Cohomology

Combinatorial
Cellular

&

Abstract
Eilenberg-Steenrod

Ulrik Buchholtz and Favonia
Cohomology Groups

\{ mappings from holes in a space \}
Cohomology Groups

{ mappings from holes in a space }

Cellular cohomology for CW complexes | Axiomatic Eilenberg-Steenrod cohomology
Cohomology Groups
{ mappings from holes in a space }

Cellular cohomology for CW complexes
Axiomatic Eilenberg-Steenrod cohomology

Dream: prove they are the same!
CW complexes
inductively-defined spaces
CW complexes
inductively-defined spaces

points
CW complexes
inductively-defined spaces

points
lines
CW complexes
inductively-defined spaces

points
lines
faces
CW complexes
inductively-defined spaces

points
lines
faces
(and more...)

[Diagram of CW complex structure]
CW complexes
inductively-defined spaces

points
lines
faces
(and more...)

Specification: cells and how they attach
CW complexes

Sets of cells: A_n
CW complexes

Sets of cells: A_n

Attaching: $\alpha_{n+1} : A_{n+1} \times S^n \rightarrow X_n$

X_n is the construction up to dim. n
CW complexes

Sets of cells: A_n

Attaching: $\alpha_{n+1} : A_{n+1} \times S^n \to X_n$

X_n is the construction up to dim. n
CW complexes

Sets of cells: A_n

Attaching: $\alpha_{n+1} : A_{n+1} \times S^n \to X_n$

X_n is the construction up to dim. n
CW complexes

Sets of cells: A_n

Attaching: $\alpha_{n+1} : A_{n+1} \times S^n \rightarrow X_n$

X_n is the construction up to dim. n
CW complexes

Sets of cells: A_n

Attaching: $\alpha_{n+1} : A_{n+1} \times S^n \rightarrow X_n$

X_n is the construction up to dim. n

$X_0 := A_0$
CW complexes

Sets of cells: A_n

Attaching: $\alpha_{n+1} : A_{n+1} \times S^n \rightarrow X_n$

X_n is the construction up to dim. n

$X_0 := A_0$

$X_{n+1} :=$

\[A_{n+1} \times S^n \rightarrow A_{n+1} \]

\[\alpha_{n+1} \]

\[X_n \rightarrow X_{n+1} \]
Cellular Cohomology

\{ mappings from holes in a space \}
Cellular Cohomology
{ mappings from holes in a space }

Cellular Homology
{ holes in a space }
Cellular Cohomology
{ mappings from holes in a space }
One-Dimensional Holes*

\{ \text{elements of } \mathbb{Z}[A_1] \text{ forming cycles} \}

*Holes are cycles in the classical homology theory.
One-Dimensional Holes*

\{ \text{elements of } \mathbb{Z}[A_1] \text{ forming cycles} \}

*Holes are cycles in the classical homology theory
One-Dimensional Holes*

\{ \text{elements of } \mathbb{Z}[A_1] \text{ forming cycles} \}

*Holes are cycles in the classical homology theory

\[
\begin{align*}
\text{holes} & : \quad a + b + c \\
\text{holes} & : \quad -a - b - c
\end{align*}
\]
One-Dimensional Holes*

{ elements of $\mathbb{Z}[A_1]$ forming cycles }

*Holes are cycles in the classical homology theory
One-Dimensional Holes

\{ \text{elements of } \mathbb{Z}[A_1] \text{ forming cycles} \}
One-Dimensional Holes

\{ \text{elements of } \mathbb{Z}[A_1] \text{ forming cycles} \}

boundary function ∂

$\partial(\begin{array}{c} x \\ a \\ y \end{array}) = y - x$

set of holes $= \text{kernel of } \partial$
One-Dimensional Holes

\{ \text{elements of } \mathbb{Z}[A_1] \text{ forming cycles} \}

boundary function \(\partial \)

\[\partial \left(\begin{array}{c} x \\ a \\ y \end{array} \right) = y - x \]

set of holes = kernel of \(\partial \)
One-Dimensional Holes
{ elements of $\mathbb{Z}[A_1]$ forming cycles }

boundary function ∂

$\partial(a+b+c) = (y - x) + (z - y) + (x - z) = 0$

set of holes = kernel of ∂

x a y
c b
z

$\partial(a) = y - x$

$\partial(a+b+c) = (y - x) + (z - y) + (x - z) = 0$
First Homology Groups

\{ \text{unfilled one-dimensional holes} \}
First Homology Groups

\{ \text{unfilled one-dimensional holes} \}

\begin{align*}
\partial_2(&) = a + b + c \\
2\text{-dim. boundary function } & \partial_2
\end{align*}
First Homology Groups

\{ \text{unfilled one-dimensional holes} \}

\[
\partial_2(a + b + c) = \text{filled holes} = \text{image of } \partial_2
\]
First Homology Groups
\{ \text{unfilled one-dimensional holes} \}

\[\partial_2(\text{filled holes}) = \text{image of } \partial_2 \]

2-dim. boundary function \(\partial_2 \)
\[\partial_2(\text{filled holes}) = a + b + c \]

\[H_1(X) := \text{kernel of } \partial_1 / \text{image of } \partial_2 \]

\(\text{(unfilled holes)} \) \quad \text{(all holes)} \quad \text{(filled holes)} \)
Homology Groups

\{ \text{unfilled holes} \}

\[\mathbb{C}_n := \mathbb{Z}[\mathbb{A}_n] \text{ formal sums of cells (chains)} \]
Homology Groups
\{ \text{unfilled holes} \}

\[C_n := \mathbb{Z}[A_n] \text{ formal sums of cells (chains)} \]

\[\cdots \rightarrow C_{n+2} \xrightarrow{\partial_{n+2}} C_{n+1} \xrightarrow{\partial_{n+1}} C_n \xrightarrow{\partial_n} C_{n-1} \xrightarrow{\partial_{n-1}} C_{n-2} \rightarrow \cdots \]
Homology Groups

\{ \text{unfilled holes} \}

\[C_n := \mathbb{Z}[A_n] \text{ formal sums of cells (chains)} \]

\[\ldots \rightarrow \partial_{n+2} C_{n+2} \rightarrow \partial_{n+1} C_{n+1} \rightarrow \partial_n C_n \rightarrow \partial_{n-1} C_{n-1} \rightarrow \partial_{n-2} C_{n-2} \rightarrow \ldots \]

\[H_n(X) := \ker(\partial_n) / \text{image of } \partial_{n+1} \]
Cohomology Groups

\[\cdots \rightarrow C_{n+2} \rightarrow C_{n+1} \rightarrow C_n \rightarrow C_{n-1} \rightarrow C_{n-2} \rightarrow \cdots \]

Dualize by \(\text{Hom}(-, G) \). Let \(C^n = \text{Hom}(C_n, G) \).

\[\cdots \leftarrow C^{n+2} \leftarrow C^{n+1} \leftarrow C^n \leftarrow C^{n-1} \leftarrow C^{n-2} \leftarrow \cdots \]
Cohomology Groups

\[... \rightarrow C_{n+2} \rightarrow C_{n+1} \rightarrow C_n \rightarrow C_{n-1} \rightarrow C_{n-2} \rightarrow ... \]

Dualize by Hom(—, G). Let \(C^n = \text{Hom}(C_n, G) \).

\[... \leftarrow C^{n+2} \leftarrow C^{n+1} \leftarrow C^n \leftarrow C^{n-1} \leftarrow C^{n-2} \leftarrow ... \]

\(H^n(X; G) := \text{kernel of } \delta_{n+1} / \text{image of } \delta_n \)
Higher-Dim. Boundary

How to compute the coefficients from α_2?
Higher-Dim. Boundary

\[\alpha_2(p,-) \]

identify points
squash other loops

coe\textsubscript{icient} = winding number of this map

coefficient = winding number of this map
Higher-Dim. Boundary

\[S^n \xrightarrow{\alpha_{n+1}(p,-)} X_n \xrightarrow{\alpha_2(p,-)} X_n/X_{n-1} \cong \bigvee S^n \xrightarrow{\text{squash}} S^n \]

Coefficient = degree of this map
Higher-Dim. Boundary

\[S^n \xrightarrow{\alpha_{n+1}(p, -)} X_n \xrightarrow{\alpha_n(p, -)} X_n/X_{n-1} \cong \bigvee S^n \xrightarrow{\text{squash}} S^n \]

coefficient = \textit{degree} of this map

- squashing needs decidable equality
- linear sum needs closure-finiteness
Higher-Dim. Boundary

\[A_n \times S^{n-1} \rightarrow A_n \quad A_{n+1} \times S^n \rightarrow A_{n+1} \]

\[X_{n-1} \rightarrow X_n \rightarrow X_{n+1} \]

\[1 \rightarrow X_n/X_{n-1} \cong \bigvee S^n \]
Cohomology Groups
\{ \text{mappings from holes in a space} \}

Cellular cohomology for CW-complexes

$H^n(X; \ G)$

Axiomatic Eilenberg-Steenrod cohomology

Dream: prove they are the same!
Eilenberg-Steenrod* cohomology

A family of functors $h^n(__)$:
pointed spaces \rightarrow abelian groups

*Ordinary, reduced cohomology theory
Eilenberg-Steenrod* cohomology

A family of functors $h^n(____)$:
pointed spaces \rightarrow abelian groups

1. $h^{n+1}(\text{susp}(X)) \cong h^n(X)$, natural in X

*Ordinary, reduced cohomology theory
Eilenberg-Steenrod* cohomology

A family of functors $h^n(__)$:

pointed spaces \rightarrow abelian groups

1. $h^{n+1}(\text{susp}(X)) \simeq h^n(X)$, natural in X

2. $\begin{array}{ccc} A & \xrightarrow{f} & B \\ \downarrow & & \downarrow \\ 1 & \xrightarrow{\Gamma} & \text{Cof}_f \end{array}$

* Ordinary, reduced cohomology theory
Eilenberg-Steenrod* cohomology

A family of functors $h^n(_)$:
pointed spaces \rightarrow abelian groups

1. $h^{n+1}(\text{susp}(X)) \cong h^n(X)$, natural in X

2.

$$
\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow & & \downarrow \\
1 & \xrightarrow{} & \text{Cof}_f
\end{array}
\begin{array}{l}
h^n(A) \\
h^n(B)
\end{array}
\xrightarrow{\text{exact!}}

\begin{array}{ccc}
& & \\
& \uparrow & \\
& \text{Cof}_f & \xrightarrow{} \\
\end{array}
\begin{array}{c}
h^n(\text{Cof}_f)
\end{array}

*Ordinary, reduced cohomology theory
Eilenberg-Steenrod* cohomology

A family of functors $h^n(__)$:
pointed spaces \to abelian groups

1. $h^{n+1}(\text{susp}(X)) \cong h^n(X)$, natural in X

2. $\xymatrix{ h^n(A) \ar[d] \ar[r]_-f & h^n(B) \ar[d] \ar[l]_{\text{exact!}} \\
1 \ar[r] & \text{Cof}_f \ar[r] & h^n(\text{Cof}_f) }$

3. $h^n(\bigvee_i X_i) \cong \prod_i h^n(X_i)$ if the index type satisfies set-level AC

* Ordinary, reduced cohomology theory
Eilenberg-Steenrod* cohomology

A family of functors $h^n(__)$:
pointed spaces \rightarrow abelian groups

1. $h^{n+1}(\text{susp}(X)) \cong h^n(X)$, natural in X

2. $h^n(A) \xleftarrow{f} h^n(B)$

3. $h^n(\bigvee_i X_i) \cong \prod_i h^n(X_i)$
 if the index type satisfies set-level AC

4. $h^n(2)$ trivial for $n \neq 0$

*Ordinary, reduced cohomology theory
Cohomology Groups
{ mappings from holes in a space }

Cellular cohomology for CW-complexes
Axiomatic Eilenberg-Steenrod cohomology

\[H^n(X; G) \rightarrow h^n(X) \]

Dream: prove they are the same!
Our Dream

\[h^n(X) \approx H^n(X; h^0(2)) \]
Our Dream

\[h^n(X) \cong H^n(X; h^0(2)) \]

\[\ker(\delta_{n+1})/\text{im}(\delta_n) \]
Our Dream

\[h^n(X) \cong H^n(X; h^0(2)) \]

\[\ker(\delta'_{n+1})/\text{im}(\delta'_n) \cong \ker(\delta_{n+1})/\text{im}(\delta_n) \]
Our Dream

\[h^n(X) \cong H^n(X; h^0(2)) \]

\[\text{Ker}(\delta_{n+1})/\text{im}(\delta'_n) \cong \text{Ker}(\delta_{n+1})/\text{im}(\delta_n) \]

1. Find \(\delta' \) such that \(h^n(X) \cong \text{Ker}(\delta'_{n+1})/\text{im}(\delta'_n) \)

 done and fully mechanized in Agda

2. Show \(\delta \) and \(\delta' \) are equivalent

 domains and codomains are isomorphic

 commutativity in progress
Our Dream: Step 1 (done!)

For any pointed CW-complex X where

1. all cell sets A_n satisfy set-level AC and
2. the point of A_0 is separable (pt = x is decidable)

there exist homomorphisms δ'

$$\delta'_{n+2} \preceq \delta'_{n+1} \preceq \delta'_n \preceq \delta'_{n-1} \preceq \cdots$$

such that

$$h^n(X) \simeq \text{kernel of } \delta'_{n+1} / \text{image of } \delta'_n$$
Important Lemmas for Step 1

Long exact sequences

\[h^n(A) \xleftarrow{f} h^n(B) \]

A \xrightarrow{f} B

\[n^{++} \]

1 \xrightarrow{} \text{Cof}_f \xrightarrow{} h^n(\text{Cof}_f)
Important Lemmas for Step 1

Long exact sequenes

\[h^n(A) \xleftarrow{f} h^n(B) \]

\[A \xrightarrow{f} B \]

\[A \xrightarrow{n} B \]

\[1 \rightarrow \text{Cof}_f h^n(\text{Cof}_f) \]

Wedges of cells

\[h^m(X_n/X_{n-1}) \cong \text{hom}(\mathbb{Z}[A_n], h^0(2)) \]
when \(m = n \) or trivial otherwise

\[h^m(X_0) \cong \text{hom}(\mathbb{Z}[A_0\setminus\{pt\}], h^0(2)) \]
when \(m = 0 \) or trivial otherwise
Important Lemmas for Step 1

Long exact sequences

\[h^n(A) \xleftarrow{f} h^n(B) \]

A \xrightarrow{n++} f \xrightarrow{} B

1 \xrightarrow{} \text{Cof}_f \xrightarrow{} h^n(\text{Cof}_f)

Wedges of cells

\[h^m(X_n/X_{n-1}) \approx \text{hom}(\mathbb{Z}[A_n], \, h^0(2)) \]

when \(m = n \) or trivial otherwise

\[h^m(X_0) \approx \text{hom}(\mathbb{Z}[A_0 \setminus \{\text{pt}\}], \, h^0(2)) \]

when \(m = 0 \) or trivial otherwise

trivial if \(m \neq n \)
Ultimate Cofiber Diagram

\[X_0 \rightarrow \cdots \rightarrow X_{n-1} \rightarrow X_n \rightarrow X_{n+1} \rightarrow \cdots \]

\[1 \rightarrow \cdots \rightarrow X_{n-1/0} \rightarrow X_{n/0} \rightarrow X_{n+1/0} \rightarrow \cdots \]

\[X_{n/m} := \frac{X_n}{X_m} \]

\[1 \rightarrow X_{n/n-1} \rightarrow X_{n+1/n-1} \rightarrow \cdots \]

\[1 \rightarrow X_{n+1/n} \rightarrow \cdots \]
Ultimate Cofiber Diagram

\[X_0 \to \cdots \to X_{n-1} \to X_n \to X_{n+1} \to \cdots \]

\[1 \to \cdots \to X_{n-1/0} \to X_{n/0} \to X_{n+1/0} \to \cdots \]

\[X_{n/m} := X_n/X_m \]

Plan:
Obtain long exact sequences and use group-theoretic magic
Obtain long exact sequences and use group-theoretic magic

Plan:

$X_{n/m} := X_n/X_m$
$X_{n/n-1} \rightarrow X_{n+1/n-1}$

$1 \rightarrow X_{n+1/n}$
$X_{n/n-1} \rightarrow X_{n+1/n-1}$

$hn(X_{n+1/n}) \rightarrow hn(X_{n+1/n-1}) \rightarrow hn(X_{n/n-1})$

$h^{n+1}(X_{n+1/n}) \rightarrow h^{n+1}(X_{n+1/n-1}) \rightarrow h^{n+1}(X_{n/n-1})$
our choice of δ'

$h^n(X_{n+1/n}) \rightarrow h^n(X_{n+1/n-1}) \rightarrow h^n(X_{n/n-1})$

$h^{n+1}(X_{n+1/n}) \rightarrow h^{n+1}(X_{n+1/n-1}) \rightarrow h^{n+1}(X_{n/n-1})$
Our choice of δ' is trivial.

\[
\begin{align*}
\text{trivial} \\
\tau^n(X_{n+1/n}) &\longrightarrow \tau^n(X_{n+1/n-1}) &\longrightarrow \tau^n(X_{n/n-1}) \\
\text{our choice of } \delta' \\
\tau^{n+1}(X_{n+1/n}) &\longrightarrow \tau^{n+1}(X_{n+1/n-1}) &\longrightarrow \tau^{n+1}(X_{n/n-1}) \\
\text{trivial}
\end{align*}
\]
\[X_{n/n-1} \rightarrow X_{n+1/n-1} \]

\[1 \rightarrow X_{n+1/n} \]

\[\ker(\delta') \]

\[\text{trivial} \]

\[h^n(X_{n+1/n}) \xrightarrow{} h^n(X_{n+1/n-1}) \xrightarrow{} h^n(X_{n/n-1}) \]

\[h^{n+1}(X_{n+1/n}) \xrightarrow{\text{surj}} h^{n+1}(X_{n+1/n-1}) \xrightarrow{\text{inj}} h^{n+1}(X_{n/n-1}) \]

\[\text{our choice of } \delta' \]

\[\text{coker}(\delta') \]

\[\approx \approx \]
\[X_m \rightarrow X_{m+1} \]

\[1 \rightarrow X_{m+1/m} \]
\[h^n(X_{m+1/m}) \rightarrow h^n(X_{m+1}) \rightarrow h^n(X_m) \rightarrow h^{n+1}(X_{m+1/m}) \]
If \(n \neq m, m+1 \), both ends trivial, \(h^n(X_{m+1}) \approx h^n(X_m) \).
If \(n \neq m, m+1 \), both ends trivial, \(h^n(X_{m+1}) \approx h^n(X_m) \)

three possible values

\[
\begin{align*}
&h^n(X_{n-1}) \approx h^n(X_{n-2}) \approx \cdots \approx h^n(X_0), \text{ trivial} \\
&h^n(X_n) \\
&h^n(X_{n+1}) \approx h^n(X_{n+2}) \approx \cdots \approx h^n(X)
\end{align*}
\]
\[
\text{coker}(\delta'_{n}) \cong
\begin{align*}
&h^{n}(X_{n/n-2}) \leftrightarrow h^{n}(X_{n+1/n-2}) \\
&\cong h^{n}(X) \\
&\cong \ker(\delta'_{n+1})
\end{align*}
\]
\[\text{coker}(\delta'_n) \leftarrow h^n(X) \]

\[\text{eq. class} \]

\[h^n(X_{n/n-1}) \leftarrow \ker(\delta'_{n+1}) \]

\[\text{inj} \]
Using group-theoretic magic...

\[h^n(X) \cong \ker(\delta'_n+1)/\im(\delta'_n) \]
Our Dream (updated)

\[h^n(X) \cong H^n(X; h^0(2)) \]

\[\ker(\delta'_{n+1})/\text{im}(\delta'_n) \quad \ker(\delta_{n+1})/\text{im}(\delta_n) \]

1. Find \(\delta' \) such that \(h^n(X) \cong \ker(\delta'_{n+1})/\text{im}(\delta'_n) \)

2. Show \(\delta \) and \(\delta' \) are equivalent
 domains and codomains are isomorphic
 commutativity in progress
Cohomology Groups

Cellular coh. for pointed CW complexes Ordinary reduced cohomology theories

Dream: prove they give the same groups
We made an important step in proving it