
浅井
A S A · I

info: you are at WITS
info: j.w.w. Reed Mullanix
warning: favonia on stage

Exhausted a�er listening to all POPL talks;
no energy to implement error handling until...

A typical implementation day

Exhausted a�er listening to all POPL talks;
no energy to implement error handling until...

A typical implementation day

Exception: Failure "type error".
Raised at Stdlib.failwith in file "std
lib.ml", line 29, characters 17-33
Called from <unknown> in file "./test.
ml", line 12, characters 9-17
Called from Topeval.load_lambda in fil
e "toplevel/byte/topeval.ml", line 89,
 characters 4-14

What constitutes a diagnosticgood

Should the program terminate now?

What constitutes a diagnosticgood

Should the program terminate now?
How seriously should the user take it?

What constitutes a diagnostic

warning, error, or info?

good

Should the program terminate now?
How seriously should the user take it?

What constitutes a diagnostic

warning, error, or info?

these two
are di�erent!

good

Should the program terminate now?
How seriously should the user take it?

A Google-able code

What constitutes a diagnostic

warning, error, or info?

"E0411 site:stackover�ow.com"

these two
are di�erent!

good

Should the program terminate now?
How seriously should the user take it?

A user-perceived stack backtrace
A Google-able code

What constitutes a diagnostic

warning, error, or info?

"E0411 site:stackover�ow.com"

not call backtrace for debugging! diagnostics are for users, not you!

these two
are di�erent!

good

Should the program terminate now?
How seriously should the user take it?

A user-perceived stack backtrace
A Google-able code

Allowing multiple spans (locations in source �les)

What constitutes a diagnostic

warning, error, or info?

"E0411 site:stackover�ow.com"

not call backtrace for debugging! diagnostics are for users, not you!

these two
are di�erent!

good

Structured or unstructured?

100% structured:

Structured or unstructured?
emit (TypeError ("List.rev", tm, tp))

100% structured:
0% structured:

Structured or unstructured?
emit (TypeError ("List.rev", tm, tp))

emit "type error: List.rev is evil"

100% structured:
0% structured:

Structured or unstructured?
emit (TypeError ("List.rev", tm, tp))

50% structured: emit TypeError "List.rev is evil"

emit "type error: List.rev is evil"

100% structured:
0% structured:

Structured or unstructured?
emit (TypeError ("List.rev", tm, tp))

50% structured: emit TypeError "List.rev is evil"

emit "type error: List.rev is evil"

Some structuredness, especially the classi�cation, helps users
identify (= Google) relevant help documents

100% structured:
0% structured:

Structured or unstructured?
emit (TypeError ("List.rev", tm, tp))

50% structured: emit TypeError "List.rev is evil"

emit "type error: List.rev is evil"

Some structuredness, especially the classi�cation, helps users
identify (= Google) relevant help documents

However, full structuredness is challenging for very ad-hoc messages
Think about all possible errors from parsing

100% structured:
0% structured:

Structured or unstructured?
emit (TypeError ("List.rev", tm, tp))

50% structured: emit TypeError "List.rev is evil"

emit "type error: List.rev is evil"

Some structuredness, especially the classi�cation, helps users
identify (= Google) relevant help documents

However, full structuredness is challenging for very ad-hoc messages
Think about all possible errors from parsing

Which one? We support both the 100% and 50% style!

Compositionality
It should be easy to use a library that also uses asai

interface

library1

main program

Compositionality
It should be easy to use a library that also uses asai

interface

library1

interface

library2

main program

Compositionality
It should be easy to use a library that also uses asai

interface

library1

interface

library2

interface

library3

main program

Unicode Support

Unicode Support

Unicode characters
(scalar values)

Unicode Support

+ZWJ+

Unicode characters
(scalar values)

Unicode Support

No easy way to predict the visual widths
Your fonts, terminals, and maybe locales matter

Many programs use (broken) heuristics

+ZWJ+

Unicode characters
(scalar values)

Unicode Support
2 | vec![(), ()].iter().sum::<i32>();
 | ^^^^^^^^^^^^^^^^^^^ --- required by a bound introduced by
 | |
 | the trait `Sum<&()>` is not implemented for `i32`

Unicode Support
2 | vec![(), ()].iter().sum::<i32>();
 | ^^^^^^^^^^^^^^^^^^^ --- required by a bound introduced by
 | |
 | the trait `Sum<&()>` is not implemented for `i32`

You cannot know the visual width!
If it fails for emojis, it fails. Period.

Tutorial-Oriented Design

https://redprl.org/asai/asai/quickstart.html

Tutorial-Oriented Design

Write a tutorial to improve your design
https://redprl.org/asai/asai/quickstart.html rubber

duck
designTM

Related OCaml Work
Graceasai

representaiton LSP-style Rust-style

(just released)

(type of diagnostics)

Related OCaml Work
Graceasai

generation algebraic e�ects

representaiton LSP-style Rust-style

(just released)

(type of diagnostics)

Related OCaml Work
Graceasai

generation algebraic e�ects

representaiton LSP-style Rust-style

rendering emoji-focused Rust-inspired

(just released)

(type of diagnostics)

Related OCaml Work
Graceasai

generation algebraic e�ects

representaiton LSP-style Rust-style

rendering emoji-focused Rust-inspired

(just released)

(type of diagnostics)

Current plan: bridge these two libraries

Success Stories

Success Stories
algaett: our prototype to check things combine

Success Stories

forester: Jon Sterling's tool to generate his website
algaett: our prototype to check things combine

(not a proof assistant!)

Success Stories

forester: Jon Sterling's tool to generate his website
algaett: our prototype to check things combine

(not a proof assistant!)
(WIP): Mike Shulman's type checker for HOTT

Success Stories

forester: Jon Sterling's tool to generate his website
algaett: our prototype to check things combine

(not a proof assistant!)
(WIP): Mike Shulman's type checker for HOTT
(???): (Your next tool here)

Success Stories

forester: Jon Sterling's tool to generate his website
algaett: our prototype to check things combine

(not a proof assistant!)
(WIP): Mike Shulman's type checker for HOTT
(???): (Your next tool here)

https://ocaml.org/p/asai

