(�,�<ε),

(C.1.1)

where the middle mapping is the Thom isomorphism (B.2.1). Equation 9.4.1 is ob-
vious. The proof of equation (9.4.2) involves a commutative diagram (the notation is
explained below),
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In this diagram, we use the standard notation for pairs,

(A,B) × (C,D) = (A× C, (A×D) ∪ (B × C)
)
.

The symbol I denotes the unit interval [0, 1], and ∂I = {0, 1} is its boundary. The
symbol F•,<ε

� denotes the figure-eight space of loops based at x0 for which the first
loop is arbitrary and the second has energy less than ε and similarly for F≥ε,≥ε

� . The
mappings denoted τ are Thom isomorphisms.

The diagram commutes because it consists of restriction maps and Thom iso-
morphisms; the square labeled A commutes by Corollary B.4. It is confusing but
straightforward to check that the mapping J : � × I → � takes both � × ∂I and
(�−�≥ε)× I into the set�−F≥ε,≥ε

� , so the middle vertical J ∗ mapping is defined.
Let us start with an element (x, y) in the upper left-hand corner. We claim that its

image down the left-hand column is x � i∗(y). In fact, one could add an additional
column to the left of the diagram, which begins

Ha(�,�<ε) ×Hb(�,�<ε) → Ha+b((�,�<ε) × (�,�<ε)
)

→ Ha+b(F�,F•,<ε
� ∪ F<ε,•

� )

and which coincides with the left column of the diagram from the third entry on
downwards. Mapping (x, y) to the new column gives (x, i∗(y)).Following this element
down the new column gives x � i∗(y).

Therefore, following (x, y) down the first column and across the bottom gives the
element i!(x � i∗(y)). Following (x, y) across the top gives (i!(x), y) and continuing
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down the right-hand column gives i!(x) � y. This completes the proof of equation
(9.4.2).

Now, let us prove equation (9.4.3): 〈a � b, Z〉 = 〈a, [X]〉 · 〈b, [Y ]〉. Let (a, b)
originate in the upper right corner of the following diagram. Then going down the
right-hand column and across the bottom gives 〈a � b, Z〉:

Hi(X) ×Hj (Y ) � Hi(�, x0) ×Hj (�, x0)

Hi+j (X × Y )
�

� Hi+j (F�,�× x0 ∪ x0 ×�)
�

Hi+j (X • Y )

=
�

� Hi+j (F�,F� − F>0,>0
� )

=
�

Hi+j+n(�,�− F>0,>0
� )

∪μF (B.2.5)
�

Hi+j+n(Z × I, Z × ∂I )

∪J ∗(μF)

�
� Hi+j+n(�× I, ∂(�× I )

)J ∗
�

Hi+j+n−1(Z)

∼=
�

� Hi+j+n−1(�, x0)

∼=
�

We claim that going across the top and down the left side gives 〈a, [X]〉·〈b, [Y ]〉.To see
this, it suffices to know that the Gysin mapHi+j (X•Y ) → Hi+j+n−1(Z×I, Z×∂I )
is given by the cup product with J ∗(μF). In fact, the following diagram is a fiber (or
“Cartesian”) square so the Thom class of X • Y in Z × I is J ∗(μF):

Z × [0, 1]
J � � � �

(X • Y ) × { 1
2

}�

J� F�

�

� F

φ1/2
�

This completes the proof of equation (9.4.3).

D. Critical submanifolds

D.1
In this article, we need to use a particular form (Theorem D.2) of the fundamental
lemma of Morse theory. We provide a proof, since the exact statement does not appear
in the literature, but related statements may be found in [Mo1], [Bo2], [Mi], [Bo1],
[L], [Kl, Corollary 2.4.11, §3.2], and [R]. (By Lemma A.4, the homology groups that
appear in the following theorem may be taken to be either Čech or singular.)
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THEOREM D.2
Let X be a Riemannian Hilbert manifold, and let f : X → R be a smooth function
that satisfies condition C of Palais and Smale. Let� be a finite-dimensional connected
nondegenerate critical submanifold in the strong sense that the eigenvalues of d2f on
the normal bundle of � are bounded away from zero. Let λ < ∞ be the index of �,
and let d < ∞ be the dimension of �. Let c = f (�) be the critical value. Suppose
that there is a smooth connected manifold V with

dim(V ) = dim(�) + λ

and smooth embeddings

�
σ

� V
ρ

� X

so that ρ ◦ σ : � → � is the identity and f ◦ ρ(x) < c whenever x ∈ V −�. Then
ρ induces an isomorphism

Hi(V, V −�;G)
∼=� Hi(X

<c ∪�,X<c;G)

for any coefficient groupG and for all i ≥ 0. In fact, ρ induces a local diffeomorphism
of pairs (V, V −�) ∼= (�−, �− −�), where �− is defined below.

Composing with the Thom isomorphism (B.1.2) gives a further isomorphism

Hi(V, V −�;G) ∼= Hi−λ(�;G),

whereG = Z if the normal bundle of� in V is orientable, andG = Z/(2) otherwise.

D.3. Proof
This essentially follows from [C, Theorem 7.3, p. 72] or [Kl, Corollary 2.4.8, Propo-
sition 2.4.9]. The tangent bundle TX|� decomposes into an orthogonal sum of vector
bundles �+ ⊕ �0 ⊕ �− spanned by the positive, null, and negative eigenvectors
(respectively) of the self-adjoint operator associated to d2f. The inclusion � → X

induces an isomorphism T� ∼= �0 so we may identify the normal bundle of � in X
with �+ ⊕ �−.

For ε sufficiently small, the restriction of the exponential map

exp : (�+ ⊕ �−)ε → X

is a homeomorphism onto some neighborhood U ⊂ X. Let �− = exp(�−
ε ) ⊂ X.

This submanifold is often described as “the unstable manifold that hangs down from
�,” for if ε is sufficiently small and if 0 �= a ∈ �−

ε , then f (exp(a)) < c. Its tangent
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bundle, when restricted to �, is

T�−|� = �0 ⊕ �−.

The projection �+ ⊕ �− → �− induces a projection π : U → �− which is
homotopic to the identity by the homotopy

πt
(

exp(a ⊕ b)
) = exp(ta ⊕ b),

where t ∈ [0, 1], a ∈ �+
ε , b ∈ �−

ε , and where π1 is the identity and π0 = π.

Moreover, the kernel of the differential dπ(x) : TxX → Tx�
− at any point x ∈ � is

precisely the positive eigenspace, �+
x ⊂ TxX. Let us identify the manifold V with its

image ρ(V ) ⊂ X so that T V |� ⊂ �0 ⊕ �−. It follows that the restriction of π ,

π : V ∩ U → �−, (D.3.1)

has a nonvanishing differential at every point x ∈ � ⊂ V , and consequently the
mapping (D.3.1) is a diffeomorphism in some neighborhood of �. It follows that π
induces an isomorphism

π∗ : Hi(V, V −�) → Hi(�
−, �− −�) ∼= Hi(D�

−, ∂D�−), (D.3.2)

whereD�− denotes a sufficiently small disk bundle in �− and ∂D�− is its boundary.
On the other hand, by Morse theory (the above-mentioned [C, Theorem 7.3] or [Kl,
Proposition 2.4.9]), the space U≤c+δ has the homotopy type of the adjunction space
U≤c−δ ∪∂D�− D�−. This gives the standard isomorphism of Morse theory,

Hi(D�
−, ∂D�−) ∼= Hi(U

≤c+δ, U≤c−δ). (D.3.3)

All these isomorphisms fit together in a commutative diagram:

Hi(U
≤c, U<c)

π∗� Hi(�
−, �− −�)

i∗ � Hi(U
≤c, U<c)

(A.6)� Hi(U
<c ∪�,U<c)

Hi(V, V −�)

ρ∗

�

(D.3.2)
�

(D.3
.2)

�

Hi(D�
−, ∂D�−)

�

(D.3.3)
�

�

Hi(U
≤c+δ, U≤c−δ)

(A.6)

�

Each of the arrows labeled by an equation number is an isomorphism, so i∗ is an
isomorphism. But i∗π∗ is the identity, so π∗ is also an isomorphism and hence also
ρ∗.
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y (0)

y

x

y(s)

x(0)

Figure 12. Joining two loops at time s

E. Proof of Theorem 17.2

E.1
The proof of Theorem 17.2 involves a second construction of the cohomology bracket,
along the same lines as the definition of the �-product. As in §2, let � be the free
loop space of mappings x : R/Z → M (or x : [0, 1] → M). For the purposes of
this appendix only, let �̂ be the free loop space of H 1-mappings R/2Z → M (or
[0, 2] → M). If x, y ∈ �, if s ∈ R/Z (or s ∈ [0, 1]), and if x(0) = y(s), define
x ·s y ∈ �̂ (see Figure 12) by

x ·s y(t) =

⎧⎪⎨⎪⎩
y(t) if 0 ≤ t ≤ s,
x(t − s) if s ≤ t ≤ 1 + s,
y(t) = y(t − 1) if 1 + s ≤ t ≤ 2.

Define {�,�} to be the set of triples (x, y, s) ∈ �×�× R/2Z such that{
x(0) = y(s) if 0 ≤ s ≤ 1,

y(0) = x(s) if 1 ≤ s ≤ 2.

Define �1 : {�,�} → �̂ by

�1(x, y, s) =
{
x ·s y if 0 ≤ s ≤ 1,

y ·(s−1) x if 1 ≤ s ≤ 2.
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We have embeddings

�×�× R/(2Z) �h {�,�} �� �̂× R/2Z (E.1.1)

where �(x, y, s) = (�1(x, y, s), s) . The images �({�,�}) and h({�,�}) have
normal bundles and tubular neighborhoods, and in fact they are given by the pullback
of the diagonal � under the mappings

�×�× R/2Z
α� M ×M �β �̂× R/2Z

h ({�,�})

�

� �

�

� � ({�,�})

�

where

α(x, y, s) =
{

(x(0), y(s)) if 0 ≤ s ≤ 1,

(x(s), y(0)) if 1 ≤ s ≤ 2,

and β(w, s) = (w(s), w(s + 1)) . (Each half of {�,�} has a smooth tubular neigh-
borhood and normal bundle in � × � × R/2Z, but there is a “kink” where the two
halves are joined so we obtain only a topological tubular neighborhood and normal
bundle of h({�,�}).) In particular,

� ({�,�}) = {(w, s) ∈ �̂× R/2Z : w(s) = w(s ± 1)
}
. (E.1.2)

E.2
We claim that the bracket {x, y} ∈ Hdeg(x)+deg(y)−n+1(�) is obtained by passing from
left to right in (E.1.1); that is, it is the image of x×y× [R/2Z] under the composition

Hi(�) ×Hj (�) ×H1(R/2Z)
ε×� Hi+j+1(�×�× R/2Z)

Hi+j−n+1(�̂) � �1
Hi+j+1−n({�,�})

h! (B.2.4)
�

where deg(x) = i, deg(y) = j , ε = (−1)n(n−j−1), and [R/2Z] ∈ H1(R/2Z) denotes
the orientation class. First, we show this agrees with the definition of {x, y} in [CS].

The projection π : {�,�} → R/2Z is locally trivial, and π−1(0) ∼= π−1(1) ∼=
F is the figure-eight space. Let {�,�}[0,1] = π−1([0, 1]), and let ∂ {�,�}[0,1] =
π−1 ({0} ∪ {1}) . Then the bracket product in [CS] is a sum of two terms,

{x, y} = x♥y − (−1)(i−n+1)(j−n+1)y♥x
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(but [CS] use a ∗ rather than a ♥) which may be identified as the two images of

h!(εx × y × [R/2Z]) ∈ Hi+j−n+1({�,�})

in

Hi+j−n+1

(
�({�,�}[0,1]), ∂�({�,�}[0,1])

)
and

Hi+j−n+1

(
�({�,�}[1,2]), ∂�({�,�}[1,2])

)
,

respectively. The projection to �̂ adds these together (with the appropriate sign).
The proof that the construction of §E.2 agrees with (17.1.1) is essentially the same

as the proof of [CS, Corollary 5.3]. Using this fact, the proof of (1), (2), and (3) in
§17.1 is then the same as in [CS, §4].

E.3
In this section, we define the reparametrization function

Ĵ : �̂× R/2Z × [0, 2] → �̂× R/2Z

which is analogous to the function J of §9.1. First, some notation. For r ∈ [0, 2],
let θ̂1→r : [0, 2] → [0, 2] be the piecewise linear function taking 0 �→ 0, 1 �→ r ,
and 2 �→ 2. It is just the function θ of §9.1, but the domain and range have been
stretched to [0, 2]. For any real number s, define the translation χs : R/2Z → RZ

by χs(t) = t + s. Define

Ĵ (w, s, r) = (w ◦ χs ◦ θ1→r ◦ χ−s, s) , (E.3.1)

and set Ĵr (w, s) = Ĵ (w, s, r). In analogy with our notation for F in §9.1, let
{�,�}>0,>0 be the set of (x, y, s) ∈ {�,�} such that F (x) > 0 and F (y) > 0.
Let �̂0 = �̂=0 denote the constant loops in �̂.We claim that Ĵ takes both of the sets

�̂0 × R/2Z × [0, 2] and �̂× R/2Z × ∂[0, 2] (E.3.2)

into the set �̂× R/2Z −�({�,�}>0,>0).
This is obvious for the first of these sets, while the verification for the second set

involves four cases: s ≤ 1 or s ≥ 1 vs. r = 0 or r = 2. In each case, the function
χs ◦ θ̂1→r ◦ χ−s is constant, with value s, on the interval [s, s + 1] (mod 2). Therefore
J (w, s, r) = (γ, s), where γ = x ·s y (s ≤ 1) or γ = x ·(s−1) y (s ≥ 1), and either x
or y is a constant loop.



xxx dmj7329 August 27, 2009 18:38

202 GORESKY and HINGSTON

E.4
The geometric construction of the cohomology bracket is the following composition,

Hi(�,�0) ×Hj (�,�0) ×H 0(R/2Z)
ε× � Hi+j ((�,�0) × (�,�0) × R/2Z

)

Hi+j ({�,�} , {�,�} − {�,�}>0,>0
)h∗

�

Hi+j+n (�̂× R/2Z, �̂× R/2Z −�({�,�}>0,>0)
)�! (B.2.1)

�

Hi+j+n−2(�̂, �̂0) � π!
Hi+j+n ((�̂, �̂0) × R/2Z × ([0, 2], ∂[0, 2])

)Ĵ ∗
�

where π denotes the projection to �̂. So the bracket is obtained by passing from left
to right in the following diagram:

�×�× R/2Z �
h

{�,�} �� �̂× R/2Z �̂J �̂× R/2Z × [0, 2] � �̂

E.5
For r ∈ [0, 2], set Ĵr (w, s) = Ĵ (w, s, r).Let T : {�,�} → {�,�} by T(x, y, s) =
(y, x, s + 1), and (by abuse of notation) set T : �̂ × R/2Z → �̂ × R/2Z by
T(z, s) = (z◦χ1, s+1). (So T moves the basepoint halfway around the loop.) Then
the following diagram commutes:

{�,�} �� �̂× R/2Z
Ĵr� �̂× R/2Z

{�,�}
T
�

�� �̂× R/2Z

T
�

Ĵr� �̂× R/2Z

T
�

As in §E.2, the bracket is a sum of two terms,

{x, y} = x♣y − (−1)(|x|+1)(|y|+1)y♣x,

which are interchanged by the involution T. The proof that the construction in §E.4
agrees with formula (17.1.2) is essentially the same as the proof of [CS, Corollary
5.3]. The proof of (A), (B), and (C) in Theorem 17.2 is then similar to the argument
in [CS, §4]. �
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F. Associativity of �

F.1
In this section, we complete the proof of Proposition 9.2. The following statements
refer to Figure 13; we omit the parallel diagram that is obtained by taking the cohomol-
ogy of each of the spaces and pairs that appear in this diagram. Each mapping denoted
τ denotes an inclusion with normal bundle. The corresponding homomorphism in
the cohomology diagram is the Thom isomorphism. In the cohomology diagram, the
squares involving arrows denoted τ commute because the relevant normal bundles
pull back.

Starting with x×y×z in the upper left corner, the product x� (y�z) is obtained
by going across the top row then down the right side of the diagram, while the product
(x � y) � z is obtained by going down the left side of the diagram and then along the
bottom row. Here, the symbol F1/3 denotes φ1/3(F ) and the space C denotes the space
of (three-leaf) clovers, that is, the preimage of the (small) diagonal under the mapping

(ev0, ev1/3, ev2/3) : � → M ×M ×M.

It has a normal bundle in�which is isomorphic to TM⊕TM. The symbol C>0,>0,≥0

denotes those loops consisting of three composable loops α · β · γ, with α, β glued at
time 1/3 and with β, γ glued at time 2/3, such that two (or more) of these “leaves”
have positive energy (i.e., one or fewer of these loops is constant). Hence C−C>0,>0,≥0

consists of clovers such that two or more of the leaves are constant. The square marked
1 is Cartesian: the lower right corner is the intersection of the upper right and lower

left corners. The symbol � denotes a diagonal mapping and id denotes an identity
mapping.

F.2
Using the obvious extension of the notation for θ1/2→s : I → I (with θ(0) = 0 and
θ(1) = 1), the mappings Ji and Ĵi are (re)defined by

J1(s, γ ) = γ ◦ θ1/3→(2/3)s
2/3→2/3

, J2(γ, t) = γ ◦ θ1/3→1/3,
2/3→1/3+(2/3)t

Ĵ1(s, γ ) = γ ◦ θ1/3→s, Ĵ2(γ, t) = γ ◦ θ2/3→t ,

so that

J1 ◦ (id × Ĵ2)(s, γ, t) = γ ◦ θ2/3→t ◦ θ1/3→(2/3)s
2/3→2/3

= γ ◦ θ1/3→st
2/3→t

(F.2.1)

J2 ◦ (Ĵ1 × id)(γ, s, t) = γ ◦ θ1/3→s ◦ θ1/3→1/3
2/3→1/3+(2/3)t

= γ ◦ θ1/3→s
2/3→s+(1−s)t

(F.2.2)
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2
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Figure 14. Boundary behavior

We need to prove that the corresponding cohomology diagram commutes. The
only part that is not obvious is the square designated 2 in the diagram. This square
commutes up to (relative) homotopy for the following reason. Let m denote the set of
continuous nondecreasing mappings θ : [0, 1] → [0, 1] such that θ(0) = 0, θ(1) = 1,
and θ is linear on [0, 1/3], on [1/3, 2/3], and on [2/3, 1]. For i = 1, 2, 3, let mi

denote the collection of all θ ∈ m such that θ is constant on [(i − 1)/3, i/3]. The
functions θetc. appearing on the right-hand side of (F.2.1) and (F.2.2) may be interpreted
as continuous mappings (s, t) ∈ I1 × I2 → m with the following boundary behavior:
{0}× I2 → m1, {1}× I2 → m2; I1 ×{0} → m2; and I1 ×{1} → m3. This boundary
behavior is indicated in Figure 14.

But the collection of such maps I1×I2 → m is convex, so the mappings (F.2.1) and
(F.2.2) are homotopic. This completes the proof that the �-product is associative.
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