DELIGNE-LUSZTIG DUALITY ON THE MODULI STACK OF BUNDLES

LIN CHEN

Abstract. Let $\text{Bun}_G(X)$ be the moduli stack of G-torsors on a smooth projective curve X for a reductive group G. We prove a conjecture made by Drinfeld-Wang and Gaitsgory on the Deligne-Lusztig duality for D-modules on $\text{Bun}_G(X)$. This conjecture relates the pseudo-identity functors in [Gai17, DG15] to the enhanced Eisenstein series and geometric constant term functors in [Gai15]. We also prove a “second adjointness” result for these enhanced functors.

CONTENTS

0. Introduction 2
 0.1. Motivation: Deligne-Lusztig duality 2
 0.2. Recollections: The parabolic category $\mathcal{I}(G,P)$ 5
 0.3. The main theorem 7
 0.4. Organization of this paper 9
 0.5. Notations and conventions 9

1. Outline of the proof 11
 1.1. Step 1: constructing the natural transformation 11
 1.2. Step 2: translating by the second adjointness 12
 1.3. Step 3: diagram chasing 14
 1.4. Step 4: restoring the symmetry 15
 1.5. Step 5: calculating via the local models 15

2. Step 1 17
 2.1. Proof of Proposition-Construction 1.1.2 18
 2.2. Proof of Proposition 1.1.1 19
 2.3. Proof of Proposition-Construction 1.1.4 21

3. Step 2 22
 3.1. Proof of Lemma 1.2.1 23
 3.2. Recollections: Drinfeld’s framework 23
 3.3. Proof of Theorem 1.2.2 25

4. Step 3 26
 4.1. Proof of Proposition-Construction 1.3.1 30
 4.2. Proof of Lemma 1.3.2 31

5. Step 4 34
 5.1. Proof of Proposition-Construction 1.4.1 and Lemma 1.5.1 34
 5.2. Proof of Proposition 1.4.2 35
 5.3. Proof of Proposition-Construction 1.5.4 37
 5.4. Proof of Theorem 1.5.5 39

Appendix A. Theory of D-modules 42
Appendix B. Well-definedness results in [Gai15] 44
Appendix C. D-modules on stacks stratified by power sets 45
Appendix D. The group scheme \tilde{G} 48

References 50
0. Introduction

0.1. Motivation: Deligne-Lusztig duality. The following pattern has been observed in several representation-theoretic contexts: The composition of two different duality functors on the category C_G attached to a reductive group G is isomorphic to a Deligne-Lusztig functor, given by a complex indexed by standard parabolic subgroups P of G, whose terms are compositions

$$C_G \xrightarrow{CT_P} C_M \xrightarrow{Eis_P} C_G,$$

where

- M is the Levi quotient group of P;
- C_M is the category attached to M;
- CT_P and Eis_P are adjoint functors connecting C_G and C_M.

Notable examples include

- The work of Bernstein-Bezrukavnikov-Kazhdan ([BBK18]), where C_G is the category of representations of the group $G(K)$, where K is a non-Archimedian local field.
- The work of Yom Din ([YD19]), where C_G is the category of character D-modules on G.
- The work of Drinfeld-Wang ([DW16] and [Van18]), where C_G is the space of automorphic functions for the group G. Note that this example is actually one categorical level down from the above pattern (i.e., one needs to replace “categories” by “spaces” and “functors” by “operators”).

In the present paper we establish yet another incarnation of this pattern. Namely, we take C_G to be the category of automorphic D-modules, i.e., $C_G = Dmod(Bun_G(X))$, where $Bun_G(X)$ is the moduli stack of G-torsors on a smooth complete curve X.

Our context can be viewed as directly categorifying that of Drinfeld-Wang. It is also closely connected to that of Yom Din because the category of character D-modules can be regarded as a genus 0 version of the automorphic category.

Below we will review the contexts mentioned above.

0.1.1. Work of [BBK18]. Let G be defined over a number field and K be a non-archimedian local field. In [BBK18], the authors proved the following result about the derived category $G(K)$-mod of admissible representations of the p-adic group $G(K)$.

For any object $M \in G(K)$-mod, consider the corresponding Deligne-Lusztig complex

$$DL(M) := [M \to \bigoplus_P r_P^G \circ r_P^G(M) \to \cdots \to r_B^G \circ r_B^G(M)],$$

where (r_P^G, l_P^G) is the adjoint pair for the parabolic induction and Jacquet functors, and where the direct sum in the k-th term of the complex is taken over standard parabolic subgroups of corank k. The main theorem of [BBK18] says that

$$DL \cong D^{\text{coh}} \circ D^{\text{contr}}[\text{rank}(G)],$$

where D^{contr} and D^{coh} are the contravariant endofunctors on $G(K)$-mod for the contragredient and cohomological dualities. In other words,

$$D^{\text{contr}}(M) := M^\vee, \quad D^{\text{coh}}(M) := \text{RHom}_{G(K)}(M, H),$$

where M^\vee is the admissible dual, and where $H = C^\infty_c(G(K))$ is the regular bimodule for the Hecke algebra. The proof in loc.cit. used an explicit resolution for H coming from the geometry of the wonderful compactification of G.

1 We fix a Borel subgroup B of G. A parabolic subgroup is standard if it contains B.
2 Our method can also be applied to the category of automorphic sheaves with suitable modifications.
3 Analogous complexes for finite Chevalley group were firstly studied by Deligne and Lusztig in [DL82].
0.1.2. Work of [YD19]. Let G be defined over an algebraically closed field k of characteristic 0. In [YD19], the author proved the following result about the DG-category $\mathcal{D}(G/\text{Ad}(G))$ of character D-modules on G.

Let P be a standard parabolic subgroup and M be its Levi quotient group. Consider the diagram

$$G/\text{Ad}(G) \xrightarrow{\varrho} P/\text{Ad}(P) \xrightarrow{\Delta} M/\text{Ad}(M).$$

The map p is projective and q is smooth. Hence we have the parabolic restriction functor

$$\text{res}_P = q_* \circ p^! : \mathcal{D}(G/\text{Ad}(G)) \to \mathcal{D}(M/\text{Ad}(M))$$

and its left adjoint, a.k.a. the parabolic induction functor

$$\text{ind}_P = p_* \circ q^! : \mathcal{D}(M/\text{Ad}(M)) \to \mathcal{D}(G/\text{Ad}(G)).$$

These functors are t-exact by [BYD18]. Let P° be an opposite parabolic subgroup. It is known (see [DG14 § 0.2.1]) that res_P is left adjoint to ind_{P°. This is analogous to the well-known Bernstein’s second adjointness.

Consider the diagonal map $\Delta : G/\text{Ad}(G) \to G/\text{Ad}(G) \times G/\text{Ad}(G)$ and the endofunctor on $\mathcal{D}(G/\text{Ad}(G))$ given by the kernel $\Delta(k_{G/\text{Ad}(G)})$, where $k_{G/\text{Ad}(G)}$ is the constant D-module. Explicitly, this endofunctor is

$$\text{pr}_{1, \Delta}(\Delta(k_{G/\text{Ad}(G)}) \otimes \text{pr}_{2}^!(\cdot),)$$

where $\text{pr}_{1, \Delta}$ is the renormalized pushforward functor in [DG13]. This endofunctor is the so-called Drinfeld-Gaitsgory functor for $\mathcal{D}(G/\text{Ad}(G))$ in [YD19].

One of the main results of [YD19] says that the above Drinfeld-Gaitsgory functor can be “glued” from the functors

$$\bigoplus_{\text{rank}(P) - l} \text{ind}_{P^\circ} \circ \text{res}_P [l - \dim(T)].$$

The proof in loc.cit. used a filtration of $\Delta(k_{G/\text{Ad}(G)})$ coming from the geometry of the wonderful compactification of G.

0.1.3. The pseudo-identity functor(s). As explained in [YD19], the above Drinfeld-Gaitsgory functor can be identified with

$$\text{Ps-Id}_{G/\text{Ad}(G), naive} \circ (\text{Ps-Id}_{G/\text{Ad}(G), naive})^{-1},$$

where Ps-Id are the pseudo-identity functors constructed in [DG13]. Here are more details.

Let Y be a QCAD algebraic stack in the sense of loc.cit. Consider the cocomplete DG-category $\mathcal{D}(Y)$ and its full subcategory $\mathcal{D}(Y)^c$ of compact objects. Verdier duality provides an equivalence

$$\mathcal{D}^\text{Ver} : \mathcal{D}(Y)^c \to \mathcal{D}(Y)^{c, op}.$$

Using ind-completion, we obtain an equivalence

$$\text{Ps-Id}^\text{naive}_Y : \mathcal{D}(Y)^c \simeq \mathcal{D}(Y),$$

where $\mathcal{D}(Y)^c$ is the Lurie dual of $\mathcal{D}(Y)$.

On the other hand, we have the product formula:

$$\mathcal{D}(Y \times Y) \simeq \mathcal{D}(Y) \otimes_k \mathcal{D}(Y),$$

\[\text{See Notation 0.5.4 for our conventions for DG-categories.}\]

\[\text{In order to define } \mathcal{F}^{\circ}, \text{ we fix a Cartan subgroup of } G.\]

\[\text{Roughly speaking, this means that up to a cohomological shift, the Drinfeld-Gaitsgory functor sends an object } \mathcal{F} \in \mathcal{D}(G/\text{Ad}(G))^\circ \text{ in the heart of the t-structure to a certain complex}
\]

$$\mathcal{F} \to \bigoplus \text{ind}_{P^\circ} \circ \text{res}_P(\mathcal{F}) \to \cdots \to \text{ind}_{P^\circ} \circ \text{res}_P(\mathcal{F}).$$

However, [YD19] did not describe the connecting morphisms in the above complex. Nevertheless, we have confidence that one can use the method in the current paper to show that these connecting maps are given by the adjunction natural transformations of the second adjointness.

\[\text{This means } Y \text{ is a quasi-compact algebraic stack whose automorphism groups of geometric points are affine.}\]

\[\text{See Notation 0.5.4 for what this means.}\]
where \(\otimes_k \) is the *Lurie tensor product* of cocomplete DG-categories. The RHS can be identified with \(\text{LFun}_k(\text{D}(Y)^\vee, \text{D}(Y)) \), i.e., the category of \(k \)-linear colimit-preserving functors \(\text{D}(Y)^\vee \to \text{D}(Y) \). Hence the object \(\Delta_!(\omega_Y) \in \text{D}(Y \times Y) \) provides a functor

\[
\text{Ps-Id}_{Y!} : \text{D}(Y)^\vee \to \text{D}(Y).
\]

In general, the functor \(\text{Ps-Id}_{Y!} \) is not an equivalence. We say \(Y \) is *miraculous* if it is an equivalence.

It is known that the equivalence \(\text{Ps-Id}_{Y, \text{naïve}} \) can be obtained in the same way by replacing \(\Delta_!(\omega_Y) \) by \(\Delta_!(\omega_Y) \), where \(\omega_Y \) is the dualizing D-module on \(Y \). For this reason, the functor \(\text{Ps-Id}_{Y, \text{naïve}} \) is also denoted by \(\text{Ps-Id}_{Y, \ast} \) in the literature.

It follows from definitions that the composition \(\text{Ps-Id}_{Y, \ast} \circ (\text{Ps-Id}_{Y, \text{naïve}})^{-1} \) is the functor given by the kernel \(\Delta_!(\omega_Y) \). In other words, it is the Drinfeld-Gaitsgory functor for \(\text{D}(Y) \).

Remark 0.1.4. By [YD19 Proposition 5.5], the Drinfeld-Gaitsgory functor for \(\text{D}(G/\text{Ad}(G)) \) is invertible, hence so is \(\text{Ps-Id}_{G, \text{Ad}(G)} \). In other words, \(\text{G/Ad}(G) \) is miraculous.

0.1.5. *The current work.* Let \(G \) be as in \(\S 1.2 \) and \(X \) be a connected smooth projective curve over \(k \). Let \(\text{Bun}_G \) be the moduli stack of \(G \)-torsors on \(X \). The purpose of this paper is to describe the Deligne-Lusztig duality on the DG-category \(\text{D}(\text{Bun}_G) \) of D-modules on \(\text{Bun}_G \).

Unlike \(G/\text{Ad}(G) \), the stack \(\text{Bun}_G \) is not quasi-compact. Nevertheless, the main theorem of [DG15] says that \(\text{D}(\text{Bun}_G) \) is compactly generated and hence dualizable. Also, the product formula

\[
\text{D}(\text{Bun}_G \times \text{Bun}_G) \cong \text{D}(\text{Bun}_G) \otimes \text{D}(\text{Bun}_G)
\]

still holds (see [DG15 Remark 2.2.9]). Hence as before, we have equivalences

\[
\text{LFun}_k(\text{D}(\text{Bun}_G)^\vee, \text{D}(\text{Bun}_G)) \cong \text{D}(\text{Bun}_G)^\vee \cong \text{D}(\text{Bun}_G) \otimes \text{D}(\text{Bun}_G) \cong \text{D}(\text{Bun}_G \times \text{Bun}_G),
\]

(0.1)

and we use the objects \(\Delta_!(\omega_{\text{Bun}_G}), \Delta_!(k_{\text{Bun}_G}) \) in the RHS to define functors

\[
\text{Ps-Id}_{\text{Bun}_G, \text{naïve}}, \text{Ps-Id}_{\text{Bun}_G, \ast} : \text{D}(\text{Bun}_G)^\vee \to \text{D}(\text{Bun}_G).
\]

From now on, we write them just as \(\text{Ps-Id}_{\text{naïve}}, \text{Ps-Id}_{\ast} \).

Unlike the quasi-compact case, the functor \(\text{Ps-Id}_{\text{naïve}} \) is not an equivalence. On the contrary, the main theorem of [Gai17] says:

- The functor \(\text{Ps-Id} : \text{D}(\text{Bun}_G)^\vee \to \text{D}(\text{Bun}_G) \) is an equivalence, i.e., \(\text{Bun}_G \) is miraculous.

Accordingly, the *Deligne-Lusztig duality for \(\text{Bun}_G \) in this paper is actually analogous to the "left adjoint version" of [BBK18] and [YD19]. Namely, we will show

- Up to cohomological shifts, the endofunctor \(\text{Ps-Id}_{\text{naïve}} \circ \text{Ps-Id}_{\ast}^{-1} \) on \(\text{D}(\text{Bun}_G) \) can be "glued" from the functors

\[
\bigoplus_{\text{corank}(P) = l} \text{Eis}_{P, \text{enh}}^{\text{enh}} \circ \text{CT}_{G, P}^{\text{enh}},
\]

where \(\text{Eis}_{P, \text{enh}}^{\text{enh}} \) (resp. \(\text{CT}_{G, P}^{\text{enh}} \)) is the enhanced Eisenstein series (resp. enhanced constant term) functor on \(\text{D}(\text{Bun}_G) \).

The precise statement of our main theorem will be given in §0.3. See Theorem 0.3.1.

Remark 0.1.6. For \(G = \text{SL}_2 \), our main theorem was conjectured by V. Drinfeld and J. Wang in [DW16 Conjecture C.2.1]. For general \(G \), Wang made the following remark in [Wan18 Remark 6.6.5]:

"...describing the functor inverse to \(\text{Ps-Id}_{\text{Bun}_G, \ast} \) (we expect that one can mimic the construction of the Deligne-Lusztig complex using the functors \(\text{Eis}_{P, \text{enh}}^{\text{enh}}, \text{CT}_{P, \text{enh}}^{\text{enh}} \))."

However, as far as we know, the precise formulation\(^9\) of the conjecture for general \(G \) was first made by D. Gaitsgory and recorded by D. Beraldo in [Ber19 §1.5.5].

\(^9\)We review the definitions of them in §0.2. Let us emphasize that \(\text{Eis}_{P, \text{enh}}^{\text{enh}} \) is the left adjoint of \(\text{CT}_{P, \text{enh}}^{\text{enh}} \).

\(^{10}\)Since the functors \(\text{Eis}_{P, \text{enh}}^{\text{enh}}, \text{CT}_{P, \text{enh}}^{\text{enh}} \) are not t-exact, the naive formation of the Deligne-Lusztig complex is not a well-defined object in the DG-category \(\text{D}(\text{Bun}_G) \).
0.1.7. Relation with the Drinfeld-Wang operator. Drinfeld and Wang made their conjecture according to an analogous result on the space of automorphic forms proved by them in [DW16] and [Wan18]. Let us briefly explain their work.

Let F be a global function field over F_0 and \mathbb{A} be the adele ring of F. Let G be a split reductive group over F_0 and $G(\mathbb{A})$ be the maximal compact subgroup of $G(\mathbb{A})$. Let \mathcal{A}_c be the space of compactly supported smooth $G(\mathbb{A})$-finite functions on $G(\mathbb{A})/G(F)$. As explained in [DW16, Appendix A], the DG-category $D(Bun_\mathcal{O})$ (when G is in characteristic 0) can be viewed as a geometric analogue of $\mathcal{A}_c^{G(\mathbb{A})}$ (the subspace of \mathcal{A}_c fixed by $G(\mathbb{A})$).

Drinfeld and Wang also defined a subspace $\mathcal{A}_{pc,c} \subset \mathcal{A}_c$ such that $\mathcal{A}_{pc,c}^{G(\mathbb{A})}$ is analogous to $D(Bun_\mathcal{O})$. They also constructed a $G(\mathbb{A})$-linear operator

$$L : \mathcal{A}_c \to \mathcal{A}_{pc,c}$$

such that $L^{G(\mathbb{A})} : \mathcal{A}_{pc,c}^{G(\mathbb{A})} \to \mathcal{A}_{pc,c}^{G(\mathbb{A})}$ is analogous to the functor Ps-Id. Moreover, they proved L is invertible and gave the following explicit formula for its inverse:

$$L^{-1} f = \sum_P (-1)^{\dim Z_M} \text{Eis}_P \circ \text{CT}_P(f),$$

where $\text{Eis}_P, \text{CT}_P$ are the Eisenstein and constant term operators, and where Z_M is the center of M.

Our main theorem can be viewed as a categorification of the above formula (when restricted to $G(\mathbb{A})$-invariant subspaces). We refer the reader to [DW16, Appendix C] for more details on this analogy.

0.2. Recollections: The parabolic category $I(G, P)$. From now on, we fix a connected reductive group G defined over an algebraically closed field k of characteristic 0. For simplicity, we assume $[G, G]$ to be simply connected. We also fix a connected smooth projective curve X over k.

Let P be a parabolic subgroup of G and M be its Levi quotient group. Consider the diagram

$$\xymatrix{ \text{Bun}_G \ar[r]^p & \text{Bun}_P \ar[r]^q & \text{Bun}_M.}$$

In [BG02] and [DG16], the authors constructed the geometric Eisenstein series functor and the geometric constant term functor

$$\text{Eis}_P : p_! \circ q_!^* : \text{D}(\text{Bun}_M) \to \text{D}(\text{Bun}_G)$$

$$\text{CT}_P : q_!^* \circ p_! : \text{D}(\text{Bun}_G) \to \text{D}(\text{Bun}_M).$$

However, they are not the functors that we will use (otherwise the main theorem would be false). Instead, we need to replace $\text{D}(\text{Bun}_M)$ by the category $I(G, P)$ defined in [Gai15 § 6], and accordingly use the “enhanced” functors ($\text{Eis}^{enh}_P, \text{CT}^{enh}_P$) defined there. We review these functors in this subsection.

Remark 0.2.1. As explained in loc.cit., one can think of $I(G, P)$ as the DG-category of D-modules on a non-existent stack obtained by gluing all the connected components of Bun_M together. Since this imaginary stack has the same field-valued points as Bun_M, the difference between $I(G, P)$ and $\text{D}(\text{Bun}_M)$ can not be seen in their “de-categorifications”. In other words, both Eis_P and Eis^{enh}_P are analogous to the Eisenstein series operator for automorphic functions.

0.2.2. Prestack of generic reductions. Let K be any algebraic group and H be a subgroup of K. In [Bar14 Example 2.2.5], J. Barlev constructed a lft prestack Bun_K^{H-gen} classifying a K-torsor on X equipped with a generic reduction to H. In the notation of loc.cit., it is defined by

$$\text{Bun}_K^{H-gen} := \text{Maps}(X, \mathbb{B}K) \times_{\text{GMap}(X, \mathbb{B}K)} \text{GMap}(X, \mathbb{B}H).$$

To simplify the notation, we write the RHS as $\text{Maps}_{gen}(X, \mathbb{B}K \leftarrow \mathbb{B}H)$. More generally, for any map between lft prestacks $Y_1 \to Y_2$, we define

$$\text{Maps}_{gen}(X, Y_2 \leftarrow Y_1) := \text{Maps}(X, Y_2) \times_{\text{GMap}(X, Y_2)} \text{GMap}(X, Y_1).$$

\[\text{See Notation 0.5.6 for our notations for concepts related to } G.\]

\[\text{See Definition 0.5.2 for what this means.}\]
For future use, let us mention that the functor $\text{Maps}_{\text{gen}}(X, -)$ commutes with finite limits (see \cite[Remark 2.2.6]{Bar14}).

Applying the above construction to the diagram

$$(G, P) \leftrightarrow (P, P) \rightarrow (M, M),$$

we obtain a diagram

$$\text{Bun}_G^{P, \text{gen}} \xleftarrow{\iota_P} \text{Bun}_P \xrightarrow{q^*_P} \text{Bun}_M.$$

Remark 0.2.3. The prestack $\text{Bun}_G^{P, \text{gen}}$ has the same field-valued points as Bun_P.

Definition 0.2.4. The DG-category $I(G, P)$ is defined as the fiber product of the following diagram:

$$\begin{array}{ccc}
I(G, P) & \rightarrow & D(\text{Bun}_M) \\
\downarrow & & \downarrow q^*_P \\
D(\text{Bun}_G^{P, \text{gen}}) & \xrightarrow{\iota_P} & D(\text{Bun}_P).
\end{array}$$

Remark 0.2.5. The above definition is equivalent to that in \cite[§ 6.1]{Gai15} by \cite[Lemma 6.3.3]{Gai15}.

Remark 0.2.6. By \cite[Lemma 6.1.2]{Gai15}, the functor ι_P is conservative. By \cite[§ 6.2.1]{Gai15}, the functor q^*_P is fully faithful. Therefore the functor

$I(G, P) \rightarrow D(\text{Bun}_G^{P, \text{gen}})$

is fully faithful and the functor $I(G, P) \rightarrow D(\text{Bun}_M)$ is conservative. Following loc.cit., we denote the last functor by

$$i_M : I(G, P) \rightarrow D(\text{Bun}_M).$$

The following result was claimed in \cite[§ 6.2.5]{Gai15}. We provide a proof in Appendix \ref{B.1.1}.

Proposition 0.2.7. (Gaitsgory)

The partially defined left adjoint $i_{P,！}$ to i_P is well-defined on the essential image of q^*_P, and its image is contained in $I(G, P)$.

Corollary 0.2.8. The functor $i_M : I(G, P) \rightarrow D(\text{Bun}_M)$ has a left adjoint

$$i_{M,！} : D(\text{Bun}_M) \rightarrow I(G, P).$$

Proof. By Proposition \ref{0.2.7}, the functor $i_{P,！} \circ q^*_P$ uniquely factors through a functor $D(\text{Bun}_M) \rightarrow I(G, P)$, which is the desired left adjoint.

□ [Corollary 0.2.8]

Remark 0.2.9. Since i_M is conservative, the image of its left adjoint $i_{M,！}$ generates $I(G, P)$. Hence $I(G, P)$ is compactly generated because so is $D(\text{Bun}_M)$. Note that $I(G, P) \rightarrow D(\text{Bun}_G^{P, \text{gen}})$ preserves compact objects because so is $i_{P,！} \circ q^*_P$.

0.2.10. **Enhanced Eisenstein series functor.** Let Q be another parabolic subgroup of G that contains P. Consider the map

$$p_{P \rightarrow Q}^{\text{enh}} : \text{Bun}_G^{P, \text{gen}} \rightarrow \text{Bun}_G^{Q, \text{gen}}$$

and the functor

$$p_{P \rightarrow Q,！}^{\text{enh}} : D(\text{Bun}_G^{Q, \text{gen}}) \rightarrow D(\text{Bun}_G^{P, \text{gen}}).$$

The special case (when $Q = G$) of the following result was claimed in \cite[Lemma 6.3.3]{Gai15}. We provide a proof in Appendix \ref{B.1.2}.

Proposition 0.2.11. (Gaitsgory)

1. The partially defined left adjoint $p_{P \rightarrow Q,！}^{\text{enh}}$ to $p_{P \rightarrow Q}^{\text{enh}}$ is well-defined on $I(G, P) \subset D(\text{Bun}_G^{P, \text{gen}})$, and sends $I(G, P)$ into $I(G, Q)$.

□ [Corollary 0.2.11]
(2) Let
\[\text{Eis}^{\text{enh}}_{P \rightarrow Q} : \text{I}(G, P) \rightarrow \text{I}(G, Q) \]
be the functor obtained from \(\text{F}^{\text{enh}}_{P \rightarrow Q} \). Then \(\text{Eis}^{\text{enh}}_{P \rightarrow Q} \) has a continuous right adjoint
\[\text{CT}^{\text{enh}}_{Q \rightarrow P} : \text{I}(G, Q) \rightarrow \text{I}(G, P). \]

Remark 0.2.12. When \(Q = G \), we also denote the adjoint pair \((\text{Eis}^{\text{enh}}_{P \rightarrow G}, \text{CT}^{\text{enh}}_{G \rightarrow P})\) by \((\text{Eis}^{\text{enh}}, \text{CT}^{\text{enh}})\).

Warning 0.2.13. The functor \(\text{F}^{\text{enh}}_{P \rightarrow Q} \) does not send \(\text{I}(G, Q) \) into \(\text{I}(G, P) \). Hence the functor \(\text{CT}^{\text{enh}}_{Q \rightarrow P} \) is not the restriction of \(\text{F}^{\text{enh}}_{P \rightarrow Q} \). Instead, it is given by \(\Lambda^U \circ \text{F}^{\text{enh}}_{P \rightarrow Q} \), where \(\Lambda^U \) is the right adjoint to the inclusion \(\text{I}(G, P) \subseteq \text{D}(\text{Bun}_G^{P-\text{gen}}) \). We refer the reader to [Gai15 § 6.1.3] for the meaning of the symbol \(\Lambda^U \).

0.3. The main theorem. We fix a Borel subgroup \(B \) of \(G \). Let \(\text{Par} \) be the poset of standard parabolic subgroups (i.e., parabolic subgroups containing \(B \)) of \(G \). We view \(\text{Par} \) as categories in the standard way. It follows formally from Proposition 0.2.11 that we have a functor
\[\text{DL} : \text{Par} \rightarrow \text{LFun}_{k}(\text{D}(\text{Bun}_G), \text{D}(\text{Bun}_G)), \quad P \mapsto \text{Eis}^{\text{enh}}_{P \rightarrow G} \circ \text{CT}^{\text{enh}}_{G \rightarrow P} \]
such that a morphism \(P \rightarrow Q \) in \(\text{Par} \) is sent to the composition
\[\text{Eis}^{\text{enh}}_{P \rightarrow G} \circ \text{CT}^{\text{enh}}_{G \rightarrow P} \cong \text{Eis}^{\text{enh}}_{Q \rightarrow G} \circ \text{Eis}^{\text{enh}}_{P \rightarrow Q} \circ \text{CT}^{\text{enh}}_{Q \rightarrow P} \circ \text{CT}^{\text{enh}}_{G \rightarrow Q}. \]

Note that \(\text{DL}(G) \) is the identity functor \(\text{Id} \) on \(\text{D}(\text{Bun}_G) \).

Our main theorem is

Theorem 0.3.1. There is a canonical equivalence
\[\text{(0.2)} \quad \text{coFib}(\varprojlim_{P \in \text{Par}} \text{DL}(P) \Rightarrow \text{DL}(G)) \cong \text{Ps-Id}_{\text{Ps-Par}}'[-2 \text{dim}(\text{Bun}_G) - \text{dim}(Z_G)] \]
in \(\text{LFun}_{k}(\text{D}(\text{Bun}_G), \text{D}(\text{Bun}_G)) \).

Remark 0.3.2. Let \(\mathcal{F} \in \text{D}(\text{Bun}_G)^{\text{coh}} \) be an object in the heart of the t-structure. If the functors \(\text{DL}(P) \) were t-exact (which is not true), then the value of the LHS of (0.2) on \(\mathcal{F} \) can be calculated by a complex
\[\text{DL}(B)(\mathcal{F}) \rightarrow \cdots \rightarrow \bigoplus_{\text{corank}(P)=1} \text{DL}(P)(\mathcal{F}) \rightarrow \text{DL}(G)(\mathcal{F}). \]

Hence the LHS of (0.2) can be viewed as an \(\infty \)-categorical analogue for the Deligne-Lusztig complex.

0.3.3. A stronger result. As mentioned in [Ber19 Remark 1.5.6], Gaitsgory’s strategy for the proof of the above theorem is to express both sides via the Drinfeld’s compactification \(\overline{\text{Bun}}_G \) of \(\text{VinBun}_G / T \), where
\[\text{VinBun}_G := \text{Maps}^{\text{gen}}(X, G \setminus \text{Vin}_G \setminus G \setminus \text{Vin}_G / G). \]

We refer the reader to [Sch16 § 2.2.4, FKM20 § 2.3.3] and [Che21 § 1] for a detailed discussion about \(\text{Vin}_G \) and \(\text{VinBun}_G \). For now, it is enough to know

- \(\overline{\text{Bun}}_G \) is an algebraic stack;
- There is a canonical map \(\overline{\text{Bun}}_G \rightarrow T_{\text{ad}} / T \), where \(T_{\text{ad}} := \mathbb{G}_m^T \) is the semi-group completion of the adjoint torus \(T_{\text{ad}} \);
- The diagonal map \(\Delta : \text{Bun}_G \rightarrow \text{Bun}_G \times \text{Bun}_G \) canonically factors as
\[\text{Bun}_G \twoheadrightarrow \overline{\text{Bun}}_G \overset{\Delta}{\rightarrow} \text{Bun}_G \times \text{Bun}_G \]
and the map \(\overline{\Delta} \) is schematic and proper.

\[\text{Remarks:} \]

13 It is helpful to have the case \(G = \text{SL}_2 \) in mind. In this case, \(\text{VinBun}_G(S) \) classifies \(\phi : E_1 \rightarrow E_2 \), where \(E_1 \) and \(E_2 \) are rank 2 vector bundles on \(X \times S \) with trivialized determinant line bundles, and \(\phi \) is a map between coherent \(\mathcal{O}_{X \times S} \)-modules such that for any geometric point \(s \) of \(S \), the map \(\phi|_{X \times s} \) is nonzero. The Cartan subgroup \(G_m \) acts on \(\text{VinBun}_{SL_2} \) by scalar multiplication on \(\phi \).

We warn the reader that the projection \(\text{VinBun}_G \rightarrow \text{Bun}_G \times \text{Bun}_G \) below sends the above data to \((E_2, E_1) \) rather than \((E_1, E_2) \). See [Che21 Warning 1.1.3] for the reason of this convention.

14 See Notation 0.5.3 for more information about \(T_{\text{ad}} \).
Let Z_G be the center of G. The map $b : \text{Bun}_G \to \overline{\text{Bun}}_G$ canonically factors as

$$\text{Bun}_G \xrightarrow{r} \text{Bun}_G \times \mathbb{B}Z_G \xrightarrow{j_G} \overline{\text{Bun}}_G$$

and the map j_G is a schematic open embedding onto

$$\overline{\text{Bun}}_{G,G} : = \overline{\text{Bun}}_G \times_{T_{ad}/T} T_{ad}/T.$$

The coordinate stratification on $T_{ad}^* := \mathbb{A}^T$ (see Notation [0.5.7]) provides a stratification on Bun_G, labelled by Par, known as the parabolic stratification. For a standard parabolic $P \in \text{Par}$, the P-stratum is defined as

$$\overline{\text{Bun}}_{G,P} : = \overline{\text{Bun}}_G \times_{T_{ad}/T} T_{ad,P}/T.$$

We denote the corresponding locally closed embedding by

$$i_P : \overline{\text{Bun}}_{G,P} \to \overline{\text{Bun}}_G.$$

Note that Par is isomorphic to the power poset $P(\mathcal{I})$ of \mathcal{I}. By a general construction (see Corollary [C.1.7] for stacks stratified by power posets, we have a canonically defined functor [35]

$$K : \text{Par} \to \text{D}_{\text{indhol}}(\overline{\text{Bun}}_G),$$

where $F \mapsto i_{P,*} \circ i_P^* \circ j_G \circ r_1(k_{\text{Bun}_G})[\text{rank}(M) - \text{rank}(G)],$

and a canonical isomorphism (see Lemma [C.1.9])

$$\text{coFib}(\text{colim}_{P \in \text{Par}} K(P) \to K(G)) \cong j_G \circ r_1(k_{\text{Bun}_G}).$$

Consider the composition

$$E : \text{LFun} \to \text{D}(\text{Bun}_G, \text{Bun}_G) \to \text{LFun} \to \text{D}(\text{Bun}_G, \text{Bun}_G) \cong \text{D}(\text{Bun}_G \times \text{Bun}_G),$$

where the first functor is given by precomposition with $P \otimes \text{Id}$, and the last equivalence is [0.1]. Equivalently, E sends an endo-functor F to

$$E(F) = (F \otimes \text{Id}) \circ \Delta_1(k_{\text{Bun}_G}),$$

where we view $F \otimes \text{Id}$ as an endo-functor of $\text{D}(\text{Bun}_G \times \text{Bun}_G) \cong \text{D}(\text{Bun}_G) \otimes \text{Id}(\text{Bun}_G).$

Let us first deduce Theorem [0.3.1] from the following stronger result, which will be proved in §4 (but with some details postponed to the latter sections).

Theorem 0.3.4. There is a canonical commutative diagram

$$\begin{array}{ccc}
\text{Par} & \xrightarrow{\text{DL}} & \text{LFun} \\
\downarrow K & & \downarrow E \\
\text{D}_{\text{indhol}}(\overline{\text{Bun}}_G) & \xrightarrow{\Delta_1} & \text{D}(\text{Bun}_G \times \text{Bun}_G). \\
\end{array}$$

0.3.5. Deduction of Theorem [0.3.1] from Theorem [0.3.4] This step is due to Gaitsgory.

First note that E is an equivalence because $P \otimes \text{Id}$ is. By definition,

$$E^{-1}(\Delta_1(\omega_{\text{Bun}_G})) \cong \text{Ps-Id}_\text{naive} \circ \text{Ps-Id}_1^{-1}.$$

On the other hand, as in [Gai17 § 3.2.3], we have an isomorphism

$$\Delta_1(\omega_{\text{Bun}_G})[-2\dim(\text{Bun}_G) - \dim(Z_G)] \cong \Delta_1 \circ j_G \circ r_1(k_{\text{Bun}_G}),$$

where the cohomological shift by $-2\dim(\text{Bun}_G)$ is due to the difference between ω_{Bun_G} and k_{Bun_G}, while that by $-\dim(Z_G)$ is due to the difference between r_+ and r_1. Hence the isomorphism [0.4] implies

$$\text{coFib}(\text{colim}_{P \in \text{Par}} E^{-1} \circ \Delta_1 \circ K(P) \to E^{-1} \circ \Delta_1 \circ K(G)) \cong \text{Ps-Id}_\text{naive} \circ \text{Ps-Id}_1^{-1}[-2\dim(\text{Bun}_G) - \dim(Z_G)].$$

\[15\] The functor K is given by $G^* \otimes_{r_1(k_{\text{Bun}_G}),\text{Bun}_G}$, which is defined in Corollary [C.1.7].
Then we are done because \(E^{-1} \circ \Delta_! \circ K \simeq DL \).

\(\square \) Theorem 0.3.1

Remark 0.3.6. As a first test for Theorem 0.3.1, let us evaluate the above diagram at \(G \in \text{Par} \). By definition, \(K(G) \simeq j_{G!*} \circ r_! (k_{BunG}) \). Hence \(\Delta_! \circ K(G) \simeq \Delta_! (k_{BunG}) \). On the other hand \(DL(G) \simeq \text{Id} \), hence \(E \circ DL(G) \simeq \Delta_! (k_{BunG}) \) by the definition of \(\text{Ps-Id} \).

Remark 0.3.7. The statement of Theorem 0.3.1 depends on the miraculous duality on \(\text{Bun}_G \) (i.e., \(\text{Ps-Id} \) is invertible) but that of Theorem 0.3.4 does not. Our proof of the latter will not depend on the miraculous duality either.

Remark 0.3.8. The following claim is neither proved nor used in this paper. The object \(K(P) \) can be obtained by the following nearby cycles construction. Choose a homomorphism \(\gamma : \mathbb{A}^1 \to T_{\text{ad}}^\times \) connecting the unit point \(C_1 \) and the point \(C_P \). In [Che21], S. Schieder calculated the nearby cycles of the constant \(D \)-module for the \(\mathbb{A}^1 \)-family

\[
\text{VinBun}_G^\gamma := \text{VinBun}_G \times_{T_{\text{ad}}^\times} \mathbb{A}^1.
\]

Denote this nearby cycles sheaf by \(\Psi^\gamma \in D_{\text{bidual}}(\text{VinBun}_G|_{C_P}) \). Then up to a cohomological shift, \(K(P) \) is isomorphic to the \(! \)-pushforward of \(\Psi^\gamma \) along \(\text{VinBun}_G|_{C_P} \to \text{Bun}_G \). Moreover, one can use \(\Psi^\gamma \) to construct a duality between \(I(G, P) \) and \(I(G, P^\circ) \). See [Che21, Theorem E, Theorem H] for more details.

0.4. Organization of this paper. The outline of the proof for Theorem 0.3.1 will be provided in § 4. Each other section corresponds to a step in that proof.

In Appendix A we review the theory of \(D \)-modules.

In Appendix B we provide proofs for the results mentioned in § 0.2 (which are due to Gaitsgory).

In Appendix C we review the gluing functors for \(D \)-modules on stratified stacks.

In Appendix D we prove some results about the group scheme \(\tilde{G} \), which is the stabilizer of the canonical section \(z : T_{\text{ad}}^\times \to \text{Vin}_G \) for the \((G \times G)\)-action on \(\text{Vin}_G \).

0.5. Notations and conventions.

Notation 0.5.1. \((\infty\text{-categories})\)

We use the theory of \((\infty,1)\)-categories developed in [Lur09]. We use same symbols to denote a \((1,1)\)-category and its simplicial nerve. The reader can distinguish them according to the context.

For two objects \(c_1, c_2 \) in an \((\infty,1)\)-category \(C \), we write \(\text{Maps}_C(c_1, c_2) \) for the mapping space between them, which is an object in the homotopy category of spaces. We omit the subscript \(C \) if there is no ambiguity.

We also need the theory of \((\infty,2)\)-categories developed in [GR17]. For two objects \(c_1, c_2 \) in an \((\infty,2)\)-category \(S \), we write \(\text{Maps}_S(c_1, c_2) \) for the mapping \((\infty,1)\)-category between them.

Definition 0.5.2. \((\text{Algebraic geometry})\)

Unless otherwise stated, all algebro-geometric objects are defined over a fixed algebraically closed ground field \(k \) of characteristic 0, and are classical (i.e. non-derived).

A locally finite type prestack or \(\text{Art} \) prestack is a contravariant (accessible) functor

\[
(\text{Sch}_{\text{Art}})^{\text{op}} \to \text{Groupoids}
\]

from the category of affine \(k \)-schemes to the category of groupoids. The collection of them form a \((2,1)\)-category \(\text{PreStk}_{\text{Art}} \).

An algebraic stack is a \(\text{Art} \) 1-Artin stack in the sense of [GR17, Chapter 2, § 4.1].

Notation 0.5.3. We fix a connected smooth projective curve \(X \) over \(k \).

Notation 0.5.4. \((\text{DG-categories})\)
We study DG-categories over k. Unless otherwise stated, DG-categories are assumed to be cocomplete (i.e., containing small colimits), and functors between them are assumed to be k-linear and continuous (i.e. preserving small colimits). The (∞,1)-category formed by them is denoted by DGCat\textsubscript{cont}. The corresponding (∞,2)-category is denoted by DGCat\textsubscript{cont}.

DGCat\textsubscript{cont} carries a closed symmetric monoidal structure, known as the Lurie tensor product ⊗_k. The unit object for it is the DG-category LFun(\mathbb{Z}(\text{Reductive groups})). See Appendix A for more details on the theory of D-modules.

A DG-category M is dualizable if it is dualizable object in DGCat\textsubscript{cont}. We write M' for its dual-category, which is canonically equivalent to LFun_k(M, Vect_k). It is well-known that M is dualizable if it is compactly generated, and there is a canonical identification M' ≃ Ind(Mop).

Notation 0.5.5. (D-modules)

Let Y be a lift prestack. We write D(Y) for the DG-category of D-modules on Y. We write ω_Y for the dualizing D-module on Y. When Y is an algebraic stack, we write κ_Y for the constant D-module. See Appendix A for more details on the theory of D-modules.

Notation 0.5.6. (Reductive groups)

We fix a connected reductive group G. For simplicity, we assume [G, G] to be simply connected.\footnote{Such assumption was made in many references that we cite, but we do not know if our results and proofs really depend on it.}

We fix a pair of opposite Borel subgroups (B, B^\circ) of it, therefore a Cartan subgroup T. We write Z_G for the center of G and T_{ad} := T/Z_G for the adjoint torus.

We write \mathcal{I} for the set of vertices in the Dynkin diagram of G, \Lambda_G (resp. \check{\Lambda}_G) for the coweight (resp. weight) lattice, and \Lambda_G^\text{pos} ⊂ \Lambda_G for the sub-monoid spanned by all positive simple co-roots (\alpha_i)_{i ∈ \mathbb{Z}}.

We often use P to denote a standard parabolic subgroup of G (i.e. a parabolic subgroup containing B). We write P^\circ for the corresponding standard opposite parabolic subgroup and M := P ∩ P^\circ for the Levi subgroup. We write U (resp. U^\circ) for the unipotent radical of P (resp. P^\circ). When we need to use a different parabolic subgroup, we often denote it by Q and its Levi subgroup by L.

We write Par for the partially ordered set of standard parabolic subgroups of G. We write Par' := Par − {G}. We view them as categories in the standard way.

Notation 0.5.7. (Semi-group completion)

The collection of simple positive roots of G provides an identification T_{ad} ≃ G^\text{reg} := \prod_{i ∈ \mathbb{Z}} G_m. We define T_{ad} := \check{\Lambda} ≥ G^\text{reg} ∼ T_{ad}, which is a semi-group completion of the adjoint torus T_{ad}.

Consider the coordinate stratification of the affine space T_{ad}^\text{reg}. The set of strata can be identified with the underlying set of Par. Moreover, the scheme T_{ad}^\text{reg} is stratified by the poset Par. See Appendix for what this means and the relevant notations for it. In particular, we will use the notations for what this means and the relevant notations for it. In particular, we will use the notations T_{ad, P}, T_{ad, p}, and T_{ad, p}^\text{reg}.

Write C_P for the unique point in T_{ad, P} whose coordinates are either 0 or 1. In particular C_B is the zero element in T_{ad} and C_G is the unit element. We use the same symbols to denote the images of these points in the quotient stack T_{ad}/T.

Consider the homomorphism Z_M/Z_G → T_{ad}. Let T_{ad, C_P}^\text{reg} be its closure in T_{ad}. Note that it is a sub-semi-group of T_{ad, p}^\text{reg}, which contains C_P as an idempotent element.

Acknowledgements: I want to thank my advisor Dennis Gaitsgory for teaching me all the important concepts in this paper, such as the pseudo-identity functor, the Vinberg-degeneration, Braden’s theorem, etc.. I am also grateful for his sharing of notes on the category I(G, P) and his comments on the first draft of this paper.
1. OUTLINE OF THE PROOF

In this subsection, we reduce Theorem 0.3.4 to a series of partial results, which will be proved in the latter sections.

1.1. Step 1: constructing the natural transformation. The first step is to construct a natural transformation from $\Delta_i \circ K$ to $E \circ DL$. Let us first explain how to construct the morphism

\[(1.1) \quad \Delta_i \circ K(P) \to E \circ DL(P)\]

For $P \in \text{Par}$, let $\overline{\text{Bun}}_{G,B}$ be the P-stratum of $\overline{\text{Bun}}_G$. We will construct (see Proposition-Construction 1.1.2 and the remark below it) a canonical commutative diagram\(^{18}\)

\[\begin{array}{ccc}
\overline{\text{Bun}}_{G,B} & \xrightarrow{\overline{\Delta}_i} & \overline{\text{Bun}}_G^{\text{gen}} \\
\downarrow{i_P} & & \downarrow{i_P} \\
\text{Bun}_G & \xrightarrow{\Delta_i} & \text{Bun}_G \times \text{Bun}_G.
\end{array}\]

Consider the object

\[\mathcal{F}_P := \Delta_i^{\text{gen}} \circ i_P \circ K(P) \in D_{\text{indhol}}(\text{Bun}_G^{\text{gen}} \times \text{Bun}_G)\]

Note that

\[(1.3) \quad \Delta_i \circ K(P) \simeq i_P^{\text{gen}}(\mathcal{F}_P)\]

because $K(P) \simeq i_P \circ i_P(K(P))$.

The following result will be proved in § 2.2

Proposition 1.1.1. The object \mathcal{F}_P is contained in the full subcategory

\[I(G \times G, P \times G) \subset D(\text{Bun}_G^{\text{gen}} \times \text{Bun}_G)\]

Let \mathcal{F}'_P be the corresponding object in $I(G \times G, P \times G)$. By (1.3), we have

\[(1.4) \quad \Delta_i \circ K(P) \simeq \text{Eis}^{\text{gen}}_{P \times G \times G}(\mathcal{F}'_P)\]

Hence by functoriality of the LHS, we obtain a morphism

\[(1.5) \quad \text{Eis}^{\text{gen}}_{P \times G \times G}(\mathcal{F}'_P) \to \mathcal{F}'_G\]

By adjunction, we have a morphism

\[(1.6) \quad \theta'_P : \mathcal{F}'_P \to \text{CT}^{\text{gen}}_{P \times G \times G}(\mathcal{F}'_G)\]

Note that $\mathcal{F}_G = \mathcal{F}_G \simeq \Delta_i(k_{\text{Bun}}_G)$.

On the other hand, it is easy to see\(^{19}\)

\[(1.7) \quad E \circ DL(P) \simeq \text{Eis}^{\text{gen}}_{P \times G \times G} \circ \text{CT}^{\text{gen}}_{P \times G \times P \times G}(\Delta_i(k_{\text{Bun}}_G))\]

Now we declare the morphism (1.1) to be given by

\[(1.8) \quad \Delta_i \circ K(P) \simeq \text{Eis}^{\text{gen}}_{P \times G \times G}(\mathcal{F}'_P) \xrightarrow{\text{Eis}^{\text{gen}}(\theta'_P)} \text{Eis}^{\text{gen}}_{P \times G \times G} \circ \text{CT}^{\text{gen}}_{P \times G \times P \times G}(\mathcal{F}'_G) \simeq E \circ DL(P)\]

In order to obtain the desired natural transformation, we need the following stronger construction:

\(^{18}\)In the case $G = \text{SL}_2$, using the notations in Footnote 13, $\text{VinBun}_{G,B}$ classifies (up to nil-isomorphisms) objects $(\phi : E_1 \to E_2)$ with $\det(\phi) = 0$. It follows from the definition that the subsheaf $\text{im}(\phi)$ is a generic line bundle. Then the map $\text{im}(\phi) \to E_2$ provides a generic B-reduction to the SL_2-torsor for E_2. This provides a map $\text{VinBun}_{G,B} \to \text{Bun}_G^{B\text{-gen}}$ that factors through the quotient $\overline{\text{VinBun}}_{G,B}$.

\(^{19}\)One needs to use Lemma 2.3.2.
Proposition-Construction 1.1.2. Let $\overline{\text{Bun}}_{G,P}$ be the reduced closed substack of $\overline{\text{Bun}}_G$ containing all the P'-strata with $P' \subset P$. Then there exist canonical maps

$$\Delta_\text{enh}^{\text{gen}} : \overline{\text{Bun}}_{G,P} \to \text{Bun}_G^{P,\text{gen}} \times \text{Bun}_G^{P,-\text{gen}}$$

that are functorial in P such that when $P = G$ we have $\Delta_\text{enh}^{\text{gen}} = \Delta : \overline{\text{Bun}}_G \to \text{Bun}_G \times \text{Bun}_G$.

Remark 1.1.3. In particular, we have functorial maps

$$\Delta^{\text{enh},l}_P : \overline{\text{Bun}}_{G,P} \to \text{Bun}_G^{P,\text{gen}} \times \text{Bun}_G .$$

The map $\Delta^{\text{enh},l}_P$ in (1.2) is defined to be its restriction to the P-stratum.

Note that we also have $\mathcal{F}_P \simeq \Delta^{\text{enh},l}_P \circ \iota_P \circ K(P)$. Using this, it is pure formal to show that the morphisms (1.8) constructed above is functorial in P. Namely, in §2.3 we will use the theory of (co)Cartesian fibrations to prove:

Proposition-Construction 1.1.4. There exists a canonical natural transformation $\Delta \circ K \to E \circ DL$ whose value at $P \in \text{Par}$ is equivalent to the morphism (1.6).

1.2. Step 2: translating by the second adjointness. After obtaining the natural transformation, we only need to show its value at each $P \in \text{Par}$ is invertible. From this step on, we fix such a standard parabolic P.

Unwinding the definitions, we need to show the map (1.6)

$$\theta'_P : \mathcal{F}_P \to \text{CT}^{\text{gen}}_{G \times G \to P \times G}(\mathcal{F}_G)$$

is invertible. Recall (see Remark 0.2.6) that the functor $\iota'_{M \times G} : \mathcal{I}(G \times G, P \times G) \to \text{D}(\text{Bun}_M \times \text{Bun}_G)$ is conservative. Hence we only need to show the map $\iota'_{M \times G}(\theta'_P)$ is invertible. By definition, $\iota'_{M \times G}$ is isomorphic to

$$\mathcal{I}(G \times G, P \times G) \to \text{D}(\text{Bun}_G^{P,\text{gen}} \times \text{Bun}_G) \xrightarrow{\iota'_{P \times G}} \text{D}(\text{Bun}_P \times \text{Bun}_G) \xrightarrow{q'_{P \times G}} \text{D}(\text{Bun}_M \times \text{Bun}_G).$$

We denote the composition of the latter two functors by

$$\text{CT}^{\text{gen}}_{P \times G,*} : \text{D}(\text{Bun}_G^{P,\text{gen}} \times \text{Bun}_G) \xrightarrow{\iota'_{P \times G}} \text{D}(\text{Bun}_P \times \text{Bun}_G) \xrightarrow{q'_{P \times G}} \text{D}(\text{Bun}_M \times \text{Bun}_G).$$

Then the source of $\iota'_{M \times G}(\theta'_P)$ is isomorphic to $\text{CT}^{\text{gen}}_{P \times G,*}(\mathcal{F}_P)$.

On the other hand, the functor $\iota'_{M \times G} \circ \text{CT}^{\text{enh}}_{G \times G \to P \times G}$ is isomorphic to the usual geometric constant term functor

$$\text{CT}_{P \times G,*} : \text{D}(\text{Bun}_G \times \text{Bun}_G) \to \text{D}(\text{Bun}_M \times \text{Bun}_G)$$

(as can be seen by passing to left adjoints). Hence the target of $\iota'_{M \times G}(\theta'_P)$ is isomorphic to $\text{CT}_{P \times G,*}(\mathcal{F}_G)$. Let

$$\gamma_P : \text{CT}^{\text{gen}}_{P \times G,*}(\mathcal{F}_P) \to \text{CT}_{P \times G,*}(\mathcal{F}_G).$$

be the morphism obtained from $\iota'_{M \times G}(\theta'_P)$ via the above isomorphisms. Then we have reduced the main theorem to:

- We only need to show γ_P is invertible.

20Note that for any $P \subset Q$, we have maps

$$\overline{\text{Bun}}_{G,P} \to \overline{\text{Bun}}_{G,Q} \text{ and } \text{Bun}_G^{P,\text{gen}} \times \text{Bun}_G^{P,-\text{gen}} \to \text{Bun}_G^{Q,\text{gen}} \times \text{Bun}_G^{Q,-\text{gen}}.$$

21We will give a more direct description of γ_P in §4.2.2.
Recall that the main theorem of [DG16] says that when restricted to each connected component \(\text{Bun}_{M,\lambda} \) of \(\text{Bun}_G \), the functor
\[
\text{CT}_{P,\lambda} : \text{D}(\text{Bun}_G) \rightarrow \text{D}(\text{Bun}_{P,\lambda}) \rightarrow \text{D}(\text{Bun}_{M,\lambda})
\]
is canonically left adjoint to
\[
\text{Eis}_{P,-,\lambda} : \text{D}(\text{Bun}_{M,\lambda}) \rightarrow \text{D}(\text{Bun}_{P,-,\lambda}) \rightarrow \text{D}(\text{Bun}_G).
\]

In particular, the functor \(\text{CT}_{P,\lambda} \simeq \bigoplus \text{CT}_{P,+,\lambda} \) preserves ind-holonomic objects and its restriction to \(\text{D}_\text{indhol}(\text{Bun}_G) \) is isomorphic to
\[
\text{indhol}(\text{Bun}_G) \text{ is canonically left adjoint to D}_{\text{indhol}}(\text{Bun}_G).
\]

There is a 2-morphism in \(\text{Corr} \text{(PreStk)}^{\text{open,2-op}}_{\text{QCAD,all}} \) (see Appendix A for what this means):
\[
\alpha^+ : (\text{Bun}_{M,\lambda} \leftarrow \text{Bun}_{P,\lambda} \rightarrow \text{Bun}_G), \quad \alpha^- : (\text{Bun}_G \leftarrow \text{Bun}_{P,-,\lambda} \rightarrow \text{Bun}_{M,\lambda})
\]

and a 2-morphism in \(\text{Corr} \text{(PreStk)}^{\text{open,2-op}}_{\text{QCAD,all}} \) (see Appendix A for what this means):
\[
\alpha^+ \circ \alpha^- = \text{Id} \text{Bun}_{M,\lambda}.
\]

Explicitly, this 2-morphism is given by the schematic open embedding
\[
\text{Bun}_{M,\lambda} \rightarrow \text{Bun}_{P,\lambda} \times_{\text{Bun}_G} \text{Bun}_{P,-,\lambda}.
\]

Then the counit natural transformation is given by
\[
\text{Eis}^\lambda_{P,-} \circ \text{CT}^\lambda_{P,\ast} \simeq \text{Dmod}^{\ast}((\alpha^+_{P,\lambda}) \circ \text{Dmod}^{\ast}((\alpha^-_{P,\lambda})) \rightarrow \text{Dmod}^{\ast}(\text{Id}_{\text{Bun}_{M,\lambda}}) \simeq \text{Id}_{\text{D}(\text{Bun}_{M,\lambda})}.
\]

Motivated by this construction, we prove the following two results in \(\S \).

Lemma 1.2.1. We have:

1. The correspondences
 \[
 \alpha^{+,\text{gen}}_{P,\lambda} : (\text{Bun}_{M,\lambda} \leftarrow \text{Bun}_{P,\lambda} \rightarrow \text{Bun}_G), \quad \alpha^{-,\text{gen}}_{P,\lambda} : (\text{Bun}_G \leftarrow \text{Bun}_{P,-,\lambda} \rightarrow \text{Bun}_{M,\lambda})
 \]
 are morphisms in \(\text{Corr} \text{(PreStk)}^{\text{open,2-op}}_{\text{QCAD,all}} \). In fact, the first leftward map is safe (by [DG16, Footnote 2]) and the second leftward map is quasi-compact and schematic.

2. There is a 2-morphism \(\alpha^{+,\text{gen}}_{P,\lambda} \circ \alpha^{-,\text{gen}}_{P,\lambda} \rightarrow \text{Id}_{\text{Bun}_{M,\lambda}} \) given by the map
 \[
 \text{Bun}_{M,\lambda} \rightarrow \text{Bun}_{P,\lambda} \times_{\text{Bun}_G} \text{Bun}_{P,-,\lambda}.
 \]
 In other words, this map is a schematic open embedding.

Theorem 1.2.2. The natural transformation
\[
\text{Dmod}^{\ast}((\alpha^{+,\text{gen}}_{P,\lambda}) \circ \text{Dmod}^{\ast}((\alpha^{-,\text{gen}}_{P,\lambda})) \rightarrow \text{Dmod}^{\ast}(\text{Id}_{\text{Bun}_{M,\lambda}}) \simeq \text{Id}_{\text{D}(\text{Bun}_{M,\lambda})}
\]
is the counit natural transformation for an adjoint pair
\[
(\text{Dmod}^{\ast}((\alpha^{+,\text{gen}}_{P,\lambda}), \text{Dmod}^{\ast}((\alpha^{-,\text{gen}}_{P,\lambda}))).
\]

\(^{22}\)We use the notation \(\text{I} \text{CT}_{P,-} \) because \(\text{CT}_{P,-} \) was used in loc. cit. to denote the corresponding functor for all the D-modules.

\(^{23}\)See Appendix A for the notation \(\text{Dmod}^{\ast}((\alpha^{+,\text{gen}}_{P,\lambda}) \circ \text{Dmod}^{\ast}((\alpha^{-,\text{gen}}_{P,\lambda}))\).

\(^{24}\)In fact, \(\text{Bun}_P \times_{\text{Bun}_{P,\text{gen}}} \text{Bun}_{P,-,\text{gen}} \) is the open Zastava space in the literature.
As before, the above theorem implies that $\text{CT}_{P \times G, s}^{\text{gen}}$ preserves ind-holonomic objects and its restriction to $D_{\text{ind hol}}(\text{Bun}_{P\times G, s})$ is isomorphic to

\[
\gamma_P : \text{CT}_{P \times G, s}^{\text{gen}}(\mathcal{F}_P) \rightarrow \text{CT}_{P \times G, s}(\mathcal{F}_G).
\]

Hence the morphism (1.9) is equivalent to a certain morphism

\[
\tilde{\gamma}_P : \text{CT}_{P \times G, s}^{\text{gen}}(\mathcal{F}_P) \rightarrow \text{CT}_{P \times G, s}(\mathcal{F}_G).
\]

Hence we have reduced the main theorem to the following problem:

- We only need to show $\tilde{\gamma}_P$ is invertible.

Remark 1.2.3. It is easier to study $\tilde{\gamma}_P$ than γ_P because we can use the base-change isomorphisms.

Remark 1.2.4. We believe Theorem 1.2.2 (and its proof) is of independent interest. For example, we can use them to give a description of the monad structure of $\text{CT}_{P \times G, s}$ along Schieder's local models. This monad was the central concept in the paper [Gai11]. The details of it will be provided elsewhere.

1.3. **Step 3: diagram chasing.** Using the base-change isomorphisms, and using the facts that $K(P)$ is a !-extension along $\text{Bun}_{G, P} \rightarrow \text{Bun}_G$, one can simplify the source and target of γ_P.

Let us state the result directly: Consider the correspondences

\[
\beta_P : (\text{Bun}_M \times \text{Bun}_G) \leftarrow \text{Bun}_{P \times G, s}^{\text{gen}}(\text{Bun}_{G, P} \rightarrow \text{Bun}_G)
\]

\[
\beta_G : (\text{Bun}_M \times \text{Bun}_G) \leftarrow \text{Bun}_{P \times G, s}^{\text{gen}}(\text{Bun}_{G, G} \rightarrow \text{Bun}_G),
\]

where the left arm of β_P is given by

\[
\text{Bun}_{P \times G, s}^{\text{gen}}(\text{Bun}_{G, P} \rightarrow \text{Bun}_M \times \text{Bun}_G \times \text{Bun}_G) \xrightarrow{\text{pr}^1} \text{Bun}_M \times \text{Bun}_G.
\]

Then the base-change isomorphisms provide

\[
\text{CT}_{P \times G, s}(\mathcal{F}_P) \simeq D_{\text{ind hol}}^{!}(\beta_P) \circ K(P),
\]

\[
\text{CT}_{P \times G, s}(\mathcal{F}_G) \simeq D_{\text{ind hol}}^{!}(\beta_G) \circ K(G).
\]

This motivates the following construction (see § 4.1):

Proposition-Construction 1.3.1. There exists an open substack

\[(\text{Bun}_{P \times G})^{\text{gen}} \circ \text{Bun}_{P \times G} \times \text{Bun}_{G, P} \]

such that the parameterized correspondence

\[
\beta : \text{Bun}_M \times \text{Bun}_G \leftarrow \text{Bun}_{P \times G, s}^{\text{gen}}(\text{Bun}_{G, P} \rightarrow \text{Bun}_G) \rightarrow \text{Bun}_G
\]

\[
\downarrow T^{\ast}_{ad, P/T}
\]

captures β_P (resp. β_G) as its restriction to the P-stratum (resp. G-stratum) of $T^{\ast}_{ad, P/T}$.

Using the fact that $K(P)$ is a !-extension along $\text{Bun}_{G, P} \rightarrow \text{Bun}_G$ again, we obtain isomorphisms

\[
D_{\text{ind hol}}^{!}(\beta_P) \circ K(P) \simeq D_{\text{ind hol}}^{!}(\beta_G) \circ K(G).
\]

We will prove the following result in § 4.2 by a routine diagram chasing:

25 The result below only serves as motivation and will be incorporated into Lemma 1.3.2.

26 In the case $G = \text{SL}_2$, recall that Bun_G classifies certain chains $E_1 \rightarrow E_2 \rightarrow L_2$. Then the desired open substack classifies those chains such that the restriction of $E_1 \rightarrow L_2$ at any geometric point of S is nonzero.

27 See [A.5] for the notation $D_{\text{ind hol}}^{!}$.
Lemma 1.3.2. The morphisms γ_P and $'\gamma_P$ are both equivalent to the morphism
\[
\text{Dmod}^{l_{\text{ind hol}}}(\beta) \circ \mathbf{K}(P) \to \text{Dmod}^{l_{\text{ind hol}}}(\beta) \circ \mathbf{K}(G)
\]
given by the functor $\text{Dmod}^{l_{\text{ind hol}}}(\beta) \circ \mathbf{K}$.

Hence we have reduced the main theorem to the following problem:
- We only need to show the functor $\text{Dmod}^{l_{\text{ind hol}}}(\beta) \circ \mathbf{K}$ sends the arrow $P \to G$ to an isomorphism.

1.4. Step 4: restoring the symmetry. In §5.1 we will show

Proposition-Construction 1.4.1. There exists a canonical factorization of the map 28
\[
\text{(Bun}_{P, -} \times \text{Bun}_{G, P})^{\text{gen}} \to \text{Bun}_M \times \text{Bun}_G
\]
via $\text{Bun}_M \times \text{Bun}_G^{P^\times \text{gen}}$.

In particular we obtain a correspondence
\[
\beta' : (\text{Bun}_M \times \text{Bun}_G^{P^\times \text{gen}}) \leftarrow (\text{Bun}_{P, -} \times \text{Bun}_{G, P})^{\text{gen}} \to \text{Bun}_G
\]
and we only need to show $\text{Dmod}^{l_{\text{ind hol}}}(\beta') \circ \mathbf{K}$ sends the arrow $P \to G$ to an isomorphism.

The following result will be proved in §5.2

Proposition 1.4.2. The objects $\text{Dmod}^{l_{\text{ind hol}}}(\beta') \circ \mathbf{K}(P)$ and $\text{Dmod}^{l_{\text{ind hol}}}(\beta') \circ \mathbf{K}(G)$ are both contained in the full subcategory
\[
\mathbf{I}(M \times G, M \times P^\times) \in \mathcal{D}(\text{Bun}_M \times \text{Bun}_G^{P^\times \text{gen}}).
\]

Consider the correspondence
\[
\delta : (\text{Bun}_M \times \text{Bun}_M) \leftarrow (\text{Bun}_M \times \text{Bun}_G^{M \text{gen}}) \to (\text{Bun}_M \times \text{Bun}_G^{P^\times \text{gen}})
\]
and the functor
\[
\delta ' \text{CT}^{\text{gen}}_{M \times P, 1} := \text{Dmod}^{l_{\text{ind hol}}}(\delta).
\]

Similar to Step 2, we can use “the second adjointness” to reduce the main theorem to the following problem:
- We only need to show the functor $\text{Dmod}^{l_{\text{ind hol}}}(\delta \circ \beta') \circ \mathbf{K}$ sends the arrow $P \to G$ to an isomorphism.

1.5. Step 5: calculating via the local models. Now comes the critical observation. Recall Schieder’s (relative) local mode 29 in [Sch16].

\[Y_{\text{rel}}^P := \text{Maps}_{\text{gen}}(X, P \cap \text{Vin}_{G, \geq} \mathbf{C}_{P} / P \supset P \cap \text{Vin}_{G, \geq} \mathbf{C}_{P} / P),\]

where (see Notation 0.5.7)
\[
\text{Vin}_{G, \geq} \mathbf{C}_{P} := \text{Vin}_{G} \times T_{\text{ad} \geq}^{\times} \mathbf{C}_{P}.
\]
The T-action on $G \cap \text{Vin}_{G, \geq} \mathbf{C}_{P} / P$ induces a Z_M-action on $P \cap \text{Vin}_{G, \geq} \mathbf{C}_{P} / P$. It is known that it induces a Z_M-action on Y_{rel}^P. Note that we have the following diagram of stacks equipped with group actions:
\[
(\text{pt} \sim \text{Bun}_M \times \text{Bun}_M) \leftarrow (Z_M \sim Y_{\text{rel}}^P) \to (T \sim \text{VinBun}_{G, \geq} \mathbf{C}_{P}).
\]

The following result is proved in §5.1

Lemma 1.5.1. The composition $\delta \circ \beta'$ is isomorphic to
\[
\text{Bun}_M \times \text{Bun}_M \leftarrow Y_{\text{rel}}^P / Z_M \to \text{Bun}_G.
\]

28 In the case $G = SL_2$, the map $(\text{Bun}_{P, -} \times \text{Bun}_{G})^{\text{gen}} \to \text{Bun}_{G}^{P^\times \text{gen}}$ sends a chain $E_1 \to E_2 \to L_2$ in Footnote 26 to the generic B^\times-reduction provided by the map $E_1 \to L_2$.

29 In the case $G = SL_2$, Y_{rel}^P classifies chains $L_1 \to E_1 \to E_2 \to L_2$ where $L_1 \to E_1$, $E_1 \to E_2$ and $E_2 \to L_2$ are respectively S-points of $\text{Bun}_{P, -}$, VinBun_{G} and $\text{Bun}_{P, -}$ such that the restriction of $L_1 \to L_2$ at any geometric point of S is nonzero.
It is known (see Construction 6.1.2) that \(Y_{\rel}^p/Z_M \to \text{Bun}_M \times \text{Bun}_M\) factors via \(H_{M,G,\text{pos}}/Z_M\), where \(H_{M,G,\text{pos}}\) is the \(G\)-positive part of Hecke stack for \(M\)-torsor\(^{30}\).

\[H_{M,G,\text{pos}} := \text{Maps}_{\text{gen}}(X,M\backslash \mathcal{M}/M \supset M\backslash M/M).\]

Consider the correspondence

\[\psi_P : H_{M,G,\text{pos}}/Z_M \leftarrow Y_{\rel}^p/Z_M \to \text{Bun}_G.\]

We have reduced the main theorem to

Goal 1.5.2. The functor \(\text{Dmod}_{\text{indhol}}^*(\psi_P) \circ \text{K}\) sends the arrow \(P \to G\) to an isomorphism.

We will prove a stronger result:

Goal 1.5.3. For any \(Q \in \text{Par}_{ZP}\), the functor \(\text{Dmod}_{\text{indhol}}^*(\psi_P) \circ \text{K}\) sends the arrow \(Q \to G\) to an isomorphism.

We prove this by induction on the relative rank between \(Q\) and \(G\). When \(Q = G\), there is nothing to prove. Hence we assume \(Q \neq G\) and assume the above claim is correct for any \(Q'\) strictly greater than \(Q\). Let \(L\) be the Levi subgroup of \(Q\).

Consider the object \(D_Q := \text{coFib}(\bigcolim_{Q' \in \text{Par}'\cap \text{Par}_{ZQ}} \text{K}(Q') \to \text{K}(G))\).

We claim

\[\text{Dmod}_{\text{indhol}}^*(\psi_P)(D_Q) \simeq 0.\]

Let us execute the induction step using this claim. Note that the category \(\text{Par}'\cap \text{Par}_{ZQ}\) is weakly contractible, hence

\[D_Q \cong \bigcolim_{Q' \in \text{Par}'\cap \text{Par}_{ZQ}} \text{coFib}(\text{K}(Q') \to \text{K}(G)).\]

By induction hypothesis, the functor \(\text{Dmod}_{\text{indhol}}^*(\psi_P)\) sends \(\text{coFib}(\text{K}(Q') \to \text{K}(G))\) to \(0\) unless \(Q' = Q\).

Hence \(\text{Dmod}_{\text{indhol}}^*(\psi_P)(D_Q)\) is isomorphic to

\[\text{Dmod}_{\text{indhol}}^*(\psi_P)(\text{coFib}(\text{K}(Q) \to \text{K}(G))[\text{rank}(G) - \text{rank}(L) + 1]].\]

Then the claim (1.10) implies \(\text{Dmod}_{\text{indhol}}^*(\psi_P)\) sends \(\text{K}(Q) \to \text{K}(G)\) to an isomorphism as desired.

It remains to prove (1.10). Consider the maps

\[\text{Bun}_{G,G} \xrightarrow{\text{j}_{G,2Q}} \text{Bun}_{G,2Q} \xrightarrow{\text{j}_{2Q}} \text{Bun}_G.\]

By Lemma C.1.9 we have \(D_Q \cong \text{j}_{2Q}(\mathcal{F}),\) where

\[\mathcal{F} := (\text{j}_{G,2Q})_* \circ r_!(\text{k}_{\text{Bun}_G}).\]

Hence by the base-change isomorphism, \(\text{Dmod}_{\text{indhol}}^*(\psi_P)(D_Q)\) is isomorphic to \(\text{Dmod}_{\text{indhol}}^*(\psi_{P,2Q})(\mathcal{F})\), where

\[\psi_{P,2Q} : (H_{M,G,\text{pos}}/Z_M \leftarrow (Y_{\rel}^p/Z_M)_{2Q} \to \text{Bun}_{G,2Q})\]

and \((Y_{\rel}^p/Z_M)_{2Q}\) is the open substack of \(Y_{\rel}^p/Z_M\) containing those \(Q'\)-strata with \(Q' \supset Q\). The following construction will be provided in §6.1.

Proposition-Construction 1.5.4. The correspondence \(\psi_{P,2Q}\) is isomorphic to the composition of

\[\psi_{Q,2Q} : (H_{L,G,\text{pos}}/Z_L \leftarrow Y_{\rel}^Q/Z_L \to \text{Bun}_{G,2Q})\]

by a certain correspondence from \(H_{L,G,\text{pos}}/Z_L\) to \(H_{M,G,\text{pos}}/Z_M\).

\(^{30}\)In the case \(G = SL_2\), \(H_{F,G,\text{pos}}\) classifies morphisms between line bundles \(L_1 \to L_2\) whose restriction at any geometric point of \(S\) is nonzero. The map \(Y_{\rel}^p \to H_{M,G,\text{pos}}\) sends the chain \(L_1 \to E_1 \to E_2 \to L_2\) in Footnote 29 to \(L_1 \to L_2\).

\(^{31}\)We use the following formal fact. Let \(I\) be an index category obtained by removing the final object from \([1]\)\(^r\) (\(r \geq 1\)). Let \(C\) be any stable category. Suppose \(F : I \to C\) is a functor such that \(F(x) \simeq 0\) unless \(x\) is the initial object \(i_0\). Then \(\text{colim} F \simeq F(i_0)[r - 1]\). This fact can be proven by induction on \(r\).
Therefore we only need to show $\text{Dmod}^{\dagger\ast}_{\text{indhol}}(\psi_{Q \geq Q})(\mathcal{F}) \simeq 0$. We will prove the following stronger claim: for any $Q \in \text{Par}$, we have
\[
\text{Dmod}^{\dagger\ast}_{\text{indhol}}(\psi_{Q \geq Q}) \circ (j_{G \geq Q})_* \simeq 0.
\]

To finish the proof, we need one more geometric input. In [Sch16], the author constructed a defect stratification on the P-stratum $\text{Bun}_{G,P}$. Let dfstr_G, P be the disjoint union of all the defect strata. It is known (see §[2.2.2]) that
\[
dfstr_G, P \simeq \text{Bun}_P \times_{\text{Bun}_{M,G}} (H_{M,G} \cdot \text{pos}/Z_M) \times_{\text{Bun}_{M,G}} \text{Bun}_P.\]

Consider the diagram
\[
\begin{array}{ccc}
H_{M,G} \cdot \text{pos}/Z_M & \xrightarrow{q^!_{P,\text{Vin}}} & \text{dfstr}_G, P, \\
& \downarrow & \downarrow \text{Vin}_p, Y_{101}/Z_M \rightarrow \text{Bun}_{G,P}, \\
H_{M,G} \cdot \text{pos}/Z_M & \xrightarrow{q^\ast_{P,\text{Vin}}} & \text{Bun}_{G,P}.
\end{array}
\]

In §[6.2] we will prove the following “second-adjointness-style” result:

Theorem 1.5.5. *The functor*
\[
q^!_{P,\text{Vin}} \circ q^\ast_{P,\text{Vin}} : \text{Dmod}(\text{Bun}_{G,P}) \to \text{Dmod}(H_{M,G} \cdot \text{pos}/Z_M)
\]

is isomorphic to the restriction of the functor
\[
q^!_{P,\text{Vin}} \circ q^\ast_{P,\text{Vin}} : \text{D}(\text{Bun}_{G,P}) \to \text{D}(H_{M,G} \cdot \text{pos}/Z_M).
\]

Now the Q-version of Theorem [1.5.5] says
\[
\text{Dmod}^{\dagger\ast}_{\text{indhol}}(\psi_{Q \geq Q}) \simeq q^!_{Q,\text{Vin}} \circ q^\ast_{Q,\text{Vin}}.
\]

Hence we have
\[
\text{Dmod}^{\dagger\ast}_{\text{indhol}}(\psi_{Q \geq Q}) \circ (j_{G \geq Q})_* \simeq q^!_{Q,\text{Vin}} \circ q^\ast_{Q,\text{Vin}} \circ (j_{G \geq Q})_*.
\]

Note that dfstr_G, P and $\text{Bun}_{G,P}$ have empty intersection (because $Q \neq G$). Hence $q^!_{Q,\text{Vin}} \circ (j_{G \geq Q})_* \simeq 0$. This finishes the proof.

Remark 1.5.6. In the case $G = \text{SL}_2$, one can use Theorem [1.5.5] to give a quicker proof of Goal [1.5.2]. Namely, using the theorem, we only need to show $q^!_{B,\text{Vin}} \circ q^\ast_{B,\text{Vin}} \circ \mathbf{K}$ sends the arrow $B \to G$ to an isomorphism. Recall that $q^\ast_{B,\text{Vin}}$ factors through
\[
i_B : \text{Bun}_{G,B} \to \text{Bun}_G.
\]

Hence we only need to show $i_B \circ \mathbf{K}$ sends $B \to G$ to an isomorphism. However, this is obvious because the image of this arrow is the map (see Remark [C.1.8]):
\[
i_B \circ j_{G,*}(r(k_{\text{Bun}_G}))[-1] \to i_B \circ j_G,*(r(k_{\text{Bun}_G})),
\]

which is an isomorphism because i_B and j_G are complementary to each other.

2. Step 1

We have three results to prove in this step: Proposition-Construction [1.1.2] Proposition [1.1.1] and Proposition [1.1.4]. Each subsection corresponds to a result. Note that we have to do them in this order because the statement of the second result depends on the construction of the first.
2.1. Proof of Proposition-Construction [1.1.2] Our goal is:

Goal 2.1.1. Construct canonical maps

\[\Delta_{G,P}^{\text{enh}} : \text{Bun}_{G,P} \to \text{Bun}_{G}^{P}\gen \times \text{Bun}_{G}^{P\\gen} \]

that are functorial in \(P\) such that when \(P = G\) we have \(\Delta_{G}^{\text{enh}} = \Delta\).

By definition, we have \(\text{Bun}_{G,P} \simeq \text{VinBun}_{G,P} /T\) and

\[\text{VinBun}_{G,P} \simeq \text{Maps}_{\gen}(X, G\{0\}V_{G,P} / G \supset G\{0\}V_{G,P} / G), \]

where the \(T\)-action on \(\text{VinBun}_{G,P}\) is induced from the \(T\)-action on \(V_{G,P}\). By Fact D.1.2, we have

\[G\{0\}V_{G,P} / G \simeq \mathcal{G}_{P}, \tag{2.1} \]

where \(\mathcal{G}_{P}\) is a subgroup scheme of \(G \times G \times T_{\ad,P} \to T_{\ad,P}\).

By Lemma D.1.4, the map \(\mathbb{B}\mathcal{G}_{P} \to \mathbb{B}G \times \mathbb{B}G\) factors as \(\mathbb{B}\mathcal{G}_{P} \to \mathbb{B}P \times \mathbb{B}P^\circ \to \mathbb{B}G \times \mathbb{B}G\). Also, the maps

\[\mathbb{B}\mathcal{G}_{P} \to \mathbb{B}P \times \mathbb{B}P^\circ \tag{2.2} \]

are functorial in \(P\). Now we have the following commutative diagram of algebraic stacks:

\[\begin{array}{ccc}
G\{0\}V_{G,P} / G & \xrightarrow{\Delta} & G\{0\}V_{G,P} / G \\
\mathbb{B}G \times \mathbb{B}G & \xrightarrow{\Delta} & \mathbb{B}P \times \mathbb{B}P^\circ.
\end{array} \tag{2.3} \]

Taking \(\text{Maps}_{\gen}(X, -)\), we obtain maps

\[\text{VinBun}_{G,P} \to \text{Bun}_{G}^{P\gen} \times \text{Bun}_{G}^{P\\gen} \]

functorial in \(P\). To finish the construction, we only need to show:

Lemma 2.1.2. The map \(G\{0\}V_{G,P} / G \to \mathbb{B}P \times \mathbb{B}P^\circ\) constructed above can be uniquely lifted to a morphism

\[(T \sim G\{0\}V_{G,P} / G) \to (\text{pt} \sim \mathbb{B}P \times \mathbb{B}P^\circ) \]

fitting into the following commutative diagram

\[\begin{array}{ccc}
(T \sim G\{0\}V_{G,P} / G) & \xrightarrow{\Delta} & (T \sim G\{0\}V_{G,P} / G) \\
(\text{pt} \sim \mathbb{B}G \times \mathbb{B}G) & \xrightarrow{\Delta} & (\text{pt} \sim \mathbb{B}P \times \mathbb{B}P^\circ).\end{array} \] \tag{2.4} \]

Proof. The uniqueness follows from the fact that \(\mathbb{B}P \times \mathbb{B}P^\circ \to \mathbb{B}G \times \mathbb{B}G\) is schematic. It remains to prove the existence.

The map \(G\{0\}V_{G,P} / G \to \mathbb{B}P \times \mathbb{B}P^\circ\) induces a \((G \times G)\)-equivariant map

\[G\{0\}V_{G,P} \to G/P \times G/P^\circ. \tag{2.4} \]

We only need to show the \(T\)-action on \(G\{0\}V_{G,P}\) preserves the fibers of this map.

Recall that any closed point in \(G\{0\}V_{G,P}\) is of the form \(g_{1} \cdot s(s) \cdot g_{2}^{-1}\) where \(g_{1}\) and \(g_{2}\) are closed points of \(G\), \(s\) is a closed point of \(T_{\ad,P}\) and \(s\) is the canonical section. Unwinding the definitions, the map (2.4) sends this point to \((g_{1}, g_{2})\). Now consider the \(T\)-action on \(G\{0\}V_{G}\). It follows from definition that a closed point \(f\) of \(T\) sends the point \(s(s)\) to the point \(s(\iota(f))\), where \(\iota:T \to G\) is the embedding. Since the \(T\)-action commutes with the \((G \times G)\)-action, the element \(t\) sends \(g_{1} \cdot s(s) \cdot g_{2}^{-1}\) to \(g_{1}\iota(t) \cdot s(s) \cdot g_{2}^{-1}\). This makes the desired claim manifest.

\[\square \text{Lemma 2.1.2} \]

\[\square \text{Proposition-Construction 1.1.2} \]
2.2. Proof of Proposition 1.1.1

Goal 2.2.1. The object \mathcal{F}_P is contained in the full subcategory

$$\mathcal{I}(G \times G, P \times G) \subset D(Bun_G^{P-gen} \times Bun_G).$$

2.2.2. The (U, U^*)-equivariant categories. In order to prove Proposition 1.1.1 we will introduce a subcategory

$$D(Bun_G, P)^{U \times U^*} \subset D(Bun_G, P),$$

whose definition is similar to

$$\mathcal{I}(G \times G, P \times P^*) \subset D(Bun_G^{P-gen} \times Bun_G^{P'^*-gen}).$$

To define this subcategory, we use the defect stratification on Bun_G defined\(^{32}\) in [Sch16]. Recall the disjoint union of its strata is given by\(^{33}\)

$$\text{dfstr}_{Bun_G, P} \simeq \text{Bun}_P \times_{Bun_M} (H_{M, G \cdot \text{pos}}/Z_M) \times_{Bun_M} P^{-},$$

or more abstractly

$$\text{dfstr}_{Bun_G, P} \simeq \text{Maps}_{\text{gen}}(X, P\backslash \overline{M}/P^{-} \rightrightarrows P\backslash M/P^{-})/Z_M,$$

where \overline{M} is the closure of the locally closed embedding

$$M \rightrightarrows (P \times P^*)/(P \times P^*) \rightarrow (G \times G)/(P \times P^*).$$

It is well-known that the map $\text{Bun}_P \rightarrow \text{Bun}_M$ is universally homological contractible, or UHC. In other words, for any lft prestack $Y \rightarrow \text{Bun}_M$ the l-pullback functor $D(Y) \rightarrow D(Y \times_{\text{Bun}_M} \text{Bun}_P)$ is fully faithful. In particular, the following l-pullback functor is fully faithful

$$\text{dfstr}_{Bun_G, P} \rightarrow (H_{M, G \cdot \text{pos}}/Z_M) \times_{Bun_M} \text{Bun}_P^{-}.$$

We denote its essential image by $D(\text{dfstr}_{Bun_G, P})^{U_P}$. Similarly we define $D(\text{dfstr}_{Bun_G, P})^{U_P}$ and $D(\text{dfstr}_{Bun_G, P})^{U_P \times U_P}$.

Since $\text{Bun}_P \rightarrow \text{Bun}_M$ is smooth, in the previous definition, we can also use $*$-pullbacks instead of the l-pullbacks. The resulting subcategories are the same.

We define $D(Bun_G, P)^{U_P}$ to fit into the following pullback diagram

$$\begin{array}{ccc}
D(Bun_G, P)^{U_P} & \xrightarrow{\mathcal{I}} & D(Bun_G, P) \\
\downarrow & & \downarrow \text{l-pull} \\
D(\text{dfstr}_{Bun_G, P})^{U_P} & \xrightarrow{\mathcal{I}} & D(\text{dfstr}_{Bun_G, P}).
\end{array}$$

Similarly we define $D(Bun_G, P)^{U_P}$ and $D(Bun_G, P)^{U_P \times U_P}$. We also define the version of these subcategories for ind-holonomic D-modules.

We will deduce Proposition 1.1.1 from the following three lemmas. The proof of the first one is completely similar to that in [Che21] Appendix § G.1. We provide the proofs for the other two.

Lemma 2.2.3. For any morphism $P \in \text{Par}$, the object

$$i_P^* \circ j_G \circ \tau (k_{Bun_G}) \in D_{\text{indhol}}(Bun_G, P)$$

is contained in $D_{\text{indhol}}(Bun_G, P)^{U_P \times U_P}$.

\(^{32}\)More precisely, [Sch16] constructed the defect stratification on VinBun_G, G_P. It follows from the construction that the Z_M-action on VinBun_G, G_P preserves the defect strata. Hence we obtain a stratification on $\text{Bun}_G, P \simeq \text{VinBun}_G, G_P/T \simeq \text{VinBun}_G, G_P/Z_M$.

\(^{33}\)The corresponding Z_M-action on $\text{Bun}_P \times_{\text{Bun}_M} H_{M, G \cdot \text{pos}} \times_{\text{Bun}_M} \text{Bun}_P^{-}$ is the one induced by the Z_M-action on $H_{M, G \cdot \text{pos}}$. Note that the map $H_{M, G \cdot \text{pos}} \rightarrow \text{Bun}_M \times \text{Bun}_M$ is Z_M-equivariant for this action and the trivial action on $\text{Bun}_M \times \text{Bun}_M$.
Lemma 2.2.4. The !-pushforward functor
\[D_{\mathrm{indhol}}(\widehat{\overline{\text{VinBun}_{G,C,P}}}) \to D_{\mathrm{indhol}}(\widehat{\text{Bun}_G,P}) \]
preserves \((U_P \times U_P^\sim)\)-equivariant objects.

Proof. It suffices to prove the similar version after replacing \(\widehat{\text{VinBun}}_{G,C,P}\) by its smooth cover \(\text{VinBun}_{G,C,P}\).

By [Sch16 § 3.3.2], the map \(f : \text{dstr} \text{VinBun}_{G,C,P} \to \text{VinBun}_{G,C,P}\) factors as
\[\text{dstr} \text{vinBun}_{G,C,P} \xrightarrow{j} \text{Bun}_P \times_{\text{Bun}_M} H_{M,G,-\text{pos}} \times_{\text{Bun}_M} \text{Bun}_P \xrightarrow{\overline{f}} \text{VinBun}_{G,C,P} \]
such that \(j\) is a schematic open embedding and \(\overline{f}\) is proper on each connected component. Recall that \(\text{Bun}_P\) also has a defect stratification with
\[\text{dstr} \text{Bun}_P \simeq \text{Bun}_P \times_{\text{Bun}_M} H_{M,G,-\text{pos}}. \]

We define \(D(\text{dstr} \text{Bun}_P)^{U_P}\) to be the full subcategory of \(D(\text{dstr} \text{Bun}_P)\) consisting of objects that are !-pullbacks from \(D(H_{M,G,-\text{pos}})\). We define \(D(\text{Bun}_P)^{U_P}\) similarly as before. We also define
\[D(\text{Bun}_P \times_{\text{Bun}_M} H_{M,G,-\text{pos}} \times_{\text{Bun}_M} \text{Bun}_P)^{U_P} \times^{U_P}. \]

We claim the functor \(\overline{f}\), preserves \((U_P \times U_P^\sim)\)-equivariant objects. To prove the claim, we use the fact that \(\overline{f}\) is compatible with the defect stratifications. In other words, we have
\[\text{dstr} \text{VinBun}_{G,C,P} \simeq \text{Bun}_P \times_{\text{Bun}_M} H_{M,G,-\text{pos}} \times_{\text{Bun}_M} \text{Bun}_P \]
such that the projection from the RHS to
\[\text{dstr} \text{VinBun}_{G,C,P} \simeq \text{Bun}_P \times_{\text{Bun}_M} H_{M,G,-\text{pos}} \times_{\text{Bun}_M} \text{Bun}_P \]
is induced by the "composition" map
\[H_{M,G,-\text{pos}} \times_{\text{Bun}_M} H_{M,G,-\text{pos}} \times_{\text{Bun}_M} H_{M,G,-\text{pos}} \to H_{M,G,-\text{pos}}. \]

Then the claim follows from the base-change isomorphisms (which exist because \(\overline{f}\) is proper on each connected component).

It remains to show \(j\) preserves \((U_P \times U_P^\sim)\)-equivariant objects. Using the base-change isomorphism, it suffices to show that the !-pushforward functor
\[D_{\mathrm{indhol}}(\text{Bun}_P) \to D_{\mathrm{indhol}}(\widehat{\text{Bun}}_P) \]
preserves \(U_P\)-equivariant object. However, this is well-known and was proved in § B.1.1.

\[\square \] Lemma 2.2.4

Lemma 2.2.5. The functor
\[\Delta_{\mathrm{enh},!} : D_{\mathrm{indhol}}(\widehat{\text{Bun}}_{G,P}) \to D_{\mathrm{indhol}}(\text{Bun}_G^\mathrm{pos} \times \text{Bun}_G) \]
sends objects in \(D_{\mathrm{indhol}}(\widehat{\text{Bun}}_{G,P})^{U_P}\) to objects in \(I(G \times G, P \times G)\).

Proof. Lemma 2.2.4 formally implies \(D_{\mathrm{indhol}}(\widehat{\text{Bun}}_{G,P})^{U_P}\) is generated under colimits and extensions by the image of the !-pushforward functor
\[D_{\mathrm{indhol}}(\text{dstr} \text{Bun}_{G,P})^{U_P} \to D_{\mathrm{indhol}}(\widehat{\text{Bun}}_{G,P})^{U_P}. \]

Hence it suffices to show the !-pushforward along
\[\text{dstr} \text{Bun}_{G,P} \to \widehat{\text{Bun}}_{G,P} \to \text{Bun}_G^\mathrm{pos} \times \text{Bun}_G \]
Construct a canonical natural transformation

Proof of Proposition 1.1.4.

By definition, we have P that sends an arrow U to P that sends an arrow $\Delta_{M,G}$ isomorphism to $\text{Bun}_P \times_{\text{Bun}_M} (H_{M,G} \times_{Z_{M,G}}) \times_{\text{Bun}_M} \text{Bun}_P \cong \text{Bun}_P \times \text{Bun}_G \cong \text{Bun}_{P-gen} \times \text{Bun}_G$.

By the base-change isomorphism, a preserves U_P-equivariant objects. Then we are done because b sends U_P-equivariant objects into $I(G \times G, P \times G)$ by Proposition [0.2.11].

\[\Box\text{Lemma 2.2.5}\]

2.2.6. Finish the proof. Recall

\[\mathcal{F}_P \simeq \Delta^{\text{enh},l}_{P_Y} \circ i'_P \circ K(P).\]

By definition, we have

\[i'_P \circ K(P) \simeq i'_P \circ j_G \circ r((k_{\text{Bun}_G})[\text{rank}(M) - \text{rank}(G)].\]

By Lemma 2.2.3 this is an U_P-equivariant object. Then we are done by Lemma 2.2.5.

\[\Box\text{Proposition 1.1.1}\]

2.3. Proof of Proposition-Construction 1.1.4

Goal 2.3.1. Construct a canonical natural transformation $\Delta_! \circ K \to E \circ DL$ whose value at $P \in \text{Par}$ is equivalent to the morphism (1.8)

Proposition [0.2.11] provides a functor

\[I(G, -) : \text{Par} \to \text{DGCat}_{cont}\]

that sends an arrow $P \to Q$ to the functor $E^{\text{enh}}_{P \times Q}$. Hence we also have a functor

\[(2.5) I(G \times G, - \times -) : \text{Par} \to \text{DGCat}_{cont}\]

that sends an arrow $P \to Q$ to the functor $E^{\text{enh}}_{P \times G \times Q \times G}$.

Lemma 2.3.2. The functor (2.5) is canonically isomorphic to the functor

\[\text{Par} \to \text{DGCat}_{cont}, \; P \mapsto I(G, P) @ D(\text{Bun}_G).\]

Proof. By the proof of [DG13, Corollary 2.3.4], the functor $D(Y) @_k D(\text{Bun}_G) \to D(Y \times \text{Bun}_G)$ is an equivalence for any lift prestack Y. Then the lemma follows from definitions.

\[\Box\text{Lemma 2.3.2}\]

Let $\bar{I} \to \text{Par}$ be the presentable fibration classifying the functor (2.5). Note that Par has a final object G, and the fiber of \bar{I} at this object is $\bar{I}_G := D(\text{Bun}_G \times \text{Bun}_G)$. Consider the trivial fibration $\bar{I}_G \times \text{Par} \to \text{Par}$. It follows formally that we have an adjoint pair

\[E^{\text{enh}} : \bar{I} \quad \overset{\longrightarrow}{\longleftrightarrow} \quad \bar{I}_G \times \text{Par} : \text{CT}^{\text{enh}},\]

where E^{enh} (resp. CT^{enh}) preserves co-Cartesian (resp. Cartesian) arrows and its fiber at $P \in \text{Par}$ is $E^{\text{enh}}_{P \times G \times G \times G}$. Using Lemma 2.3.2 the functor $E \circ DL$ is isomorphic to

\[\text{Par} \quad \overset{(\Delta_!(k_{\text{Bun}_G}))}{\longrightarrow} \quad \bar{I}_G \times \text{Par} \quad \overset{\text{CT}^{\text{enh}}}{\longrightarrow} \quad \bar{I} \quad \overset{E^{\text{enh}}}{\longrightarrow} \quad \bar{I}_G \times \text{Par} \quad \overset{\text{pr}}{\longrightarrow} \quad \bar{I}_G.\]

Denote the composition of the first two functors by $S_{\text{CT}} : \text{Par} \to \bar{I}$. Note that it is the unique Cartesian section whose value at $G \in \text{Par}$ is $\Delta_!(k_{\text{Bun}_G}) \in \bar{I}_G$.

We also have a functor

\[\text{Par}^{op} \to \text{DGCat}_{cont}, \; P \mapsto D(\text{Bun}_{P-gen} \times \text{Bun}_G)\]

that sends an arrow to the corresponding !-pullback functor. Let $D_{gen} \to \text{Par}$ be the corresponding Cartesian fibration. By Proposition [0.2.11], we have a fully faithful functor $\bar{I} \to D_{gen}$ that preserves co-Cartesian arrows (although D_{gen} is not a co-Cartesian fibration).

\[\text{Proposition 0.2.11 provides a functor}\]

\[\text{Par} \to \text{DGCat}_{cont}, \; P \mapsto D(\text{Bun}_{P-gen} \times \text{Bun}_G)\]

\[\text{that sends an arrow to the corresponding !-pullback functor. Let $D_{gen} \to \text{Par}$ be the corresponding Cartesian fibration. By Proposition [0.2.11], we have a fully faithful functor $\bar{I} \to D_{gen}$ that preserves co-Cartesian arrows (although D_{gen} is not a co-Cartesian fibration).}\]

\[\Box\text{Proposition 1.1.1}\]

\[\Box\text{ Lemma 2.2.5}\]

\[\Box\text{ Lemma 2.3.2}\]

\[\Box\text{Proposition 0.2.11}\]

A presentable fibration is both a Cartesian fibration and a coCartesian fibration whose fibers are presentable $(\infty,1)$-categories. See [Lur09, Definition 5.5.3.2].
On the other hand, consider the functor
\[\text{Par} \to \text{DGCat}_{\text{cont}}, \ P \mapsto \text{Dindhol}(\text{Bun}_{G,P}) \]
that sends an arrow to the corresponding \(!\)-extension functor. Let \(\overline{D} \to \text{Par} \) be the presentable fibration classifying this functor. We have a fully faithful functor
\[\overline{D} \to \text{Dindhol}(\text{Bun}_{G}) \times \text{Par} \]
whose fiber at \(P \in \text{Par} \) is the corresponding \(!\)-extension functor. The graph of the functor \(K \):
\[\text{Par} \to \text{Dindhol}(\text{Bun}_{G}) \times \text{Par}, \ P \mapsto (K(P), P) \]
is contained in the above full subcategory \(\overline{D} \). Hence we obtain a section \(S_K : \text{Par} \to \overline{D} \) to the projection \(\overline{D} \to \text{Par} \).

By Proposition \[1.1.2\] we also have functorial maps
\[\Delta^{\text{enh, } l} : \text{Bun}_{G,P} \to \text{Bun}^\text{-gen}_{G} \times \text{Bun}_{G}. \]
Hence there is a functor
\[\overline{D} \to \text{D}_{\text{gen}} \]
that preserves co-Cartesian arrows such that its fiber at \(P \in \text{Par} \) is the composition
\[\text{Dindhol}(\text{Bun}_{G,P}) \xrightarrow{\Delta_{\overline{D}}^{\text{enh, } l}} \text{Dindhol}(\text{Bun}^\text{-gen}_{G} \times \text{Bun}_{G}) \to \text{D}(\text{Bun}^\text{-gen}_{G} \times \text{Bun}_{G}). \]
By construction, the composition
\[\text{Par} \xrightarrow{S_K} \overline{D} \to \text{D}_{\text{gen}} \]
sends \(P \) to \(F_P \), viewed as an object in \(\text{D}_{\text{gen}} \) over \(P \in \text{Par} \). Hence by Proposition \[1.1.1\] this functor factors through the full subcategory \(\overline{I} \subset \text{D}_{\text{gen}} \). Let \(S'_K : \text{Par} \to \overline{I} \) be the corresponding functor. By construction, \(\overline{\Delta} \circ K \) is isomorphic to the composition
\[\text{Par} \xrightarrow{S'_K} \overline{I} \xrightarrow{\text{Ein}^{\text{enh}}} \overline{I}_G \xrightarrow{\text{Par}} \overline{I}_G. \]

In summary, we have obtained two sections \(S_{CT} \) and \(S'_K \) to the Cartesian fibration \(\overline{I} \to \text{Par} \) such that \(\overline{\Delta} \circ K \) and \(E \circ DL \) are obtained respectively by composing them with
\[\overline{I} \xrightarrow{\text{Ein}^{\text{enh}}} \overline{I}_G \xrightarrow{\text{Par}} \overline{I}_G. \]

Now the identification \(F'_G = F_G \simeq \Delta(k_{\text{Bun}_{G}}) \) provides an isomorphism \(S'_K(G) \simeq S_{CT}(G) \). Since \(G \in \text{Par} \) is the final object and since \(S_{CT} \) is a Cartesian section, we obtain a natural transformation \(S'_K \to S_{CT} \) whose value at \(P \in \text{Par} \) is the unique arrow \(S'_K(P) \to S_{CT}(P) \) fitting into the following commutative diagram
\[
\begin{array}{ccc}
S'_K(P) & \longrightarrow & S_{CT}(P) \\
\downarrow & & \downarrow \\
S'_K(G) & \longrightarrow & S_{CT}(G). \\
\end{array}
\]

By construction, when viewed as a morphism in \(\overline{I}_P \simeq I(G \times G, P \times G) \), the arrow \(S'_K(P) \to S_{CT}(P) \) is equivalent to \[1.6\]. Now the desired natural transformation \(\overline{\Delta} \circ K \to E \circ DL \) is given by composing the above natural transformation \(S'_K \to S_{CT} \) with the functor
\[\overline{I} \xrightarrow{\text{Ein}^{\text{enh}}} \overline{I}_G \xrightarrow{\text{Par}} \overline{I}_G. \]

\[\square \text{Proposition-Construction} \[1.1.4\] \]

3. Step 2

We have two results to prove in this step: Lemma \[1.2.1\] and Theorem \[1.2.2\]. We prove Lemma \[1.2.1\] in §3.1 and prove Theorem \[1.2.2\] in §3.3 after reviewing the work of [Dri13 Appendix C] in §3.2.
3.1. **Proof of Lemma 1.2.1**

Goal 3.1.1. For any \(\lambda \in \Lambda_{G,P} \), we have:

1. The maps \(\text{Bun}_M^{\text{M-gen}} \to \text{Bun}_P^{\text{P-gen}} \) is quasi-compact and schematic;
2. The map

\[
\text{Bun}_{M,\lambda} \to \text{Bun}_{P,\lambda} \times_{\text{Bun}_P^{\text{P-gen}}} \text{Bun}_M^{\text{M-gen}}
\]

is a schematic open embedding.

By definition, we have the following commutative diagram

\[
\begin{array}{ccc}
\text{Bun}_M^{\text{M-gen}} & \longrightarrow & \text{Bun}_P^{\text{P-gen}} \\
\downarrow & & \downarrow \\
\text{Bun}_P^{\text{P-gen}} & \longrightarrow & \text{Bun}_G.
\end{array}
\]

We claim it induces a schematic open embedding

\(\text{Bun}_M^{\text{M-gen}} \to \text{Bun}_P^{\text{P-gen}} \times_{\text{Bun}_G} \text{Bun}_P^{\text{P-gen}} \).

Indeed, the RHS is isomorphic to \(\text{Maps}_{\text{gen}}(X, \mathbb{B}P^{-} \leftarrow \mathbb{B} \times \mathbb{B}P^{+}) \) and the above map is isomorphic to the map

\(\text{Maps}_{\text{gen}}(X, \mathbb{B}P^{-} \leftarrow \mathbb{B}M) \to \text{Maps}_{\text{gen}}(X, \mathbb{B}P^{-} \leftarrow \mathbb{B} \times \mathbb{B}P^{+}) \)

induced by the map \(\mathbb{B}M \to \mathbb{B} \times \mathbb{B} \mathbb{B}P^{+} \). Then the claim follows from the fact that \(\mathbb{B}M \to \mathbb{B} \times \mathbb{B} \mathbb{B}P^{+} \) is a schematic open embedding.

Now (1) follows from the above claim and the well-known fact that \(\text{Bun}_P^{\text{P-gen},\lambda} \to \text{Bun}_G \) is quasi-compact and schematic.

To prove (2), we only need to show

\(\text{Bun}_M \to \text{Bun}_P \times_{\text{Bun}_G} \text{Bun}_P^{\text{M-gen}} \)

is a schematic open embedding. As before, this follows from the fact that it is isomorphic to

\(\text{Maps}_{\text{gen}}(X, \mathbb{B}M \leftarrow \mathbb{B} \times \mathbb{B}P^{+} \leftarrow \mathbb{B}M) \)

and the fact that \(\mathbb{B}M \to \mathbb{B} \times \mathbb{B} \mathbb{B}P^{+} \) is a schematic open embedding. \(\square \)

3.2. **Recollections: Drinfeld’s framework.** In [Dri13, Appendix C], Drinfeld set up a general framework to prove results like Theorem 1.2.2. We review this framework in this subsection. In fact, we slightly generalize it to the case of lift prestacks.

Definition 3.2.1. We equip the category \(\text{Sch}^{\text{aff}} \) with the Cartesian symmetric monoidal structure. Recall the notion of enriched categories. Following loc.cit., we define a category \(\mathcal{P} \) enriched in \(\text{Sch}^{\text{aff}} \) as follows:

- It has two objects: the “big” one \(\mathbf{b} \) and the “small” one \(\mathbf{s} \).
- The mapping scheme \(\text{Hom}_{\mathcal{P}}(\mathbf{b}, \mathbf{b}) \) is defined to be \(\mathbb{A}^1 \). The other three mapping schemes are defined to be \(\mathbb{A}^1 \). They are viewed as the zero point in \(\mathbb{A}^1 \). The composition laws are all induced by the semi-group structure on \(\mathbb{A}^1 \).
- The unique morphism \(\mathbf{s} \to \mathbf{b} \) is denoted by \(\alpha^+ \) and the unique morphism \(\mathbf{b} \to \mathbf{s} \) is denoted by \(\alpha^- \).

Definition 3.2.2. Let \(\text{AlgStk}_{\text{QCAD}} \) be the \((2,1)\)-category of QCAD algebraic stacks equipped with the Cartesian symmetric monoidal structure. We define a category \(\mathcal{P} \) enriched in \(\text{AlgStk}_{\text{QCAD}} \) by replacing \(\mathbb{A}^1 \) in Definition 3.2.1 by the quotient stack \(\mathbb{A}^1 / \mathbb{G}_m \) and replacing the zero map \(\text{pt} \to \mathbb{A}^1 \) by the map \(\mathbb{B} \mathbb{G}_m \to \mathbb{A}^1 / \mathbb{G}_m \) obtained by taking quotients.

[35] It was denoted by \(\mathcal{P} / \mathbb{G}_m \) in [Dri13].
Note that there is an obvious functor $P_{A^1} \to \text{Dri}$. We use the same symbols α^+ and α^- to denote the corresponding morphisms in Dri.

Definition 3.2.3. Let O be a monoidal $(\infty,1)$-category, A be a category enriched in O and C be a module $(\infty,2)$-category of O. As explained in [Dri13, §C.13.1], there is a notion of weakly O-enriched (unital) right-lax functor from A to C. We will review its explicit meaning later in our particular examples. For now, let us give the formal definition.

We assume O is small. Consider the $(\infty,1)$-category $\text{Funct}(O^{\text{op}},(\infty,1)-\text{Cat})$ equipped with the Day convolution monoidal structure (see [Lur12, §2.2.6]). Then C has a $\text{Funct}(O^{\text{op}},(\infty,1)-\text{Cat})$-enriched structure such that for any $x,y \in C$, the object

$$\text{Hom}_C(x,y) \in \text{Funct}(O^{\text{op}},(\infty,1)-\text{Cat})$$

is the functor $o \mapsto \text{Maps}_C(o \otimes x,y)$.

On the other hand, there is a right-lax monoidal structure on the Yoneda functor

$$O \to \text{Funct}(O^{\text{op}},(\infty,1)-\text{Cat}).$$

Then a weakly O-enriched functor (resp. right-lax functor) $F : A \to C$ is defined to be a functor (resp. right-lax functor) F that intertwines the enrichment via the above right-lax monoidal functor.

Notation 3.2.4. Consider the $(3,2)$-category $\text{Corr}(\text{PreStk}_{\text{IR}}^{\text{open,2-op}}_{\text{QCAD,all}})$. We equip it with the obvious $\text{AlgStk}_{\text{QCAD}}$-action.

A Drinfeld pre-input is a weakly $\text{AlgStk}_{\text{QCAD}}$-enriched right-lax functor $F : P_{A^1} \to \text{Corr}$ such that it is strict at the composition $\alpha^+ \circ \alpha^-$, i.e., the 2-morphism $F(\alpha^+) \circ F(\alpha^-) \to F(\alpha^+ \circ \alpha^-)$ is invertible.

A Drinfeld input is a weakly $\text{AlgStk}_{\text{QCAD}}$-enriched right-lax functor $F : \text{Dri} \to \text{Corr}$ such that the composition $P_{A^1} \to \text{Dri} \to \text{Corr}$ is a Drinfeld pre-input.

Remark 3.2.5. Unwinding the definitions, a Drinfeld pre-input provides

- Two lft prestacks $Z := F(b)$ and $Z^0 := F(s)$;
- Two correspondences $F(\alpha^+) : (Z \xleftarrow{p^+} Z^+ \xrightarrow{q^+} Z^0)$ and $F(\alpha^-) : (Z^0 \xleftarrow{q^-} Z^- \xrightarrow{p^-} Z)$

whose left arms are QCAD maps;
- An A^1-family of correspondences:

$$Z \xleftarrow{\bar{Z}} \xrightarrow{\alpha^1} Z;$$

given by $\text{Hom}(b,b) \times F(b) \to F(b)$;
- Isomorphisms $Z^+ \times_{Z^0} Z \cong \bar{Z} \times_{A^1} 0$ and $Z \cong \bar{Z} \times_{A^1} 1$

defined over $Z \times Z$, given respectively by the invertible 2-morphism $F(\alpha^+) \circ F(\alpha^-) \to F(\alpha^+ \circ \alpha^-)$ and $\text{Id}_{F(b)} \cong F(\text{Id}_b)$
- An open embedding

$$j : Z^0 \to\bar{Z} \times_{\bar{Z}} Z^+$$

defined over $Z^0 \times Z^0$, given by the lax composition law for $s \leftarrow b \leftarrow s$;

$\text{It was called just by lax functors in loc.cit.}$
• Open embeddings

\[Z^+ \times \mathbb{A}^1 \to \overline{Z} \times \mathbb{A}^1 \text{ and } Z^- \times \mathbb{A}^1 \to Z^\times \overline{Z}, \]

defined respectively over \(Z \times Z^0 \times \mathbb{A}^1 \) and \(Z^0 \times Z \times \mathbb{A}^1 \), given respectively by the lax composition laws for \(b \leftarrow b \rightarrow s \) and \(s \leftarrow b \leftarrow b \).

• An open embedding

\[\overline{Z} \times \mathbb{A}^2 \to \overline{Z} \times \mathbb{A}^2 \]

defined over \(Z \times Z \times \mathbb{A}^2 \), given by the lax composition law for \(b \leftarrow b \rightarrow b \).

• Some higher compatibilities.

Example 3.2.6. For any finite type scheme \(Z \) equipped with a \(\mathbb{G}_m \)-action, [Dri13] constructed a Drinfeld pre-input such that \(Z^+ \), \(Z^- \) and \(Z^0 \) are respectively the attractor, repeller and fixed loci of \(Z \). Also, \(\overline{Z} \) is the so-called Drinfeld-Gaitsgory interpolation, which is an \(\mathbb{A}^1 \)-degeneration from \(Z \) to \(Z^{\text{aff}} \times_{Z^{\text{fix}}} Z^{\text{op}} \).

Moreover, this construction is functorial in \(Z \) and compatible with Cartesian products.

When \(Z \) is affine, the corresponding right-lax functor \(P_{\mathbb{A}^1} \to \text{Corr} \) is strict. In particular, we obtain a functor \(P_{\mathbb{A}^1} \to \text{Corr} \).

It was also shown in loc.cit. that there is a Drinfeld input with \(F^!(b) = Z/G_m \) and \(F^!(s) = Z^{\text{fix}}/G_m \).

Drinfeld’s theorem on adjunctions. Let \(F^!: \text{Dri} \to \text{Corr}(\text{PreStk}_{\text{QCAD, all}}^{\text{open,2-op}}) \) be a Drinfeld input and \(F \) be the corresponding Drinfeld pre-input. We use the notations in Remark 3.2.5. Consider the composition

\[P_{\mathbb{A}^1} \dashv \text{Corr}(\text{PreStk}_{\text{QCAD, all}}^{\text{open,2-op}}) \xrightarrow{\text{Dmod}^{\mathbb{A}^1}} \text{DGCat}_{\text{cont}}. \]

By construction, it sends \(\alpha^+ \) and \(\alpha^- \) respectively to the functors

\[\text{Dmod}^{\mathbb{A}^1} \circ F(\alpha^+) = p_\mathbb{A}^1 \circ q^{+,1}, \quad \text{Dmod}^{\mathbb{A}^1} \circ F(\alpha^-) = q_{\mathbb{A}^1} \circ p^{-1}. \]

The 2-morphism: \(F(\alpha^-) \circ F(\alpha^+) \to F(\alpha^- \circ \alpha^+) \) is \(F(\text{Id}_D) \) gives a natural transformation

\[q_{\mathbb{A}^1} \circ p^{-1} \circ p_{\mathbb{A}^1} \circ q^{+,1} \to \text{Id}_{D(Z^0)}. \]

The following result was proved in [Dri13, Appendix C].

Theorem 3.2.8. (Drinfeld) In the above setting, there is an adjoint pair

\[q_{\mathbb{A}^1} \circ p^{-1} : D(Z) \xleftarrow{\sim} D(Z^0) : p_{\mathbb{A}^1} \circ q^{+,1} \]

with the counit adjunction natural transformation given by (3.1).

Remark 3.2.9. The unit adjunction is given by a specialization construction along \(\overline{Z} \to \mathbb{A}^1 \). We do not need it in this paper.

Remark 3.2.10. More precisely, loc.cit. focused on the problem of reproving the Braden’s theorem (see [Bra03]) using the Drinfeld input in Example 3.2.6. However, the proof there works for any Drinfeld input.

3.3. Proof of Theorem 1.2.2 Throughout this subsection, we fix a co-character \(\gamma : G_m \to Z_M \) dominant and regular with respect to \(P \). Note that the homomorphism \(G_m \to Z_M \to Z_M/Z_G \) can be uniquely extended to a homomorphism between semi-groups \(\overline{\mathbb{A}}^1 \to T^\text{ad} \times \mathbb{C}_P \). Via \(\gamma \), the adjoint action \(T^\text{ad} \sim G \) induces an action \(\mathbb{G}_m \sim G \).

We first deduce the theorem from the following result:

37 The map \(\mathbb{A}^2 \to \mathbb{A}^1 \) in the formula is the multiplication map.

38 Explicitly, the LHS is the !-pull-push along \(Z^0 \to Z^{-} \times Z^+ \to Z^0 \), while the RHS is that along \(Z^0 \to Z^0 \to Z^0 \).

The desired natural transformation is induced by the adjoint pair \((j^!, j_\mathbb{A}) \) for the open embedding \(j : Z^0 \to Z^{-} \times Z^+ \).
Proposition-Construction 3.3.1. There exists a canonical Drinfeld input
\[F^I : \text{Dri} \to \text{Corr}((\text{PreStk}_\mathbb{R})^\text{open, 2-op})_{\text{QCAD}, \text{all}} \]
such that\(^{39}\) it sends \(\alpha^+\) and \(\alpha^-\) respectively to
\[
\begin{align*}
\text{Bun}_{G,\mathbb{G}_m}^P &\leftarrow \text{Bun}_{M,\mathbb{G}_m}^P \to \text{Bun}_{M,\mathbb{G}_m}^P, \\
\text{Bun}_{M,\mathbb{G}_m}^P &\leftarrow \text{Bun}_{P,\mathbb{G}_m}^P \to \text{Bun}_{P,\mathbb{G}_m}^P.
\end{align*}
\]

3.3.2. Deduction Theorem \([1.2.2]\) We will use the mirror version of Proposition-Construction \([3.3.1]\) by exchanging \(P\) and \(P^-\). Using Theorem \([3.2.8]\) we obtain the version of Theorem \([1.2.2]\) after replacing the relevant stacks by their \(\mathbb{G}_m\)-quotients. The same proof of \([DG14, \text{Theorem 3.4.3}]\) implies the following adjoint pair
\[
\text{Dmod}_{\mathbb{A}^1}^\text{ft}((\text{Grp}_G)^\text{gen}): \text{D}(\text{Bun}_{G,\mathbb{G}_m}^P)^{\mathbb{G}_m\text{-mon}} \rightleftarrows \text{D}(\text{Bun}_M): \text{Dmod}_{\mathbb{A}^1}^\text{ft}((\alpha_{P,\mathbb{G}_m}^P)^{-\mathbb{G}_m}).
\]
where
\[
\text{D}(\text{Bun}_{G,\mathbb{G}_m}^P)^{\mathbb{G}_m\text{-mon}} \subset \text{D}(\text{Bun}_{G,\mathbb{G}_m}^P)
\]
is the full subcategory generated by the essential image of the \(l\)-pullback functor
\[
\text{D}(\text{Bun}_{G,\mathbb{G}_m}^P)^{\mathbb{G}_m\text{-mon}} \to \text{D}(\text{Bun}_{G,\mathbb{G}_m}^P).
\]
Then we are done because the \(\mathbb{G}_m\)-action on \(\text{Bun}_{G,\mathbb{G}_m}^P\) can be trivialized. \(\Box\) [Theorem \([1.2.2]\)]

Notation 3.3.3. Let \(\text{Grp}_\mathbb{R}^\text{aff}\) be the category of group schemes \(H \to S\) with \(H\) and \(S\) being finite type affine schemes. Consider its arrow category \(\text{Arr}(\text{Grp}_\mathbb{R}^\text{aff})\). We equip the category
\[
\text{Corr}(\text{Arr}(\text{Grp}_\mathbb{R}^\text{aff}))_{\text{all, all}}
\]
with the obvious \(\mathbb{S}ch^\mathbb{A}^\text{aff}\)-action.

Construction 3.3.4. Via the co-character \(\gamma\), the adjoint actions \(Z_M \sim G\) and \(Z_M \sim P\) induces actions \(\mathbb{G}_m \sim G\) and \(\mathbb{G}_m \sim P\). The corresponding attractor, repeller and fixed loci are:
\[
\begin{align*}
\mathfrak{g}^{\mathfrak{a}, \gamma} &= P, \quad \mathfrak{g}^{\mathfrak{r}, \gamma} = P^+, \quad \mathfrak{g}^{\mathfrak{f}, \gamma} = M, \\
(P^-)^{\mathfrak{a}, \gamma} = M, \quad (P^-)^{\mathfrak{r}, \gamma} = P^-^+, \quad (P^-)^{\mathfrak{f}, \gamma} = M.
\end{align*}
\]
Using Example \([3.2.6]\) we obtain a weakly \(\mathbb{S}ch^\mathbb{A}^\text{aff}\)-enriched functor
\[
\Theta_{P^- \to G}: \mathbb{A}^1 \to \text{Corr}(\text{Arr}(\text{Grp}_\mathbb{R}^\text{aff}))_{\text{all, all}}
\]
sending \(\alpha^+\) and \(\alpha^-\) respectively to
\[
(P^- \to G) \leftarrow (M \to M) \to (M \to M) \leftrightarrow (P^- \to P^-) \to (P^- \to G).
\]

Remark 3.3.5. By construction, \(\text{Hom}(b, b) \times \Theta_{P^- \to G}(b) \to \Theta_{P^- \to G}(b)\) corresponds to the following diagram
\[
\begin{array}{ccc}
(P^- \to G) & \rightarrow & (P^- \to G) \\
\downarrow & & \\
\mathbb{A}^1 & & \\
\end{array}
\]
where \(\bar{G}^\gamma\) (resp. \(\bar{P}^\gamma\)) is the Drinfeld-Gaitsgory interpolation for the action \(\mathbb{G}_m \sim G\) (resp. \(\mathbb{G}_m \sim P\)). Note that we have
\[
\bar{G}^\gamma \simeq \bar{G} \times_{\mathbb{A}^1} \mathbb{A}^1, \quad \bar{P}^\gamma \simeq P^- \times \bar{G}.
\]

\(^{39}\)We also require that the 2-morphism \(F^I(\alpha^+) \circ F^I(\alpha^-) \to F^I(1_{\mathbb{A}^1})\) is given by the obvious open embedding.
Construction 3.3.6. Consider the functor
\[\mathcal{B} : \text{Grp}^{\text{aff}}_{\text{ft}} \to \text{AlgStk}^{\text{ft}}, \quad (H \to S) \mapsto \mathcal{B}H, \]
where \(\mathcal{B}H := S/H \) is the quotient stack. Similarly we have a functor \(\text{Arr}(\text{Grp}^{\text{aff}}_{\text{ft}}) \to \text{Arr}(\text{AlgStk}^{\text{ft}}) \). This functor does not commute with fiber products, hence we only have a right-lax functor
\[\text{Corr}(\text{Arr}(\text{Grp}^{\text{aff}}_{\text{ft}}))_{\text{all,all}} \to \text{Corr}(\text{Arr}(\text{AlgStk}^{\text{ft}}))_{\text{all,all}}. \]
This right-lax functor has a \(\text{Sch}^{\text{aff}} \)-linear structure. Hence by composing with \(\Theta_{P \to -/G} \), we obtain a weakly \(\text{Sch}^{\text{aff}} \)-enriched right-lax functor
\[\Theta_{\mathcal{B}P \to \mathcal{B}G} : \mathcal{B}P_{\text{gen}} \to \text{Corr}(\text{Arr}(\text{AlgStk}^{\text{ft}}))_{\text{all,all}}. \]

Definition 3.3.7. A morphism \((Y_1 \to Y_2) \to (Y'_1 \to Y'_2) \) in \(\text{Arr}(\text{AlgStk}^{\text{ft}}) \) is called an open embedding if both \(Y_1 \to Y'_1 \) and \(Y_2 \to Y'_2 \) are schematic open embeddings.

Lemma 3.3.8. The right-lax functor \(\Theta_{\mathcal{B}P \to \mathcal{B}G} \) factors through \(\text{Corr}(\text{Arr}(\text{AlgStk}^{\text{ft}}))_{\text{all,all}}^{\text{open,2-op}} \) and is strict at the composition \(\alpha^* \circ \alpha' \).

Proof. Consider the two forgetful functors \(\text{Arr}(\text{AlgStk}^{\text{ft}}) \to \text{AlgStk}^{\text{ft}}, (Y_1 \to Y_2) \mapsto Y_1 \). We only need to prove the similar claims after applying these forgetful functors. Those claims for the first forgetful functor are obvious (because \(\mathcal{P}^G \simeq P \times \mathbb{A}^1 \)). It remains to prove those for the second forgetful functor.

To prove the claim on strictness, we only need to check \(\mathcal{B}(P \times_M P^+) \to \mathcal{B}(P \times_M P^+) \) is an isomorphism. But this is obvious.

To prove the claim on openness, we only need to check that the following four maps are schematic open embeddings:
\[\mathcal{B}(P^G \times \mathcal{G}^G) \to \mathcal{B}P^G, \quad (\mathcal{G}^G \times \mathcal{B}P^G) \to \mathcal{B}(\mathcal{G}^G \times \mathcal{B}P^G), \quad (P^G \times \mathcal{B}P^G) \to \mathcal{B}P^G. \]
The claim for the last one is obvious. The claims for the first two maps follows from Corollary D.1.8. The proof for the third one is similar. Namely, consider the action
\[(G \times G \times X) \to \mathcal{G}^G \times \mathcal{G}^G \times \mathcal{G}^G, \quad (g_1, g_2, g_3) \cdot (x_1, x_2) \mapsto (g_1 x_1 g_2^{-1}, g_2 x_2 g_3^{-1}). \]
Its stabilizer for the canonical section is the group scheme \(\mathcal{G}^G \times \mathcal{G}^G \). We only need to prove the similar version of Lemma D.1.7 i.e., to show
\[(G \times G \times X) \to \mathcal{G}^G \times \mathcal{G}^G \]
is an open embedding. As before, we only need to show the LHS is smooth. Now the functor \(\Theta_{P \to -/G} \) provides an isomorphism \(\mathcal{G}^G \times \mathcal{G}^G \simeq \mathcal{G}^G \times \mathcal{G}^G \) covering the map
\[\text{pr}_{13} \times \text{id}_{\mathcal{A}^2} : (G \times G \times X) \times \mathcal{A}^2 \to (G \times G) \times \mathcal{A}^2. \]
Hence we have a map
\[(G \times G \times X) \to (\mathcal{G}^G \times \mathcal{G}^G) \to (G \times G) \times \mathcal{A}^2 \]
is a smooth map to a smooth scheme.

Construction 3.3.9. Consider the functor
\[\text{Maps}_{\text{gen}}(X, -) : \text{Arr}(\text{AlgStk}^{\text{ft}}) \to \text{PreStk}^{\text{ft}}, \quad (Y_1 \to Y_2) \mapsto \text{Maps}_{\text{gen}}(X, Y_1 \leftarrow Y_2). \]
It is easy to see that it sends open embeddings to schematic open embeddings. Hence we obtain a functor
\[\text{Corr}(\text{Arr}(\text{AlgStk}^{\text{ft}}))_{\text{all,all}}^{\text{open,2-op}} \to \text{Corr}(\text{PreStk}^{\text{ft}})_{\text{all,all}}^{\text{open,2-op}}. \]
This functor has an $\text{Sch}^{\text{aff}}_{\text{ft}}$-linear structure. Hence by composing with $\Theta_{B^n \to B^G}$, we obtain a weakly $\text{Sch}^{\text{aff}}_{\text{ft}}$-enriched right-lax functor
\[
\Theta : \mathcal{P} \to \text{Corr}^{\text{open},2\text{-op}}(\text{PreStk}_{\text{all},\text{all}})
\]
that is strict at the composition $\alpha^+ \circ \alpha^-$.

Remark 3.3.10. Explicitly, we have:
- The right-lax functor Θ sends α^+ and α^- respectively to
 \[
 \text{Bun}_G^{P-,\text{gen}} \leftarrow \text{Bun}_M^{M-,\text{gen}} \rightarrow \text{Bun}_M \leftarrow \text{Bun}_P \rightarrow \text{Bun}_G^{P-,\text{gen}}.
 \]
- The map $\text{Hom}(\mathfrak{b}, \mathfrak{b}) \times \Theta(\mathfrak{b}) \to \Theta(\mathfrak{b})$ is provided by the \mathbb{A}^1-family of correspondences:
 \[
 \begin{array}{c}
 \text{Bun}_G^{P-,\text{gen}} \ar[u]\ar[r] & \text{Maps}_{\text{gen}}(X, \mathbb{B}\tilde{G}^\gamma \leftarrow \mathbb{B}P^{-\gamma}) \ar[d] \ar[r] & \text{Bun}_G^{P-,\text{gen}} \ar[u] \\
 & \mathbb{A}^1
 \end{array}
 \]

Construction 3.3.11. We write
\[
\text{VinBun}_G^{P-,\text{gen},\gamma} := \text{Maps}_{\text{gen}}(X, \mathbb{B}\tilde{G}^\gamma \leftarrow \mathbb{B}P^{-\gamma}),
\]
\[
\text{VinBun}_G^\gamma := \text{Maps}(X, \mathbb{B}\tilde{G}^\gamma).
\]
There is a map
\[
\text{VinBun}_G^{P-,\text{gen},\gamma} \rightarrow \text{Bun}_G^{P-,\text{gen}} \times_{\text{Bun}_G} \text{VinBun}_G^\gamma
\]
induced by the map
\[
\mathbb{B}P^{-\gamma} \cong \mathbb{B}(P^{-\gamma} \times \tilde{G}^\gamma) \rightarrow \mathbb{B}P^{-\gamma} \times \mathbb{B}\tilde{G}^\gamma.
\]
By Corollary D.1.8, these maps are schematic open embeddings.

Construction 3.3.12. Recall that $\text{VinBun}_{G,C}^{P} \cong \text{Bun}_P \times_{\text{Bun}_M} \text{Bun}_{M,\lambda}$. Hence there is a unique open substack $\text{VinBun}_{G,\lambda}^{P-,\text{gen}}$ of VinBun_G^γ obtained by removing all the connected components
\[
\text{Bun}_{P,\mu} \times_{\text{Bun}_{M,\mu}} \subset \text{VinBun}_{G,C}^{P}
\]
with $\mu \neq \lambda$ from its 0-fiber. Let $\text{VinBun}_{G,\lambda}^{P-,\text{gen},\gamma}$ be the corresponding open sub-prestack. It is easy to see we can modify Θ to obtain
\[
\Theta_\lambda : \mathbb{P}^{\mathbb{A}^1} \rightarrow \text{Corr}^{\text{open},2\text{-op}}(\text{PreStk}_{\text{all},\text{all}})
\]
such that
- It sends α^+ and α^- respectively to
 \[
 \text{Bun}_G^{P-,\text{gen}} \leftarrow \text{Bun}_M^{M-,\text{gen}} \rightarrow \text{Bun}_{M,\lambda} \leftarrow \text{Bun}_M \leftarrow \text{Bun}_P \rightarrow \text{Bun}_G^{P-,\text{gen}}.
 \]
- The map $\text{Hom}(\mathfrak{b}, \mathfrak{b}) \times \Theta_\lambda(\mathfrak{b}) \rightarrow \Theta_\lambda(\mathfrak{b})$ is provided by the \mathbb{A}^1-family of correspondences:
 \[
 \begin{array}{c}
 \text{Bun}_G^{P-,\text{gen}} \ar[u]\ar[r] & \text{VinBun}_{G,\lambda}^{P-,\text{gen},\gamma} \ar[r] & \text{Bun}_G^{P-,\text{gen}} \ar[u] \\
 & \mathbb{A}^1
 \end{array}
 \]
- The other data are induced from Θ.

Lemma 3.3.13. The right-lax functor Θ_λ factors through $\text{Corr}^{\text{open},2\text{-op}}(\text{PreStk}_{\text{all},\text{all}})$.

40This is because for affine schemes Y, we have $\text{Maps}(X,Y) \cong Y$.
Proof. We only need to check all the three left arms in the above three correspondences are QCAD. The claims for the first two arms are just (the mirror version of) Lemma 1.2.1(1). To prove the claim for the third arm, using the open embedding in Construction 3.3.11, we only need to show $\text{VinBun}_G \leftarrow \text{VinBun}_G$ is QCAD. It is well-known that VinBun_G is locally QCAD. Hence we only need to show $\text{VinBun}_{G,\lambda} \rightarrow \text{Bun}_G$ is quasi-compact. Then we are done because both the G_m-locus and the 0-fiber of $\text{VinBun}_{G,\lambda}$ is quasi-compact over Bun_G.

We are going to construct a Drinfeld input from Θ_λ by taking quotients for the torus actions. We first introduce some notations.

Notation 3.3.14. Let $\text{ActSch}_{\text{aff}}$ be the category whose objects are $(H \sim Y)$, where H is an affine algebraic group and $Y \in \text{Sch}_{\text{aff}}$. We equip $\text{ActSch}_{\text{aff}}$ with the Cartesian symmetric monoidal structure. Note that the monoidal unit for it is $(\text{pt} \sim \text{pt})$. Also note that there is a symmetric monoidal forgetful functor $\text{oblv}_{\text{Act}} : \text{ActSch}_{\text{aff}} \rightarrow \text{Sch}_{\text{aff}}$.

As in Definition 3.2.7, we define a category $P_{G_m \sim A^1}$ enriched in $\text{ActSch}_{\text{aff}}$ such that

$$\text{Hom}_{P_{G_m \sim A^1}}(b, b) = (G_m \sim A^1)$$

and the other three mapping objects are $(G_m \sim 0)$. We use the same symbols α^+ and α^- to denote the canonical morphisms.

Note that P_{A^1} can be obtained from $P_{G_m \sim A^1}$ by the procedure of changing of enrichment along oblv_{Act}. In particular, there is a forgetful functor $P_{G_m \sim A^1} \rightarrow P_{A^1}$ that intertwines the enrichment via oblv_{Act}.

Let $\text{ActPreStk}_{\text{aff}}$ be the similarly defined category. A morphism $(H \sim Y_1) \rightarrow (H_2 \sim Y_2)$ is said to be an open embedding if $H_1 \simeq H_2$ and $Y_1 \rightarrow Y_2$ is a schematic open embedding. It is said to be QCAD if $Y_1 \rightarrow Y_2$ is QCAD.

Construction 3.3.15. (c.f. [DriI3 § C.13.4])

In the previous construction of Θ_λ, we ignored the various G_m-actions. If we keep tracking them, we can obtain a weakly $\text{ActSch}_{\text{aff}}$-enriched right-lax functor

$$\Theta_{\text{Act}} : P_{G_m \sim A^1} \rightarrow \text{Corr} (\text{ActPreStk}_{\text{aff}})^{\text{open}, 2\text{-op}}$$

such that

- It sends α^+ and α^- respectively to

$$(G_m \sim \text{Bun}_G^{P^-\text{gen}}) \leftarrow (G_m \sim \text{Bun}_{G}^{M^-\text{gen}})
ightarrow (G_m \sim \text{Bun}_{M,\lambda}),$$

$$(G_m \sim \text{Bun}_{M,\lambda}) \leftarrow (G_m \sim \text{Bun}_{P^-,\lambda})
ightarrow (G_m \sim \text{Bun}_G^{P^-\text{gen}}).$$

- The map $\text{Hom}(b, b) \times \Theta_{\text{Act}}^+(b) \rightarrow \Theta_{\text{Act}}^{-}(b)$ is provided by the diagram:

$$
\begin{array}{cccc}
(G_m \sim \text{Bun}_G^{P^-\text{gen}}) & \leftarrow & (G_m \times G_m \sim \text{VinBun}_{G,\lambda}^{P^-\text{gen},\gamma}) & \rightarrow \\
\downarrow & & & \\
(G_m \sim A^1)
\end{array}
$$

which is induced by the morphism

$$(G_m \times G_m \sim \bar{Z}) \rightarrow (G_m \sim Z) \times (G_m \sim Z) \times (G_m \sim A^1)$$

that exists for any Drinfeld-Gaitsgory interpolation \bar{Z} (see [DGII § 2.2.3]).

- It is compatible with Θ_{λ} via the forgetful functors.

Then as in [DriI3 Footnote 41], we obtain the desired Drinfeld input by passing to quotients and changing enrichment.

[Lemma 3.3.13]

[Proposition-Construction 3.3.1]
4. Step 3

We have two results to prove in this step: Proposition-Construction \[1.3.1\] and Lemma \[1.3.2\]. Each subsection corresponds to a result.

4.1. Proof of Proposition-Construction \[1.3.1\]

Goal 4.1.1. Construct a certain open embedding

\[
(Bun_P \times \text{Bun}_{G, \geq P})^{\gen} \to Bun_P \times \text{Bun}_{G, \geq P}
\]

whose restriction to the \(G\)-stratum and \(P\)-stratum are canonically isomorphic to the maps

\[
Bun_P \times \text{Bun}_{G, G} \to Bun_P \times \text{Bun}_{G, G},
\]

\[
Bun_P \times \text{Bun}_{P, P} \to Bun_P \times \text{Bun}_{G, P}.
\]

By definition, we have

\[
Bun_P \times \text{VinBun}_{G, \geq P} \cong \text{Maps}_{\gen}(X, P^- \backslash \text{Vin}_{G, \geq P} / G \to P^- 0 \text{Vin}_{G, \geq P} / G).
\]

Note that

\[
P^- \backslash \text{Vin}_{G, \geq P} / G \cong BP^- \times \text{B} \tilde{G}_{z P},
\]

where \(\tilde{G}_{z P} := \tilde{G} \times_{T^P} T^P_{\text{ad}, z P}\). By Corollary \[D.1.8\] the map

\[
\text{B}(P^- \times \tilde{G}_{z P}) \to BP^- \times \text{B} \tilde{G}_{z P} \cong P^- \backslash \text{Vin}_{G, \geq P} / G
\]

is a schematic open embedding. We define

\[
(Bun_P \times \text{VinBun}_{G, \geq P})^{\gen} := \text{Maps}_{\gen}(X, P^- \backslash \text{Vin}_{G, \geq P} / G \leftarrow \text{B}(P^- \times \tilde{G}_{z P})).
\]

Then we have a schematic open embedding

\[
(Bun_P \times \text{VinBun}_{G, \geq P})^{\gen} \to Bun_P \times \text{VinBun}_{G, \geq P}.
\]

As in the proof of Lemma \[2.1.2\], a direct calculation shows that the \(Z_M\)-action on \(0\text{Vin}_{G, \geq P}\) preserves the open substack

\[
\text{B}(P^- \times \tilde{G}_{z P}) \times (P^- \backslash \text{Vin}_{G, \geq P} / G) 0\text{Vin}_{G, \geq P}.
\]

Hence it makes sense to define

\[
(Bun_P \times \text{VinBun}_{G, \geq P})^{\gen} := (Bun_P \times \text{VinBun}_{G, \geq P})^{\gen} / Z_M.
\]

It is obvious that the restriction of

\[
(Bun_P \times \text{Bun}_{G, \geq P})^{\gen} \to Bun_P \times \text{Bun}_{G, \geq P}
\]

to the \(G\)-stratum is an isomorphism. It remains to identify its restriction to the \(P\)-stratum with the map

\[
Bun_P \times \text{Bun}_{P, \geq P} \to Bun_P \times \text{Bun}_{G, P}.
\]

Unwinding the definitions, we only need to identify the \(C_P\)-fiber of the open embedding

\[
\text{B}(P^- \times \tilde{G}_{z P}) \to BP^- \times \text{B} \tilde{G}_{z P}
\]

with the \(C_P\)-fiber of the map

\[
BM \times \text{B} \tilde{G}_{z P} \to BP^- \times \text{B} \tilde{G}_{z P}.
\]

However, this follows from \(\tilde{G}_{z P} \cong P \times_M P^-\). \(\square\)
4.2. Proof of Lemma [1.3.2] We will introduce many temporary notations in this subsection. When we use an English letter, like c, to denote a correspondence, or when we use a letter of plain font, like K, to denote a D-module, it means such notations are only used in this subsection.

Goal 4.2.1. The morphism γ_P and/or γ_P' are equivalent to the morphism
\[
\text{Dmod}^\dagger_{\text{indhol}}(\beta) \circ \text{K}(P) \to \text{Dmod}^\dagger_{\text{indhol}}(\beta) \circ \text{K}(G).
\]

4.2.2. The arrow γ_P. We first give the following tautological description of
\[
\gamma_P : \text{CT}^\text{gen}_{P \times G, s}(\mathcal{F}_P) \to \text{CT}^\text{gen}_{P \times G, s}(\mathcal{F}_G).
\]
Recall the morphism L_{PreStk}:
\[
\mathcal{E} \circ \text{CT}^\dagger_{P \times G, s}(\mathcal{F}_P) \to \mathcal{F}_G.
\]

Its underlying morphism in $\text{D}_{\text{indhol}}(\text{Bun}_G \times \text{Bun}_G)$ is a map
\[
\theta_P : \mathcal{E} \circ \text{CT}^\dagger_{P \times G, s}(\mathcal{F}_P) \to \mathcal{F}_G,
\]
which by adjunction induces a morphism
\[
\theta_P : \mathcal{F}_P \to \mathcal{E} \circ \text{CT}^\dagger_{P \times G, s}(\mathcal{F}_G).
\]

Then we have
\[
\gamma_P \simeq \text{CT}^\text{gen}_{P \times G, s}(\theta_P).
\]

Note that we indeed have $\text{CT}^\text{gen}_{P \times G, s} \simeq \text{CT}^\text{gen}_{P \times G, s} \circ \mathcal{E} \circ \text{CT}^\dagger_{P \times G, s}$.

4.2.3. Second adjointness for left functors. Next, we give a more convenient description for the second adjointness, when restricted to ind-holonomic objects.

Let $\text{CT}^\cdot_{P, s}$ be the restriction of $\text{CT}^\cdot_{P, s}$ to the full subcategory of ind-holonomic objects. By construction, the natural transformation $\text{CT}^\cdot_{P, s} \simeq \text{CT}^\cdot_{P, -1}$ is obtained as follows. We apply $\text{D}^\dagger_{\text{indhol}}$ to the 2-morphism
\[
\alpha_P^\cdot \circ \alpha_P^\cdot \lambda \to \text{Id}_{\text{Bun}_M, \lambda}
\]
in $\text{Corr}(\text{PreStk})_{\text{QCAD, all}}$ and obtain a natural transformation
\[
\text{CT}^\cdot_{P, s} \circ (\text{CT}^\cdot_{P, -1})^R \to \text{Id}_{\text{D}_{\text{indhol}}(\text{Bun}_M)}.
\]

Then we obtain the natural transformation $\text{CT}^\cdot_{P, s} \circ (\text{CT}^\cdot_{P, -1})^R$ by adjunction. Equivalently, we have the left adjoint version of the above picture. Namely, we start from the 2-morphism $\text{Id}_{\text{Bun}_M} \to (\alpha_P^\cdot)^{\text{rev}} \circ (\alpha_P^\cdot)^{\text{rev}}$
\[
\text{Id}_{\text{Bun}_M} \to (\alpha_P^\cdot)^{\text{rev}} \circ (\alpha_P^\cdot)^{\text{rev}}
\]
in $\text{Corr}(\text{PreStk})_{\text{all, Stacky}}$, and use $\text{D}^\dagger_{\text{indhol}}$ to obtain a natural transformation
\[
\text{Id} \to \text{CT}^\cdot_{P, s} \circ (\text{CT}^\cdot_{P, s})^L.
\]

Then we can obtain the same natural transformation $\text{CT}^\cdot_{P, s} \to \text{CT}^\cdot_{P, -1}$ by adjunction.

The advantage is: if we use left functors, we can work with all the connected components simultaneously.

Similarly, the natural transformation of $\text{CT}^\cdot_{P \times G, s} \simeq \text{CT}^\cdot_{P \times G, s}$ can be obtained by the same procedure from the correspondences
\[
c^* : (\text{Bun}_G \times \text{Bun}_G \leftrightarrow \text{Bun}_P \times \text{Bun}_G \to \text{Bun}_M \times \text{Bun}_G),
\]
\[
c^* : (\text{Bun}_M \times \text{Bun}_G \leftrightarrow \text{Bun}_P \times \text{Bun}_G \to \text{Bun}_G \times \text{Bun}_G),
\]
and the 2-morphism
\[
(4.1) \quad \text{Id}_{(\text{Bun}_M \times \text{Bun}_G)} \to c^- \circ c^+
\]
in $\text{Corr}(\text{PreStk})_{\text{all, Stacky}}$.

41 The superscript “rev” means exchanging the two arms of a correspondence.
Similarly, the natural transformation of \(\psi B^\gen \) can be obtained by the same procedure from the correspondences
\[
\begin{align*}
\cogen &: \text{Bun}_G^\gen \times \text{Bun}_G \leftrightarrow \text{Bun}_p \times \text{Bun}_G \to \text{Bun}_M \times \text{Bun}_G, \\
\coogen &: \text{Bun}_M \times \text{Bun}_G \leftrightarrow \text{Bun}_p^\gen \times \text{Bun}_G \to \text{Bun}_G^\gen \times \text{Bun}_G.
\end{align*}
\]
and the 2-morphism
\[
(4.2) \quad \Id \to \cogen \circ \cogen
\]
in \(\text{Corr}(\text{PreStk}i)_{\text{all,Stacky}}^\open \).

Notation 4.2.4. To simplify the notations, for a correspondence \(c \) (in english letter), we use the symbol \(c \) to denote the corresponding functor \(\text{Dmod}^{\ast} \). These shorthands are only used in this subsection.

4.2.5. Translation.
Using the above shorthands, the results in § 4.2.3 are translated as below. The 2-morphisms (4.1) and (4.2) induce natural transformations
\[
\mu : \Id \to \cogen \circ \cogen \quad \text{and} \quad \mu^\gen : \Id \to \cogen \circ \cogen
\]
such that the following compositions are isomorphisms
\[
\begin{align*}
(4.3) \quad & \quad \cogen \circ \cogen \circ \cogen \circ \cogen \\
(4.4) \quad & \quad \cogen \circ \cogen \circ \cogen
\end{align*}
\]
4.2.6. Consider the map \(P_{\gen} : \text{Bun}_G^\gen \times \text{Bun}_G \to \text{Bun}_G \times \text{Bun}_G \). Let \(p : \text{Bun}_G \times \text{Bun}_G \to \text{Bun}_G^\gen \times \text{Bun}_G \to \text{Bun}_G^\gen \times \text{Bun}_G \) be the corresponding correspondence. Note that we have \(p \simeq P_{\gen} \).

By definition, we have \(c \circ p \circ c^\gen \), which provides
\[
\cogen \circ p = c^\gen \circ c^\gen.
\]
We proved in § 3.1 that the map \(\text{Bun}_G^\gen \to \text{Bun}_p \times \text{Bun}_G^\gen \) is a schematic open embedding. Hence we also have a 2-morphism \(c^\gen \to c \circ p \), which provides
\[
\nu : c^\gen \to c \circ p.
\]
By construction, the 2-morphism (4.1) is equivalent to the composition
\[
\Id : \cogen \circ c^\gen \to c^\gen \circ c \circ p.
\]
Hence \(\mu \) is isomorphic to
\[
(4.5) \quad \Id \circ \cogen \circ c^\gen \circ \cogen \circ \cogen \circ \cogen \circ \cogen \circ \cogen \circ \cogen \circ c^\gen.
\]

Lemma 4.2.7. The arrow \(\gamma_p \) is equivalent to the composition
\[
\Id \circ \cogen \circ c^\gen \circ \cogen \circ \cogen \circ \cogen \circ \cogen \circ \cogen \circ \cogen \circ c^\gen.
\]

Proof. By definition, the arrow \(\theta_p : \text{F}_p \to \text{F}_p^R \) is isomorphic to
\[
\text{F}_p \circ \text{F}_p.
\]
Hence by definition, \(\gamma_p \) is isomorphic to
\[
\Id \circ \cogen \circ c^\gen \circ \cogen \circ \cogen \circ \cogen \circ \cogen \circ \cogen \circ \cogen \circ c^\gen.
\]

42The functor \(\Id \) below is the identity functor for \(\text{Dmod}(\text{Bun}_M \times \text{Bun}_G) \).
Hence we only need to show the following diagram of functors commute

\[
\begin{array}{ccc}
(c^+, \text{gen})^R \text{unit} & \rightarrow & (c^+, \text{gen})^R \circ p \circ p \rightarrow (c^+)^R \circ p \\
\downarrow \text{id} & & \downarrow \circ \text{id} \\
c^+, \text{gen} & \rightarrow & c^+ \circ p.
\end{array}
\]

Note that we have

\[
\text{Maps}((c^+, \text{gen})^R, c^- \circ p) \Rightarrow \text{Maps(Id, c^- \circ p \circ c^+, \text{gen})} \Rightarrow \text{Maps(Id, c^- \circ c^+)}.
\]

Via this isomorphism, the top arc in (4.6), which is just a point of the LHS, is given by the following point of the RHS:

\[
\text{Id} \rightarrow (c^+, \text{gen})^R \circ c^- \cdot \text{gen} \rightarrow (c^+, \text{gen})^R \circ p \circ c^+, \text{gen} \Rightarrow (c^+)^R \circ c^+ \Rightarrow c^- \circ c^+.
\]

The first row in the above composition is just \(\text{unit} : \text{Id} \rightarrow (c^+)^R \circ c^+\). Hence this composition is isomorphic to

\[
\text{Id} \Rightarrow (c^+, \text{gen}) \Rightarrow c^+ \Rightarrow (c^+)^R \circ c^+ \Rightarrow c^+.
\]

which is just \(\text{Id} \rightarrow c^- \circ c^+\) by the axioms for \(\text{unit}\) and \(\text{counit}\).

Similarly, one shows that the bottom arc corresponds to natural transformation (4.5). Then we are done by the discussion above the lemma.

\[\square|\text{Lemma 4.2.7}\]

4.2.8. \textit{Finish of the proof.} We give temporary labels to the following correspondences

\[
i : (\text{Bun}_{G, \geq P}) \leftarrow (\text{Bun}_{G, P}) \rightarrow (\text{Bun}_{G, P}),
\]

\[
d^\text{gen} : (\text{Bun}_G^{p, \text{gen}} \times \text{Bun}_G) \leftarrow (\text{Bun}^G_{G, P}) \rightarrow (\text{Bun}^G_{G, P}),
\]

\[
d : (\text{Bun}_G \times \text{Bun}_G) \leftarrow (\text{Bun}_{G, \geq P}) \rightarrow (\text{Bun}_{G, \geq P}),
\]

\[
j : (\text{Bun}_{G, P}) \leftarrow (\text{Bun}_{G, P}) \rightarrow (\text{Bun}_{G, P}),
\]

\[
b : (\text{Bun}_M \times \text{Bun}_G) \leftarrow (\text{Bun}_{P- \times \text{Bun}_{G, \geq P}}) \rightarrow (\text{Bun}_{G, \geq P}).
\]

Note that we have an obvious isomorphism \(\beta \cong b \circ j\), hence

\[
\text{D\textsuperscript{indholo}}(\beta) \cong b \circ j.
\]

We have an isomorphism \(p \circ d^\text{gen} \cong d \circ i\) because both sides are just

\[
\text{Bun}_G \times \text{Bun}_G \leftarrow \text{Bun}_{G, P} \rightarrow \text{Bun}_{G, P}.
\]

Hence \(p \circ d^\text{gen} \cong d \circ i\). We have an isomorphism \(b \circ i \cong c^{-, \text{gen}} \circ d^\text{gen}\) because both sides are just

\[
\text{Bun}_M \times \text{Bun}_G \leftarrow \text{Bun}_{G, P} \times \text{Bun}^G_{G, P} \rightarrow \text{Bun}_{G, P}.
\]

Hence \(b \circ i \cong c^{-, \text{gen}} \circ d^\text{gen}\). We have a 2-morphism \(b \circ i \cong c^- \circ d\) induced by the open embedding

\[
(Bun_{P-} \times Bun_{G, \geq P})^\text{gen} \subset Bun_{P-} \times Bun_{G, \geq P}.
\]

Hence we have a natural transformation

\[
\xi : b \rightarrow c^- \circ d.
\]

Moreover, the 2-morphism

\[
b \circ i \cong c^{-, \text{gen}} \circ d^\text{gen} \cong c^- \circ p \circ d^\text{gen} \cong c^- \circ d \circ i
\]
is isomorphic to the 2-morphism induced from \(b \to c^- \circ d \). Hence we have the following commutative diagram of functors

\[
\begin{array}{ccc}
\xi \circ (i) & \xrightarrow{\zeta} & c^- \circ d \circ i \\
\downarrow & \Downarrow & \downarrow \\
c^- \circ d^{\gen} & \xrightarrow{\nu(d^{\gen})} & c^- \circ p \circ d^{\gen}.
\end{array}
\]

After these preparations, we are ready to finish the proof. Recall that \(K(P) \) is a \(!\)-extension along \(\overline{\text{Bun}_{G,P}} \rightarrow \text{Bun}_{G} \). Let \(K_1 \) be the corresponding object in \(D_{\text{indhol}}(\overline{\text{Bun}_{G,P}}) \). We also write \(K_2 := j^+_P(K(G)) \), where \(j^+_P : \text{Bun}_{G,P} \rightarrow \overline{\text{Bun}_{G}} \) is the open embedding. The morphism \(K(P) \rightarrow K(G) \) is sent by \(j = j^+_P \) to a morphism

\[
\eta : i(K_1) \rightarrow K_2.
\]

It follows from definition that the arrow \(\vartheta_P : p(F_P) \rightarrow F_G \) is equivalent to

\[
p \circ d^{\gen}(K_1) = d \circ i(K_1) \xrightarrow{d(\eta)} d(K_2),
\]

where \(F_P \simeq d^{\gen}(K_1) \) and \(F_G \simeq d(K_2) \). Hence by Lemma 1.2.7, the arrow \(\gamma_P \) is equivalent to

\[
c^- \circ d^{\gen}(K_1) \xrightarrow{\nu(d^{\gen})} c^- \circ p \circ d^{\gen}(K_1) \simeq c^- \circ d \circ i(K_1) \xrightarrow{c^- \circ d(\eta)} c^- \circ d(K_2).
\]

By (4.7), this arrow is equivalent to

\[
b \circ i(K_1) \xrightarrow{\xi(i(K_1))} c^- \circ d \circ i(K_1) \xrightarrow{c^- \circ d(\eta)} c^- \circ d(K_2),
\]

or equivalently

\[
b \circ i(K_1) \xrightarrow{\eta} b(K_2) \xrightarrow{\xi(K_2)} c^- \circ d(K_2).
\]

We claim \(\xi(K_2) \) is invertible. Indeed, this is because \(K_2 \) is a \(!\)-extension from the \(G \)-stratum, and the open embedding

\[
(Bun_{P-} \times \overline{\text{Bun}_{G,P}})^{\gen} \subset Bun_{P-} \times \overline{\text{Bun}_{G,P}}
\]

is an isomorphism when restricted to the \(G \)-stratum. Hence \(\gamma_P \) is equivalent to \(b(\eta) \), which by definition is the image of \(K(P) \rightarrow K(G) \) under \(b \circ j \in D_{\text{indhol}}(\beta) \).

\(\square \) Lemma 1.3.2

5. Step 4

We have two results to prove in this step: Proposition-Construction 1.4.1 and Proposition 1.4.2. Each subsection corresponds to a result.

To avoid jumping between topics, we also prove Lemma 1.5.1 (from Step 5) in § 5.1.

5.1. Proof of Proposition-Construction 1.4.1 and Lemma 1.5.1

Goal 5.1.1. Construct a canonical factorization of the map

\[
(Bun_{P-} \times \overline{\text{Bun}_{G,P}})^{\gen} \rightarrow Bun_M \times \text{Bun}_{G}
\]

via \(\text{Bun}_{M} \times \text{Bun}_{G}^{P- \text{gen}} \) such that we have an isomorphism

\[
(\text{Bun}_{P-} \times \overline{\text{Bun}_{G,P}})^{\gen} \times \text{Bun}_{G}^{P- \text{gen}} \cong \text{Maps}_{\text{gen}}(X, P^- \backslash \text{Vin}_{G, \ast_{CP}} / G \leftarrow \mathbb{E}(P^- \times \mathcal{G}_{2CP})).
\]

The proof below is similar to that in § 2.1. Hence we omit some details.

Recall in § 4.1, we defined

\[
(Bun_{P-} \times \text{VinBun}_{G, \ast_{CP}})^{\gen} := \text{Maps}_{\text{gen}}(X, P^- \backslash \text{Vin}_{G, \ast_{CP}} / G \leftarrow \mathbb{E}(P^- \times \mathcal{G}_{2CP})).
\]
By Lemma [D.1.5] the right projection map \(P^- \times_G \tilde{G}_{2C_P} \to G \) factors through \(P^- \). Hence we obtain the following commutative diagram of algebraic stacks

\[
P^-/ \text{Vin}_{G,2C_P}/G \leftarrow \mathbb{B}(P^- \times_G \tilde{G}_{2C_P}) \leftarrow \mathbb{B} M \times \mathbb{B} G \leftarrow \mathbb{B} M \times \mathbb{B} P^-
\]

Taking Maps_{gen}(X, -), we obtain a map

\[
(Bun_{P^-} \times_{Bun_G} \text{Vin}Bun_{G,2C_P})_{gen} \to Bun_M \times Bun_{P^- \text{-gen}}.
\]

To obtain the map \((Bun_{P^-} \times_{Bun_G} \text{Vin}Bun_{G,2C_P})_{gen} \to Bun_M \times Bun_{P^- \text{-gen}} \), as before, we show that the map \(\mathbb{B}(P^- \times_G \tilde{G}_{2C_P}) \to \mathbb{B} M \times \mathbb{B} P^- \) can be uniquely lifted to a morphism

\[
(Z_M \sim \mathbb{B}(P^- \times_G \tilde{G}_{2C_P})) \to (\text{pt} \sim \mathbb{B} M \times \mathbb{B} P^-)
\]

fitting into the diagram

\[
(Z_M \sim P^-/ \text{Vin}_{G,2C_P}/G) \leftarrow (Z_M \sim \mathbb{B}(P^- \times_G \tilde{G}_{2C_P})) \leftarrow (\text{pt} \sim \mathbb{B} M \times \mathbb{B} G) \leftarrow (\text{pt} \sim \mathbb{B} M \times \mathbb{B} P^-).
\]

It remains to compare both sides of (5.1). By construction,

\[
(Bun_{P^-} \times_{Bun_G} \text{Vin}Bun_{G,2C_P})_{gen} \times_{Bun_{P^- \text{-gen}}} Bun_{P^- \text{-gen}}
\]

is isomorphic to the image of

\[
P^-/ \text{Vin}_{G,2C_P}/P \leftarrow \mathbb{B}(P^- \times_G \tilde{G}_{2C_P}) \times_{\mathbb{B} P^-} \mathbb{B} M
\]

under the functor Maps_{gen}(X, -). Using Lemma [D.1.5], the map

\[
\mathbb{B}(P^- \times_G \tilde{G}_{2C_P} \times M) \to \mathbb{B}(P^- \times_G \tilde{G}_{2C_P}) \times_{\mathbb{B} P^-} \mathbb{B} M
\]

is an isomorphism. Also, the LHS is just

\[
\mathbb{B}(P^- \times_G \tilde{G}_{2C_P} \times P) \simeq \mathbb{B}(P^- \times_G \tilde{G}_{2C_P} \times P) \simeq P^-/ \text{Vin}_{G,2C_P}/P^-.
\]

Hence we obtain a \(Z_M \)-equivariant isomorphism

\[
(Bun_{P^-} \times_{Bun_G} \text{Vin}Bun_{G,2C_P})_{gen} \times_{Bun_{P^- \text{-gen}}} Bun_{P^- \text{-gen}} \simeq Y_{rel}^P.
\]

It follows from construction that it is defined over \(Bun_M \times \text{Vin}Bun_G \times Bun_M \). Then we obtain the isomorphism (5.1) by taking quotients for the \(Z_M \)-actions.

\[\square\]

Proposition-Construction 1.4.1 and Lemma 1.5.1

5.2. Proof of Proposition 1.4.2

Goal 5.2.1. The objects \(\text{Dmod}^{-1, s}_{\text{indhol}}(\beta') \circ K(P) \) and \(\text{Dmod}^{-1, s}_{\text{indhol}}(\beta') \circ K(G) \) are both contained in the full subcategory

\[
I(M \times G, M \times P^-) \subset D(Bun_M \times Bun_{P^- \text{-gen}}).
\]

We first prove the claim for the second object. Using the base-change isomorphisms, it is easy to see \(\text{Dmod}^{-1, s}_{\text{indhol}}(\beta') \circ K(G) \) is isomorphic to the image of \(k_{Bun_{P^-}} \) under the !-pushforward functor along

\[
Bun_{P^-} \to Bun_M \times Bun_{P^-} \to Bun_M \times Bun_{P^- \text{-gen}}.
\]

This map has a factorization

\[
Bun_{P^-} \xrightarrow{f} Bun_M \times Bun_{P^-} \to Bun_M \times Bun_{P^- \text{-gen}}.
\]
It is clear that $f(k_{\text{Bun}_P}))$ is U_P-equivariant, i.e., is a $*$-pullback along

$$\text{Bun}_M \times \text{Bun}_P \to \text{Bun}_M \times \text{Bun}_M.$$ Then we are done by applying Proposition 0.2.11(4) to the reductive group $M \times G$ and the parabolic subgroup $M \times P^\circ$.

Now we prove the claim for the first object. Consider the restriction of β on the P-stratum:

$$\beta_P : (\text{Bun}_M \times \text{Bun}_G^P \to \text{Bun}_M \times \text{Bun}_G^P)^{\text{gen}} \times \text{Bun}_G^{P^{\text{gen}}} \to \overline{\text{Bun}}_G \times \overline{\text{Bun}}_G \to \overline{\text{Bun}}_G^P.$$

Since $K(P)$ is a $!$-extension along $i_P : \overline{\text{Bun}}_G \to \overline{\text{Bun}}_G$,

$$\text{Dmod}^+_{\text{indhol}}(\beta') \circ K(P) = \text{Dmod}^+_{\text{indhol}}(\beta_P) \circ i_P^!(K(P)).$$

It follows from construction that β_P is isomorphic to the composition of

$$\text{Bun}_G^P \times \text{Bun}_G^{P^{\text{gen}}} \leftrightarrow \text{Bun}_G \circ \overline{\text{Bun}}_G \to \overline{\text{Bun}}_G^P$$

and

$$\delta^+(\text{Bun}_M \times \text{Bun}_G^P \to \text{Bun}_M \times \text{Bun}_G^{P^{\text{gen}}} \to \text{Bun}_G^P \times \text{Bun}_G^{P^{\text{gen}}}),$$

where the map Δ_P^{gen} is provided by Proposition-Construction 1.1.2. Hence we only need to show

$$(\text{5.2})$$

$$\text{D}^1_{\text{indhol}}(\delta^+) \circ \Delta_P^{\text{gen}} \circ i_P^!(K(P))$$

is contained in $I(M \times G, M \times P^\circ)$. In other words, we need to show its $!$-pullback along

$$\iota_{M \times P^\circ} : \text{Bun}_M \times \text{Bun}_P \to \text{Bun}_M \times \text{Bun}_G^P$$

is U_P-equivariant.

Consider the correspondence

$$\delta^+ : (\text{Bun}_M \times \text{Bun}_G^P \to \text{Bun}_M \times \text{Bun}_G^{P^{\text{gen}}} \to \text{Bun}_G^P \times \text{Bun}_G^{P^{\text{gen}}}).$$

As before, $\text{D}^1_{\text{indhol}}(\delta^+)$ is isomorphic to the restriction of $\text{D}^4_{\text{indhol}}(\delta^+)$. Hence we can rewrite (5.2) as

$$\text{D}^4_{\text{indhol}}(\delta^+) \circ \Delta_P^{\text{gen}} \circ i_P^!(K(P)).$$

Consider the correspondence

$$\epsilon : (\text{Bun}_M \times \text{Bun}_P^{-\text{gen}} \leftarrow \text{Bun}_M \times \text{Bun}_P^{-\text{gen}} \to \text{Bun}_G^P \times \text{Bun}_G^{P^{\text{gen}}}).$$

By the base-change isomorphisms, the functor $\text{D}^4_{\text{indhol}}(\delta^+) \circ \Delta_P^{\text{gen}} \circ i_P^!(K(P))$ is contained in the full subcategory

$$I(G \times G, P \times P^\circ) \in \text{D}(\text{Bun}_G^P \times \text{Bun}_G^{P^{\text{gen}}}).$$

Now this can be proved similarly to that in §2.2. Namely, one only needs to replace Lemma 2.2.5 by the following lemma, whose proof is similar.

Lemma 5.2.2. The functor

$$\Delta_P^{\text{gen}} : \text{D}_{\text{indhol}}(\overline{\text{Bun}}_G) \to \text{D}_{\text{indhol}}(\text{Bun}_G^{-\text{gen}} \times \text{Bun}_G^{P^{\text{gen}}})$$

sends objects contained in $\text{D}_{\text{indhol}}(\overline{\text{Bun}}_G \times U_P \times U_P)$ into objects contained in $I(G \times G, P \times P^\circ)$.

□ Proposition 1.4.2

6. Step 5

We have two results to prove in this step: Proposition-Construction 1.5.4 and Theorem 1.5.5 (Lemma 1.5.1 was proved in §5.1). Each subsection corresponds to a result.
6.1. Proof of Proposition-Construction 6.1.4

Goal 6.1.1. The correspondence

\[\psi_{P,Q} : (H_{M,G\text{-pos}}/Z_M \leftarrow (Y_{rel}/Z_M)_{\geq Q} \rightarrow \text{Bun}_{G,Z}Q) \]

is isomorphic to the composition of

\[\psi_{Q,\geq Q} : (H_{L,G\text{-pos}}/Z_L \leftarrow Y_{rel}/Z_L \rightarrow \text{Bun}_{G,Z}Q) \]

by a certain correspondence from \(H_{L,G\text{-pos}}/Z_L \) to \(H_{M,G\text{-pos}}/Z_M \).

Let us first recall the definition of the map \(Y^P_{rel} \rightarrow H_{M,G\text{-pos}} \).

Construction 6.1.2. By theorem 4.2.10, the closed subscheme \(\overline{M} \rightarrow \text{Vin}_{G,C}P \) is equal to \(s(C) \cdot \text{Vin}_{G,C}P \cdot s(C) \), where \(s : T_{ad} \rightarrow \text{Vin}_G \) is the canonical section, while the latter is the \(Z_M \)-equivariant map. Moreover, the map

\[P^\times \text{Vin}_{G,C}P \rightarrow M/\overline{M}/M \]

sends \(P^\times \text{Vin}^\text{Bruhat} \rightarrow P \rightarrow M/\overline{M}/M \). Hence we obtain a map

\[q_{P,\text{Vin}} : Y^P_{rel}/Z_M \rightarrow H_{M,G\text{-pos}}/Z_M. \]

Notation 6.1.3. Recall \(L \) is the Levi subgroup of \(Q \). We write \(Z_L \) for the center of \(L \). Let \(P_L = P \cap L \) and \(P^L_L = P^\times \cap L \) be the parabolic subgroups of \(L \) corresponding to \(P \) and \(P^\times \). Let \(L^P\text{-Bruhat} \) be the open Bruhat cell \(P^L\text{-Bruhat} \in L \).

Notation 6.1.4. The projection map

\[Y^P_{rel}/Z_M \rightarrow T^+_{ad,2}C_P/Z_M \cong T^+_{ad,2}P/T \]

induces a stratification on \(Y^P_{rel}/Z_M \) labelled by the poset \(\text{Par}_{2,P} \). As usual, for \(Q \in \text{Par}_{2,P} \) we use the notation:

\[(Y^P_{rel}/Z_M)_{\geq Q} \cong (Y^P_{rel}/Z_M) \times (T^+_{ad,2}P/T). \]

The stack

\[Y^P_{rel,2C} \cong Y^P_{rel,2C} \times T^+_{ad,2}C_P \]

inherits a \(Z_L \)-action from the \(Z_M \)-action on \(Y^P_{rel} \). Note that we have an isomorphism

\[Y^P_{rel,2C}/Z_L \cong (Y^P_{rel}/Z_M)_{\geq Q}. \]

Construction 6.1.5. By construction, we have

\[Y^P_{rel,2C} \cong \text{Maps}_{\text{gen}}(X, P^\times \text{Vin}_{G,2C}Q/P \rightarrow P^\times \text{Vin}^\text{Bruhat}_{P,C} Q/P), \]

where

\[\text{Vin}^\text{Bruhat}_{P,C} := \text{Vin}_{G,2C} \cap \text{Vin}_{G,2C}Q. \]

Notation 6.1.6. The open locus \(\text{Vin}^\text{Bruhat}_{P,C} \) is contained in \(\text{Vin}^\text{Bruhat}_{G,2C} \). Indeed, the former is the \((P^\times \times P) \)-orbit of the canonical section, while the latter is the \((Q^\times \times Q) \)-orbit. Hence the map

\[P^\times \text{Vin}_{G,2C}Q/P \rightarrow Q/\text{Vin}_{G,2C}Q \]

induces a \(Z_L \)-equivariant map \(Y^P_{rel,2C} \rightarrow Y^Q_{rel} \). Hence we obtain a map

\[\pi_{P,Q} : (Y^P_{rel}/Z_M)_{\geq Q} \cong Y^P_{rel,2C}/Z_L \rightarrow Y^Q_{rel}/Z_L. \]

\[\text{This } Z_M \text{-action on } \text{Vin}_{G,2C}P \text{ is induced by the } T \text{-action on } \text{Vin}_G. \]
By construction, we have the following commutative diagram

\[
\begin{array}{ccc}
Y_{\text{rel}}^P/Z_M & \xrightarrow{\varphi} & (Y_{\text{rel}}^P/Z_M)_{ZQ} \\
\downarrow^{p_{P,Vin}} & & \downarrow^{p_{Q,Vin}} \\
\text{Bun}_{G;} & \xrightarrow{\varphi} & \text{Bun}_{G;ZQ},
\end{array}
\]

where the left square is Cartesian.

Proposition-Construction 6.1.6. Consider the lift algebraic stack

\[W_{P,Q} := \text{Maps}_{\text{rel}}(X, P'_L\backslash \overline{\mathcal{L}}/P_L \triangleright P'_L\backslash L^{\text{Bruhat}}/P_L). \]

Then there exists a canonical commutative diagram

\[
\begin{array}{ccc}
Y_{\text{rel}}^P/Z_M & \xleftarrow{\varphi} & (Y_{\text{rel}}^P/Z_M)_{ZQ} \\
\downarrow^{\delta_{P,Vin}} & & \downarrow^{\delta_{Q,Vin}} \\
H_{M,G-\text{pos}}/Z_M & \xrightarrow{W_{P,Q}/Z_L} & H_{L,G-\text{pos}}/Z_L
\end{array}
\]

such that the right square in it is Cartesian.

Proof. Via the identification

\[P'_L\backslash \overline{\mathcal{L}}/P_L \cong B_{P'_L}(L\backslash \mathcal{L}/L) \times BP_L, \]

the open substack \(P'_L\backslash L^{\text{Bruhat}}/P_L \) of the LHS is contained in the open substack \(B_{P'_L} \times BL \times BL \times BP_L \) of the RHS. Hence we obtain a \(Z_L \)-equivariant schematic open embedding

\[W_{P,Q} \to \text{Bun}_{P'_L} \times H_{L,G-\text{pos}} \times \text{Bun}_{P'_L}. \]

In particular, we obtain a map

\[
(6.3) \quad W_{P,Q}/Z_L \to H_{L,G-\text{pos}}/Z_L.
\]

As explained in Construction 6.1.2, the map

\[\text{Vin}_{G, C_Q} \to \text{Vin}_{C, C_Q}, \quad x \mapsto s(C_Q) \cdot x \cdot s(C_Q) \]

factors through \(\overline{T} \). It is easy to see the obtained map \(\text{Vin}_{G, C_Q} \to \overline{T} \) intertwines the actions of \(Q^{-} \times Q \to L \times L \) and is \(Z_L \)-equivariant\(^4\). Moreover, the map

\[
P'_L \backslash \text{Vin}_{G, C_Q} / P \to P'_L \backslash \mathcal{L}/P_L
\]

sends the \(P \)-Bruhat cell to the \(P \)-Bruhat cell. Hence we obtain a \(Z_L \)-linear map \(Y_{\text{rel}}^P/C_Q \to W_{P,Q} \). By taking quotient, we obtain a map

\[
(6.4) \quad (Y_{\text{rel}}^P/Z_M)_{ZQ} \approx Y_{\text{rel}}^P/C_Q/Z_L \to W_{P,Q}/Z_L.
\]

Note that we have \(s(C_P) \cdot x \cdot s(C_P) = s(C_P) \cdot s(C_Q) \cdot x \cdot s(C_Q) \cdot s(C_P) \) for \(x \in \text{Vin}_{G,C_Q} \). Hence the composition

\[\text{Vin}_{G,C_Q} \to \text{Vin}_{C,C_Q} \to \overline{M} \]

factors through \(\overline{T} \). Since the above composition intertwines the action of \(P^{-} \times P \to M \times M \) and is \(Z_L \)-equivariant, the obtained map \(\overline{T} \to \overline{M} \) intertwines the actions of \(P'_L \times P_L \to M \times M \) and is \(Z_L \)-equivariant. Moreover, the map

\[
P'_L \backslash \mathcal{L}/P_L \to M \backslash \overline{M}/M
\]

sends the \(P \)-Bruhat cell into \(M \backslash M/M \). Hence we obtain a map

\[
(6.5) \quad W_{P,Q}/Z_L \to H_{M,G-\text{pos}}/Z_L \to H_{M,G-\text{pos}}/Z_M.
\]

\(^4\)When \(Q = G \), \(W_{P,G} \) is just the open Zastava stack. When \(Q = P \), \(W_{P,P} \) is \(H_{M,G-\text{pos}} \).

\(^5\)This \(Z_L \)-action on \(\text{Vin}_{G, C_Q} \) is induced by the \(T \)-action on \(\text{Vin}_C \).
It follows from constructions that the above maps (6.3), (6.4) and (6.5) fit into a commutative diagram (6.2). It remains to show its right square is Cartesian. We only need to show the maps
\[
\begin{align*}
P^+ \backslash \text{Vin}_{G,z C_Q} / P \to (Q^+ \backslash \text{Vin}_{G,z C_Q} / Q) \times (P_L \backslash L / P_L), \\
P^- \backslash \text{Vin}_{G,z C_Q} / P \to (Q^- \backslash \text{Vin}_{G,z C_Q} / Q) \times (P_L \backslash L^- \cdot \text{Bruhat} / P_L)
\end{align*}
\]
are isomorphisms. To prove the claim for the first map, we only need to show $\mathbb{B} P \cong \mathbb{B} Q \times_{\mathbb{B} L} \mathbb{B} P_L$, but this follows from the fact that $Q \to L$ is surjective. The claim for the second map follows from the fact that the maps
\[
\begin{align*}
P^+ \backslash \text{Vin}_{G,z C_Q} / P & \to M \! \setminus \! M / M \times T_{\text{ad}, z C_Q}, \\
Q^- \backslash \text{Vin}_{G,z C_Q} / Q & \to L \! \setminus \! L / L \times T_{\text{ad}, z C_Q}, \\
P_L \backslash L^- \cdot \text{Bruhat} / P_L & \to M \! \setminus \! M.
\end{align*}
\]
are all isomorphisms.

\[\square\text{Proposition-Construction 6.1.6}\]

6.1.7. Proof of Proposition-Construction [1.5.4] The desired correspondence is
\[
H_{M,G,\text{pos}} / Z_M \leftrightarrow W_{P,Q} / Z_L \to H_{L,G,\text{pos}} / Z_L.
\]
It satisfies the requirement because of (6.1) and (6.2).

\[\square\text{Proposition-Construction 1.5.4}\]

6.2. Proof of Theorem [1.5.5]

Goal 6.2.1. Consider the diagram
\[
\begin{align*}
H_{M,G,\text{pos}} / Z_M & \overset{p_{P, \text{Vin}}}{\leftarrow} \overset{\Psi_{P, \text{Vin}}}{\rightarrow} \overset{\Psi_{P, \text{Vin}}}{\rightarrow} \text{Bun}_{G,P} \\
H_{M,G,\text{pos}} / Z_M & \overset{q_{P, \text{Vin}}}{\leftarrow} \overset{q_{P, \text{Vin}}}{\rightarrow} \overset{q_{P, \text{Vin}}}{\rightarrow} \text{Bun}_{G, z C_P}.
\end{align*}
\]
Then
\[
q_{P, \text{Vin}} \circ p_{P, \text{Vin}} \circ \Psi_{P, \text{Vin}} \cong q_{P, \text{Vin},*} \circ p_{P, \text{Vin}}^! \circ \Psi_{P, \text{Vin}}
\]
on ind-holonomic objects.

The proof is similar to that of Theorem [1.2.2] hence we omit some details.

Let γ and $\overline{\gamma}$ be as in §3.3 Using the homomorphism
\[
\mathbb{G}_m \xrightarrow{\gamma} Z_M \to T_{\text{ad}} \overset{\nu^{-1} \cdot r}{\longrightarrow} T_{\text{ad}} \times T_{\text{ad}},
\]
we obtain a \mathbb{G}_m-action on $G \times G$, whose attractor, repellor and fixed loci are respectively given by $P^+ \times P$, $P \times P^+$ and $M \times M$.

On the other hand, consider the action
\[
\mathbb{G}_m \times \text{Vin}_{G,z C_P}, \ (s, x) \mapsto s(\overline{\gamma}(s)) \cdot x \cdot s(\overline{\gamma}(s)).
\]
This action can actually be extended to an \mathbb{A}^1-action using the same formula. Hence its attractor, repellor and fixed loci are respectively given by $\text{Vin}_{G,z C_P}$, \overline{M} and \overline{M}. Also, the attractor, repellor and fixed loci for the restricted action on $\text{Vin}_{G,z C_P}$ are respectively given by $\text{Vin}_{G,z C_P}$, M and M.

We claim the above \mathbb{G}_m-actions are compatible with the action $G \times G \sim \text{Vin}_{G,z C_P}$. Indeed, one only need to prove this claim for the restricted actions on $\text{Vin}_{G,z C_P} \times T_{\text{ad}}^+ T_{\text{ad}}$, which can be checked directly (see Lemma [6.2.3] below). As a corollary of this claim, we obtain an action (relative to \mathbb{A}^1) of the Drinfeld-Gaitsgory interpolation for $G \times G$ on that for $\text{Vin}_{G,z C_P}$.

Let $(\text{ActSch}_{\text{aff}})^{\text{col}}$ be the category defined similarly as $\text{ActSch}_{\text{aff}}^{\text{col}}$ (see Notation [3.3.14]) but we replace “algebraic groups” by “affine group schemes over an affine base scheme”. In other words, its objects
are $(H \sim Y)/S$, where S is an affine scheme, $H \to S$ is an affine group scheme and $Y \to S$ is an affine scheme equipped with an H-action. There is an obvious $\text{Sch}^\text{aff}_\text{ft}$-action on $(\text{ActSch}^\text{aff}_\text{ft})_{\text{rel}}$. By the previous discussion,

$$(G \times G \sim \text{Vin}_{G,G,C_p})_{/\text{pt}}.$$

is a G_m-module object. Then Example 3.2.6 provides a weakly $\text{Sch}^\text{aff}_\text{ft}$-enriched functor

$$\Theta(G \times G \sim \text{Vin}_{G,G,C_p}) : P_{\lambda, \mu} \to \text{Corr}((\text{ActSch}^\text{aff}_\text{ft})_{\text{rel}})_{\text{all, all}},$$

sending α^+ and α^- respectively to

$$(G \times G \sim \text{Vin}_{G,G,C_p}) \leftarrow ((P^- \times P \sim \text{Vin}_{G,G,C_p}) \to (M \times M \sim M),

(M \times M \sim M) \leftarrow ((P \times P^- \sim M) \to (G \times G \sim \text{Vin}_{G,G,C_p}).$$

Passing to quotients, we obtain a weakly $\text{Sch}^\text{aff}_\text{ft}$-enriched right-lax functor

$$\Theta(G \sim \text{Vin}_{G,C_p}) : P_{\lambda, \mu} \to \text{Corr}((\text{ActSch}^\text{aff}_\text{ft})_{\text{all, all}}).$$

It is easy to see it is strict at the composition $\alpha^+ \circ \alpha^-$. Moreover, we claim it factors through $\text{Corr}((\text{ActSch}^\text{aff}_\text{ft})_{\text{all, all}})$. To prove the claim, one first proves Fact 6.2.2 below, then uses it to deduce the desired claim from Lemma 3.3.8.

In the previous construction, we ignored the open Bruhat cell. If we keep tracking it, we would obtain a certain weakly $\text{Sch}^\text{aff}_\text{ft}$-enriched right-lax functor

$$P_{\lambda, \mu} \to \text{Corr}((\text{ArrSch}^\text{aff}_\text{ft})_{\text{all, all}}).$$

By taking Maps_{\text{gen}}(X, -) for it, we obtain a weakly $\text{Sch}^\text{aff}_\text{ft}$-enriched right-lax functor

$$\Theta : P_{\lambda, \mu} \to \text{Corr}((\text{PreSch}^\text{aff}_\text{ft})_{\text{all, all}})_{\text{open, all}}.$$

sending α^+ and α^- respectively to

$$\text{Vin}_{G,G,C_p} \leftarrow Y_{\text{rel}} \Rightarrow H_{M,G, - \text{pos}},

H_{M,G, - \text{pos}} \leftarrow \text{dfstr} \text{Vin}_{G,G,C_p} \Rightarrow \text{Vin}_{G,G,C_p}.$$

Also, Θ is strict at the composition $\alpha^+ \circ \alpha^-$.

As before, we can restrict to each connected component $H_{M,G, - \text{pos}}^{\lambda, \mu}$ of $H_{M,G, - \text{pos}}$ and obtain a Drinfeld pre-input

$$\Theta_{\lambda, \mu} : P_{\lambda, \mu} \to \text{Corr}((\text{PreSch}^\text{aff}_\text{ft})_{\text{all, all}})_{\text{open, all}}.$$

In fact, the right arms of the relevant correspondences are schematic.

Also, by taking quotients for the G_m-actions, we can obtain a Drinfeld input sending α^+ and α^- respectively to

$$\text{Vin}_{G,G,C_p}/G_m \leftarrow Y_{\text{rel}}^{P_{\lambda, \mu}}/G_m \Rightarrow H_{M,G, - \text{pos}}/G_m,

H_{M,G, - \text{pos}}/G_m \leftarrow \text{dfstr} \text{Vin}_{G,G,C_p}/G_m \Rightarrow \text{Vin}_{G,G,C_p}/G_m.$$

By Lemma 6.2.3 below, we see that the above G_m-action on $\text{Vin}_{G,G,C_p}/G_m$ can be obtained from the Z_M-actions by restriction along $2\gamma : G_m \to Z_M$. Hence Theorem 3.2.8 implies $q_{P,Vin}^{\lambda, \mu} \circ P_{P,Vin}^{\lambda, \mu}$ is left adjoint to

$$\prod_{\lambda, \mu} p_{P,Vin}^{\lambda, \mu} \circ q_{P,Vin}^{\lambda, \mu}.$$

Note that the above functor is also the right adjoint of $q_{P,Vin}^{\lambda, \mu} \circ P_{P,Vin}^{\lambda, \mu}$. Hence we obtain

$$q_{P,Vin}^{\lambda, \mu} \circ P_{P,Vin}^{\lambda, \mu} \cong q_{P,Vin}^{\lambda, \mu} \circ P_{P,Vin}^{\lambda, \mu}.$$

The equivalence $q_{P,Vin}^{\lambda, \mu} \circ P_{P,Vin}^{\lambda, \mu} \cong q_{P,Vin}^{\lambda, \mu} \circ P_{P,Vin}^{\lambda, \mu}$ can be obtained by exchanging the roles of α^+ and α^-.

□ [Theorem 1.5.5]
Fact 6.2.2. For a diagram

\[(H_1 \sim Y_1)/S_1 \rightarrow (H_2 \sim Y_2)/S_2 \leftarrow (H_3 \sim Y_3)/S_3\]

in \((\text{ActSch}^\text{aff})^\text{rel}\), if \(H_1, H_2, H_3\) and \(H_1 \times H_2 H_3\) are all flat over their base schemes, then the following square is Cartesian

\[
\begin{array}{ccc}
(Y_1 \times Y_2 Y_3)/(H_1 \times H_2 H_3) & \rightarrow & (Y_1/H_1) \times (Y_2 /H_2)(Y_3/H_3)
\
\downarrow & & \downarrow
\
\mathbb{B}(H_1 \times H_2 H_3) & \rightarrow & \mathbb{B}H_1 \times \mathbb{B}H_2 \mathbb{B}H_3.
\end{array}
\]

Lemma 6.2.3. Consider the actions

\[T_{\text{ad}} \sim \text{Vin}_G, \quad t \cdot x := g(t) \cdot x \cdot g(t),\]

\[T_{\text{ad}} \sim (G \times \text{Vin}_G \times G), \quad t \cdot (g_1, x, g_2) := (\text{Ad}_{t^{-1}}(g_1), g(t) \cdot x \cdot g(t), \text{Ad}_t(g_2)).\]

The map

\[G \times \text{Vin}_G \times G \rightarrow \text{Vin}_G, (g_1, x, g_2) \mapsto g_1 \cdot x \cdot g_2^{-1}\]

is equivariant for these actions.

Proof. We only need to prove the lemma after restricting to the subgroup of invertible elements in \(\text{Vin}_G\), which is given by \(G_{\text{enh}} := (G \times T)/Z_G\). Then we are done by a direct calculation. (Recall that the canonical section \(T/Z_G \rightarrow (G \times T)/Z_G\) is given by \(t \mapsto (t^{-1}, t)\).)

\[\Box \text{Lemma 6.2.3}\]

Lemma 6.2.4. Consider the following two \(T\)-actions on \(G \setminus \text{Vin}_G / G\):

(i) The action provided by Lemma 6.2.3 via the homomorphism \(T \rightarrow T_{\text{ad}}\).

(ii) The one obtained from the \(T\)-action on \(\text{Vin}_G\), which commutes with the \((G \times G)\)-action.

The action in (i) is isomorphic to the square of the action in (ii).

Proof. Recall that the subgroup of invertible elements in \(\text{Vin}_G\) is isomorphic to \(G_{\text{enh}} := (G \times T)/Z_G\). We have a short exact sequence \(1 \rightarrow G \rightarrow G_{\text{enh}} \rightarrow T_{\text{ad}} \rightarrow 1\). The canonical section \(g : T_{\text{ad}} \rightarrow \text{Vin}_G\) provides a splitting to the above sequence. Explicitly, this splitting is given by \(t \mapsto (t^{-1}, t)\). Note that the corresponding \(T_{\text{ad}} \times T_{\text{ad}}\) on \(G\) is the inverse of the usual adjoint action.

Consider the sequence:

\[1 \rightarrow G \times G \rightarrow G_{\text{enh}} \times G_{\text{enh}} \rightarrow T_{\text{ad}} \times T_{\text{ad}} \rightarrow 1.\]

Recall that the \((G \times G)\)-action on \(\text{Vin}_G\) is defined to be the restriction of the \((G_{\text{enh}} \times G_{\text{enh}})\)-action on \(\text{Vin}_G\). Hence the quotient stack \(G \setminus \text{Vin}_G / G\) inherits a \((T_{\text{ad}} \times T_{\text{ad}})\)-action. By the last paragraph, the action in (i) is obtained from this \((T_{\text{ad}} \times T_{\text{ad}})\)-action by restriction along the homomorphism

\[
a : T \rightarrow T_{\text{ad}} \times T_{\text{ad}}, \quad t \mapsto (t, t^{-1}).
\]

On the other hand, consider the center \(Z(G_{\text{enh}}) \times Z(G_{\text{enh}})\) of \(G_{\text{enh}} \times G_{\text{enh}}\). Then \(G_{\text{enh}} \times G_{\text{enh}}\)-action on \(\text{Vin}_G\) induces a \(Z(G_{\text{enh}}) \times Z(G_{\text{enh}})\)-action on \(G \setminus \text{Vin}_G / G\). By construction, this action factors through the homomorphism

\[
q : Z(G_{\text{enh}}) \times Z(G_{\text{enh}}) \rightarrow Z(G_{\text{enh}}), \quad (s_1, s_2) \mapsto s_1 s_2^{-1}.
\]

In summary, we obtain compatible actions on \(G \setminus \text{Vin}_G / G\) by

\[
Z(G_{\text{enh}}) \xrightarrow{\delta} Z(G_{\text{enh}}) \times Z(G_{\text{enh}}) \xrightarrow{p} T_{\text{ad}} \times T_{\text{ad}},
\]

where \(p\) is the composition \(Z(G_{\text{enh}}) \times Z(G_{\text{enh}}) \rightarrow G_{\text{enh}} \times G_{\text{enh}} \rightarrow T_{\text{ad}} \times T_{\text{ad}}\).

Recall that the homomorphism \(T \rightarrow (G \times T)/Z_G, t \mapsto (1, t)\) provides an isomorphism between \(T \simeq Z(G_{\text{enh}})\) and the \(T\)-action on \(\text{Vin}_G\) is defined by using this identification. Hence the square of the action in (ii) can be obtained from the \(Z(G_{\text{enh}}) \times Z(G_{\text{enh}})\)-action via the homomorphism

\[
T \simeq Z(G_{\text{enh}}) \xrightarrow{s \mapsto (s, s^{-1})} Z(G_{\text{enh}}) \times Z(G_{\text{enh}})
\]
(because its composition with \(q \) is the square map). Then we are done because the composition of this map by \(p \) is equal to \(a \).

\[\square \text{Lemma 6.2.4} \]

Appendix A. Theory of D-modules

We use the theory of 2-categories of correspondences developed in [GR17, Part III] to encode the theory of D-modules. We will use two types of this theory:

- We study all the D-modules and mainly work with the right (or standard) functors, i.e., \(\star \)-pullbacks and \(\star \)-pushforwards. See §[A.1.1]
- We study ind-holonomic D-modules and mainly work with the left functors, i.e. \(\star \)-pullbacks and \(\star \)-pushforwards. See §[A.1.2]

A.1.1. Standard functors

Consider the \((3,2)\)-category

\[\text{Corr}(\text{PreStk})_{\text{QCAD,all}}^{\text{open}} \]

defined as follows:

- Its objects are lift prestacks;
- The \((2,1)\)-category \(\text{Maps}_{\text{Corr}}(Y_1, Y_2) \) is the 1-full subcategory of \((\text{PreStk}_{\text{in}})_{Y_1 \times Y_2} \) where:
 - we restrict to those objects \(Y_2 \leftarrow Z \rightarrow Y_1 \) such that \(Z \rightarrow Y_2 \) is \(\text{QCAD} \);
 - we restrict to those morphisms \(Z_1 \rightarrow Z_2 \) in \((\text{PreStk}_{\text{in}})_{Y_1 \times Y_2} \) that are schematic open embeddings;
- the composition functor

\[\text{Maps}_{\text{Corr}}(Y_1, Y_2) \times \text{Maps}_{\text{Corr}}(Y_2, Y_3) \rightarrow \text{Maps}_{\text{Corr}}(Y_1, Y_3) \]

sends \(Y_2 \leftarrow U \rightarrow Y_1 \) and \(Y_3 \leftarrow V \rightarrow Y_2 \) to

\[Y_3 \leftarrow V \times U \rightarrow Y_1. \]

There exists\(^{47}\) a canonical functor

\[\text{Dmod}^{\star} : \text{Corr}(\text{PreStk})_{\text{QCAD,all}}^{\text{open,2-op}} \rightarrow \text{DGCat}_{\text{cont}}; \]

\[Y \mapsto \text{D}(Y), \quad (Y_2 \leftarrow Z \rightarrow Y_1) \mapsto (f \circ g : \text{D}(Y_1) \rightarrow \text{D}(Y_2)). \]

The content of the claim is:

- for any lift prestack \(Y \), there is a DG-category \(\text{D}(Y) \);
- for any morphism \(f : Y_1 \rightarrow Y_2 \), there is a \(\star \)-pullback functor \(f^! \);\(^{46}\)
- for any QCAD morphism \(f : Y_1 \rightarrow Y_2 \), there is a renormalized pushforward functor \(f_{\star} \) defined in [DG13];
- there are base-change isomorphisms for these \(\star \)-pullback and \(\star \)-pushforward functors;
- for any schematic open embedding \(f : Y_1 \rightarrow Y_2 \), there is an adjoint pair \((f^!, f_{\star})\);\(^{48}\)
- there are certain higher compatibilities for the above data.

As shown in loc.cit., for a safe map \(f \) \(^{49}\) \(f : Y_1 \rightarrow Y_2 \), the renormalized pushforward functor \(f_{\star} \) can be identified with the usual de-Rham pushforward functor \(f_* \). Therefore we keep the notation \(f_* \) and only use \(f_{\star} \) for non-safe map \(f \).

\[^{46} \text{This means for any finite type affine test scheme } S \rightarrow Y_2, \text{ the base-change } S \times_{Y_2} Z \text{ is a quasi-compact algebraic stack with affine diagonal map. Note that this condition is closed under compositions and base-changes. This condition is slightly stronger than that for QC\text{A maps defined in [DG13].} } \]

\[^{47} \text{This claim was made in [DG13, Remark 9.3.13] for QCA maps. A detailed construction is provided in the author’s thesis, see [Che21, Construction C.2.13].} \]

\[^{48} \text{A QCAD map } f \text{ is safe if the automorphism groups in Footnote \[46\] are unipotent. For example, the map } B_B \rightarrow B_T \text{ is safe, while } B_T \rightarrow \text{pt is not safe.} \]

\[^{49} \text{A QCAD map } f \text{ is safe if the automorphism groups in Footnote \[46\] are unipotent. For example, the map } B_B \rightarrow B_T \text{ is safe, while } B_T \rightarrow \text{pt is not safe.} \]
A.1.2. Holonomic D-modules. For any finite type affine scheme \(S \in \text{Sch}^{\text{aff}}_k \), we write \(D_{\text{indhol}}(S) \) for the full subcategory of \(D(S) \) generated by holonomic objects (under extensions and colimits).

For any lift prestack \(Y \), we write \(D_{\text{indhol}}(Y) \) for the full subcategory of \(D(Y) \) containing objects \(\mathcal{F} \) such that \(f^!(\mathcal{F}) \in D_{\text{indhol}}(S) \) for any map \(f : S \to Y \) with \(S \in \text{Sch}^{\text{aff}}_k \). Equivalently, we define

\[
D_{\text{indhol}}(Y) := \lim_{S \in \text{AffSch}_k} D_{\text{indhol}}(S),
\]

with the connecting functors given by \(!\)-pullbacks. An object in \(D_{\text{indhol}}(Y) \) is called an ind-holonomic object in \(D(Y) \).

The following results are either well-known or formal:

1. For any map \(f : Y_1 \to Y_2 \) between lift prestacks, the functor \(f^! \) preserves ind-holonomic objects. Also, the partially defined left adjoint \(f_* \) of \(f^! \) is well-defined on \(D_{\text{indhol}}(Y_1) \) and sends it into \(D_{\text{indhol}}(Y_2) \). Hence we have a functor

\[
D_{\text{indhol}} : \text{PreStk}_{\text{lift}} \to \text{DGCat}
\]

sending morphisms to \(!\)-pushforward functors.

2. For any lift prestack \(Y \), we have an equivalence

\[
D_{\text{indhol}}(Y) := \text{colim}_{S \in \text{AffSch}_k} D_{\text{indhol}}(S),
\]

with the connecting functors given by \(!\)-pullbacks. In particular, \(D_{\text{indhol}}(Y) \) is compactly generated by objects of the form \(g(\mathcal{F}) \), where \(g : S \to Y \) is an object in \(\text{AffSch}_k \) and \(\mathcal{F} \) is a compact object in \(D_{\text{indhol}}(S) \).

3. For any quasi-compact schematic map \(f : Y_1 \to Y_2 \) between lift prestacks, the functor \(f_* \) preserves ind-holonomic objects. Also, the partially defined left adjoint \(f^* \) of \(f_* \) is well defined on \(D_{\text{indhol}}(Y_2) \) and sends it into \(D_{\text{indhol}}(Y_1) \).

4. For any lift algebraic stacks, there is an equivalence

\[
D_{\text{indhol}}(Y) := \lim_{S \in \text{AffSch}_k} D_{\text{indhol}}(S),
\]

with the connecting functors given by \(*\)-pullbacks. This is implicit in [DG13] § 6.2.1-6.2.2.

5. For any map \(f : Y_1 \to Y_2 \) between lift algebraic stacks, there is a functor

\[
f^* : D_{\text{indhol}}(Y_2) \to D_{\text{indhol}}(Y_1)
\]

uniquely characterized by its compatibility with (4). Moreover, there exists a functor

\[
D_{\text{mod}}^{\text{indhol}} : \text{Corr}(\text{AlgStk}_{\text{cont}})_{\text{all}, \text{all}} \to \text{DGCat}_{\text{cont}}, \quad Y \mapsto D_{\text{indhol}}(Y).
\]

(\(Y_1 \leftarrow Z \to Y_2 \to (f \circ g)^* : D_{\text{indhol}}(Y_1) \to D_{\text{indhol}}(Y_2) \)).

We also have its \((\infty, 2)\)-categorical enrichment

\[
D_{\text{mod}}^{\text{indhol}} : \text{Corr}(\text{AlgStk}_{\text{cont}})_{\text{open}, \text{all}} \to \text{DGCat}_{\text{cont}}
\]

obtained by using the “no cost” extension in [GR17] Chapter 7, § 4.

6. For any stacky map \(f : Y_1 \to Y_2 \) between lift prestacks, (2) and (5) implies there is a functor \(f^* : D_{\text{indhol}}(Y_2) \to D_{\text{indhol}}(Y_1) \) equipped with base-change isomorphisms against \(!\)-pushforwards. In fact, by left Kan extension along

\[
\text{Corr}(\text{AlgStk}_{\text{cont}})_{\text{all}, \text{all}} \to \text{Corr}(\text{PreStk}_{\text{lift}})_{\text{all}, \text{Stacky}},
\]

we obtain from (A.3) a functor

\[
D_{\text{mod}}^{\text{indhol}} : \text{Corr}(\text{PreStk}_{\text{lift}})_{\text{all}, \text{Stacky}} \to \text{DGCat}_{\text{cont}}.
\]

\[49\]More details are provided in the author’s thesis, see [Che21] § C.5.]
It follows from (2) that its restriction on PreStk_{gen} \simeq \text{Corr}(\text{PreStk}_{\text{Hilf}})_{\text{all, iso}} can be identified with (A.2). We also have its “no cost” extension (A.5)

\[D\text{mod}_{\text{indhol}}^! : \text{Corr}(\text{PreStk}_{\text{Hilf}})_{\text{all, Stacky}} \to D\mathcal{G}\text{Cat}_{\text{cont}} \]

APPENDIX B. WELL-DEFINEDNESS RESULTS IN [Gai15]

B.1.1. Proof of Proposition 0.2.7 Let \(\widetilde{\text{Bun}}_P \) be the Drinfeld’s compactification constructed in [BG02]. Recall it is defined as

\[\widetilde{\text{Bun}}_P := \text{Maps}^\text{gen}(G(\overline{G\backslash U}/M \supset G(\overline{G\backslash U})/M), \]

where \(\overline{G\backslash U} \) is the affine closure of \(G/U \). By [Bar14, Remark 4.1.9], the map \(\text{Bun}_P \to \text{Bun}_P^\text{gen} \) factors as

\[\text{Bun}_P \xrightarrow{\tau_P} \text{Bun}_{\text{gen}}^\text{pr} \xrightarrow{\text{pr}_{\text{gen}}} \text{Bun}_P^\text{gen}, \]

and the restriction of the map \(\tau_P \) on each connected component of \(\widetilde{\text{Bun}}_P \) is proper. Also, the map \(\tau_P \) is obtained by applying \(\text{Maps}^\text{gen}(X, -) \) to the morphism

\[(G(\overline{G\backslash U}/M \supset G(\overline{G\backslash U})/M) \to (BG \leftrightarrow BP). \]

The above properness implies \(\tau_P \) is well-defined. On the other hand, it was proved in [DG16, § 1.1.6] that the composition

\[D(\widetilde{\text{Bun}}_P) \xrightarrow{j^!} D(\text{Bun}_P)^{q_\text{gen}} \xrightarrow{q_\text{gen}^!} D(\text{Bun}_M) \]

has a left adjoint isomorphic to

\[j_! \circ q_\text{gen}^!(-) \simeq j_!(k_{\text{Bun}_P}) \circ q_\text{gen}^!(\text{shift}), \]

where [shift] is a cohomological shift locally constant on \(\text{Bun}_M \). Combining the above two results, we obtain the well-definedness of \(\tau_P \).

To prove the second claim, we need to calculate \(i_P \circ \tau_P \circ q_\text{gen}^! \). Consider the diagram

\[
\begin{array}{ccc}
\text{Bun}_P & \xrightarrow{\text{pr}_1} & \text{Bun}_P \\
\downarrow{\text{pr}_2} & & \downarrow{i_P} \\
\widetilde{\text{Bun}}_P & \xrightarrow{\tau_P} & \text{Bun}_P^\text{gen}.
\end{array}
\]

By the base-change isomorphism, we have

\[i_P \circ \tau_P \circ q_\text{gen}^! \simeq \text{pr}_1 \circ \text{pr}_2. \]

A direct calculation shows

\[\text{Bun}_P \times_{\text{Bun}_P^\text{gen}} \widetilde{\text{Bun}}_P \simeq \text{Maps}^\text{gen}(X, P(\overline{G\backslash U}/M \leftrightarrow P(\overline{P\backslash U})/M). \]

Let \(\overline{M} \) be the closure of \(P/U \) in \(\overline{G\backslash U} \), then we have

\[\text{Maps}^\text{gen}(X, P(\overline{G\backslash U}/M \leftrightarrow P(\overline{P\backslash U})/M) \simeq \text{Maps}^\text{gen}(X, P(\overline{M}/M \leftrightarrow P(\overline{P\backslash U})/M). \]

Now the RHS is isomorphic to \(\text{Bun}_P \times_{\text{Bun}_M} H_{M,G,\text{pos}} \), where

\[H_{M,G,\text{pos}} := \text{Maps}^\text{gen}(X, M(\overline{M}/M \supset M\backslash M/M), \]

is the \(G \)-positive Hecke stack for \(M \)-torsors (see [Sch16, § 3.1.5]). Recall that the map

\[i : \text{Bun}_P \times_{\text{Bun}_M} H_{M,G,\text{pos}} \to \widetilde{\text{Bun}}_P \]

is bijective on geometric points, and the connected components of the source provide a stratification on \(\text{Bun}_P \) (known as the defect stratification).

We obtain

\[i_P \circ \tau_P \circ q_\text{gen}^! \simeq \text{pr}_1 \circ j_! \circ q_\text{gen}^!. \]
Hence it remains to show the functor \(i^{!} \circ j_{!} \circ q_{P}^{*} \) factors through
\[
\text{(B.2)} \quad D(H_{M,G, \text{pos}}) \xrightarrow{\ast \text{-pull}} D(Bun_{P, \text{BunM}} \times H_{M,G, \text{pos}}).
\]
By (B.1), we only need to show \(i^{!} \circ j_{!}(k_{BunP}) \) is contained in the image of (B.2). However, this is well-known and can be proved using the Hecke actions in [BG02] §6.2.

□[Proposition 0.2.7]

B.1.2. Proof of Proposition 0.2.11 Let \(M \) (resp. \(L \)) be the Levi quotient group of \(P \) (resp. \(Q \)). Let \(P_{L} \) be the image of \(P \) in \(L \), which is a parabolic subgroup of \(L \). Consider the correspondence
\[
\text{Bun}_{L} \leftarrow \text{Bun}_{P_{L}} \rightarrow \text{Bun}_{M}
\]
and the corresponding geometric Eisenstein series functor
\[
\text{Eis}_{P_{L}!, \dagger} : D(\text{Bun}_{M}) \rightarrow D(\text{Bun}_{L})
\]
defined in [BG02]. Recall that it is defined as the \(\ast \text{-pull-l}-\text{push} \) along the above correspondence.

It is easy to check the composition\(^{\text{\footnotesize proof}}\) of the correspondences
\[
\text{Bun}_{L} \leftarrow \text{Bun}_{P_{L}} \rightarrow \text{Bun}_{M},
\]

\[
\text{Bun}_{G}^{\text{gen}} \leftarrow \text{Bun}_{Q} \rightarrow \text{Bun}_{L}
\]
is isomorphic to the composition of the correspondences
\[
\text{Bun}_{G}^{\text{gen}} \leftarrow \text{Bun}_{P}^{\text{gen}} \leftarrow \text{Bun}_{Q} \rightarrow \text{Bun}_{L}.
\]

Hence by the base-change isomorphisms, we have
\[
\text{(B.3)} \quad p_{P=Q, !}^{\text{enh}} \circ i_{P, !} \circ q_{P}^{*} \simeq i_{Q, !} \circ q_{Q}^{*} \circ \text{Eis}_{P_{L}!, \dagger}.
\]
In particular, the LHS is well-defined. Hence by Remark 0.2.9, \(p_{P=Q, !}^{\text{enh}} \) is well-defined. This proves (1).

To prove (2), since \(I(G, P) \) is compactly generated (see Remark 0.2.9), we only need to prove \(\text{Eis}_{P=Q}^{\text{enh}} \) preserves compact objects. By Remark 0.2.9 again, it suffices to prove \(\text{Eis}_{P=Q}^{\text{enh}} \circ i_{M, !} \) preserves compact objects. By (B.3), we have
\[
\text{Eis}_{P=Q}^{\text{enh}} \circ i_{M, !} \simeq i_{L, !} \circ \text{Eis}_{P_{L}!, \dagger}.
\]
Then we are done because both \(i_{L, !} \) and \(\text{Eis}_{P_{L}!, \dagger} \) preserves compact objects.

□[Proposition 0.2.11]

APPENDIX C. D-MODULES ON STACKS STRATIFIED BY POWER SETS

We begin with the following definition.

Definition C.1.1. Let \(Y \) be an algebraic stack and \(I \) be a finite set. A stratification of \(Y \) labelled by the power poset \(P(I) \) is an assignment of open substacks \(U_{i} \subset Y \) for any \(i \in I \).

The above definition coincides with the usual one in the literature because of the following construction.

Construction C.1.2. Let \(Y \) be as in Definition C.1.1 For any object \(J \in P(I) \), we define \(i_{J} : Y_{J} \rightarrow Y \) to be the reduced locally closed substack of \(Y \) given by
\[
i_{J}(\bigcup_{j \in J} U_{j}) - (\bigcup_{i \in I \setminus J} U_{i}).
\]
We call \(Y_{J} \) the stratum labelled by \(J \). Note that every geometric point of \(Y \) is contained in exactly one stratum.

For any object \(J \in P(I) \), there is a unique open substack \(Y_{\leq J} \subset Y \) whose geometric points are exactly those contained in \(\bigcup_{K \geq J} Y_{K} \). Similarly, we define the reduced closed substack \(Y_{\leq J} \).

\(^{50}\text{See Appendix A for the definition of compositions of correspondences.}\)
Note that the stratum Y_I is an open substack of Y. Hence we also write $j_I := i_I$ for this open embedding.

Also note that U_i can be recovered as $Y_{Z(i)}$.

Example C.1.3. Let Y be a finite type scheme and $\{f_i\}_{i \in I}$ be regular functions on Y. Then we obtain a stratification of Y labelled by $P(I)$ with U_i given by the non-vanishing locus of f_i. In particular, the coordinate functions induce a stratification of the affine space A^I labelled by $P(I)$. This stratification is known as the coordinate stratification.

Remark C.1.4. Since the theory of D-modules is insensitive to non-reduced structures, in this paper, we also use the notations although it is not necessarily reduced.

For example, if we have a map $Y \to Z$ and a stratification of Z labelled by $P(I)$, then we obtain a stratification of Y labelled by $P(I)$ by pulling back the open substacks. We often write $Y_J := Y \times_Z Z_J$ although it is not necessarily reduced.

Definition C.1.5. Let Y be an algebraic stack stratified by a power poset $P(I)$. We define

$$\text{Funct}(P(I), D_{\text{indhol}}(Y)) \subset \text{Funct}(P(I), D_{\text{indhol}}(Y))$$

to be the full subcategory consisting of those functors $F : P(I) \to D(Y)$ such that $F(J)$ is !-extended from the stratum Y_J.

Lemma C.1.6. Let Y be an algebraic stack stratified by a power poset $P(I)$. The functor

$$C_Y : \text{Funct}(P(I), D_{\text{indhol}}(Y))_! \to D_{\text{indhol}}(Y),$$

$$F \mapsto \text{coFib}(\colim_{J \in I} F(J) \to F(I))$$

is an equivalence. Also, its inverse sends an object $\mathcal{F} \in D_{\text{indhol}}(Y)$ to a certain functor

$$P(I) \to D_{\text{indhol}}(Y), J \mapsto i^*_J \circ i^*_J(\mathcal{F})[|J| - |I|].$$

Proof. First note that the second claim follows from the first one because

$$i^*_K(\text{coFib}(\colim_{J \in I} F(J) \to F(I))) = i^*_K(F(K))[|J| - |K|].$$

It remains to show C_Y is an equivalence. The case $I = \{\ast\}$ is well-known. The general case can be proved by induction as follows. Suppose $I = I' \sqcup \{a\}$ and I is nonempty. Note that apart from the embedding $P(I') \subset P(I)$, we also have a map

$$P(I') \to P(I), J \mapsto J' \coloneqq J \sqcup \{a\}.$$

The open substacks $\{U_i\}_{i \in I'}$ provide a stratification of Y labelled by $P(I')$. We use the notation Z to denote the same stack Y equipped with this new stratification. For any $K \in P(I')$, the stratum Z_K inherits a stratification by $P(I')$. Since Z_K is isomorphic to Y_K and small stratum is isomorphic to Y_K. Consider the functor

$$A : \text{Funct}(P(I), D_{\text{indhol}}(Y))_! \to \text{Funct}(P(I'), D_{\text{indhol}}(Z))_!, F \mapsto A(F),$$

where $A(F)(K) \coloneqq \text{coFib}(F(K) \to F(K'))$. Note that this is well-defined, i.e. $A(F)(K)$ is indeed a !-extension from Z_K. Moreover, A is an equivalence by the $I = \{\ast\}$ case of the lemma (applying to each Z_K).

Hence by induction hypothesis, $C_Z \circ A$ is also an equivalence. It remains to show $C_Y \simeq C_Z \circ A$. Note that we have the following pushout diagram

$$\begin{array}{ccc}
\colim_{K \in I'} F(K) & \longrightarrow & \colim_{J \in I, J \subset I'} F(J) \\
\downarrow & & \downarrow \\
\colim_{K \in I'} F(K) & \longrightarrow & \colim_{J \in I} F(J),
\end{array}$$
which is obtained by writing the simplicial nerve of $P(I)\setminus\{I\}$ as a pushout. By cofinality, the above diagram is equivalent to

\[
\begin{array}{ccc}
\text{colim}_{K \in P} F(K) & \longrightarrow & \text{colim}_{K \in P} F(K') \\
\downarrow & & \downarrow \\
F(I) & \longrightarrow & \text{colim}_{J \in I} F(J).
\end{array}
\]

Then we have

\[
\text{coFib}(\text{colim}_{J \in I} F(J) \to F(I))
\cong \text{coFib}(\text{coFib}(\text{colim}_{K \in P} F(K) \to F(K')) \to \text{coFib}(F(I') \to F(I)))
\cong \text{coFib}(\text{colim}_{K \in P} (\text{coFib}(F(K) \to F(K'))) \to \text{coFib}(F(I') \to F(I)))
\cong \text{coFib}(\text{colim}_{K \in P} A(F)(K) \to A(F)(I'))
\]
as desired. This proves the claim.

\[\square\text{Lemma C.1.6}\]

The above lemma implies

Corollary C.1.7. Let Y be an algebraic stack stratified by a power poset $P(I)$. The functor

\[J_Y : \text{Fun}(P(I), D_{indhol}(Y)) \to D_{indhol}(Y_I), \ F \mapsto j_I^* \circ F(I)\]

has a right adjoint sending an object $\mathcal{F} \in D_{indhol}(Y_I)$ to a certain functor

\[G_{\mathcal{F}, Y}^* : P(I) \to D_{indhol}(Y), \ J \mapsto i_{J!*} \circ i_J^* \circ j_{I!*}(\mathcal{F})[[J]-|I|].\]

Proof. Follows from the fact that $J_Y \cong j_I^* \circ C_Y$.

\[\square\text{Corollary C.1.7}\]

Remark C.1.8. Note that the functor $G_{\mathcal{F}, Y}^*$ sends the arrow $J \subset I$ to a morphism

\[i_{J!*} \circ i_J^* \circ j_{I!*}(\mathcal{F})[[J]-|I|] \to i_{I!*}(\mathcal{F}).\]

Applying i_J^* to this map, we obtain a map

\[i_J^* \circ j_{I!*}(\mathcal{F})[[J]-|I|] \to i_J^* \circ i_{I!*}(\mathcal{F}).\]

Note that this map is invertible if $|J| = |I| - 1$, but not for general J.

Lemma C.1.9. Let Y be an algebraic stack stratified by a power poset $P(I)$ and $J \in P(I)$. Consider the maps

\[Y_I \overset{j_{I,J}}{\longrightarrow} Y_{J,J}^{2J} \overset{j_{J,J}}{\longrightarrow} Y.\]

For any $\mathcal{F} \in D_{indhol}(Y_I)$, we have

\[\text{coFib}(\text{colim}_{J \in K \in P} G_{\mathcal{F}, Y}^*(K) \to G_{\mathcal{F}, Y}^*(I)) \cong (j_{J,J})_!(j_{J,J})^*(\mathcal{F}).\]

Proof. The case $J = I$ follows from definition. Indeed, the LHS is given by

\[C_Y \circ (J_Y)_! \circ (j_{J,J})^*(\mathcal{F}).\]

In the general case, note that both sides are contained in the image of the functor $(j_{J,J})_*$. Hence we only need to show

\[\text{coFib}(\text{colim}_{J \in K \in P} j_{J,J}^* \circ G_{\mathcal{F}, Y}^*(K) \to j_{J,J}^* \circ G_{\mathcal{F}, Y}^*(I)) \cong (j_{J,J})_*(\mathcal{F}).\]

Consider the open substack $Y_{J,J}$. It inherits a stratification by the poset $P(I-J)$ with $(Y_{J,J})_K \simeq Y_{J \cup K}$. Hence we also have a functor

\[G_{\mathcal{F}, Y_{J,J}}^* : P(I-J) \to D_{indhol}(Y_{J,J}).\]
It follows from construction that this functor is isomorphic to
\[P(I-J) \xrightarrow{\cup J} P(I) \xrightarrow{G_{x,y}^*} \text{D}_{\text{indhol}}(Y) \xrightarrow{\varphi_I} \text{D}_{\text{indhol}}(Y_{I,J}). \]
Hence we only need to show
\[\text{coFib}(\varprojlim_{K \subseteq I-J} G_{x,y}^*; K) \rightarrow G_{x,y}^*; (I-J) \simeq (j_{I,J})_*\mathcal{F}. \]
In other words, we have reduced the lemma to the case \(J = I \).

\[\square \text{[Lemma C.1.9]} \]

APPENDIX D. THE GROUP SCHEME \(\tilde{G} \)

Consider the \((G \times G)\)-action on \(\text{Vin}_G \). Note that it preserves the fibers of \(\text{Vin}_G \rightarrow T_{ad}^+ \). We write \(\tilde{G} \) for the corresponding stabilizer of the canonical section \(s : T_{ad}^+ \rightarrow \text{Vin}_G \). In this appendix, we review some results about \(\tilde{G} \).

We begin by reviewing some facts:

Fact D.1.1. We have the following fact \[^{[1]}\]
1. \(\tilde{G} \) is a closed subgroup of \(G \times G \times T_{ad}^+ \) (relative to \(T_{ad}^+ \)), whose fiber at \(C_P \) is
 \[\tilde{G}_{C_P} \simeq P \times P^\times. \]
2. By \[^{[DG16]}\] Corollary D.5.4, \(\tilde{G} \) is smooth over \(T_{ad}^+ \), and we have
 \[(\text{pt} \sim \mathbb{B}G \times \mathbb{B}G) \leftarrow (T \sim \mathbb{B}\tilde{G}) \rightarrow (T \sim T_{ad}^+). \]
3. By (2), the \(T \)-action on \(\text{Vin}_G \) (which commutes with the \(G \times G \)-action) induces a diagram between group actions:
 \[(pt \sim \mathbb{B}G \times \mathbb{B}G) \leftarrow (T \sim \mathbb{B}\tilde{G}) \rightarrow (T \sim T_{ad}^+). \]
4. \(\tilde{G} \) contains the locally closed subscheme
 \[\Gamma : G \times T_{ad} \rightarrow G \times G \times T_{ad}^+, (g,t) \mapsto (g,\text{Ad}(g),t). \]
5. \(\tilde{G} \) is preserved by the action
 \[(T_{ad} \times T_{ad}) \sim (G \times G \times T_{ad}^+), (t_1,t_2) \cdot (g_1,g_2,s) \mapsto (\text{Ad}_{t_1}(g_1),\text{Ad}_{t_2}(g_2),t_1 \cdot s \cdot t_2^{-1}). \]

Warning D.1.2. The \(T \)-action on \(\text{Vin}_G \) does not induce a \(T \)-action on \(\tilde{G} \) because this action does not preserve the canonical section \(s : T_{ad}^+ \rightarrow \tilde{G} \).

The following result generalizes \[^{[DG16]}\] Proposition D.6.4:

Lemma D.1.3. \(\tilde{G} \) is isomorphic to the closure of the locally closed embedding
\[\Gamma : G \times T_{ad} \rightarrow G \times G \times T_{ad}^+, (g,t) \mapsto (g,\text{Ad}(g),t). \]

Proof. Let \(\overline{G} \) be the desired closure. Hence we obtain a closed embedding \(\overline{G} \rightarrow \tilde{G} \). Since \(\tilde{G} \) is reduced, it remains to show \(\overline{G} \rightarrow \tilde{G} \) is surjective. Note that \(\overline{G} \) is also preserved by the action in Fact D.1.1(5).
Hence we only need to check the fiber of \(\overline{G} \rightarrow \tilde{G} \) at \(C_P \in T_{ad}^+ \) is surjective. Then we are done by \[^{[DG16]}\] Proposition D.6.4.

\[\square \text{[Lemma D.1.3]} \]

Lemma D.1.4. The closed subscheme
\[\tilde{G}_{\leq P} := \tilde{G} \times_{T_{ad}^+} T_{ad}^{\leq P} \rightarrow G \times G \times T_{ad}^+ \]
is contained in \(P \times P^\times \times T_{ad}^{\leq P}. \)

[^{51}(1) and (2) are well-known, (4) and (5) follow from the identification \(\text{Vin}_G \times_{\text{Vin}_G} T_{ad} \simeq (G \times T)/Z_G. \)}
We write \[Q\]

Proof. Using the action in Fact D.1.1(5), we only need to show \(\tilde{G}_{C_Q}\) is contained in \(P \times P^*\) for any \(Q \in P\). But this is obvious.

\[\square\text{Lemma D.1.4}\]

Lemma D.1.5. We write \(\tilde{G}_{C_P} := \tilde{G} \times_{T^*_{ad, C_P}} T^*_{ad, C_P}\). We have:

- (1) The closed subscheme \(P^- \times \tilde{G}_{C_P} \rightarrow P^- \times G \times T^*_{ad, C_P}\) is contained in \(P^- \times P^* \times T^*_{ad, C_P}\).

- (2) The composition

\[
P^- \times \tilde{G} \times T^*_{ad, C_P} \rightarrow P^- \times P^* \times T^*_{ad, C_P} \xrightarrow{pr_{23}} P^- \times T^*_{ad, C_P}
\]

is an isomorphism, where the first map is obtained by (1).

Warning D.1.6. The similar statement for \(pr_{13}\) is false.

Proof. We first prove (1). Using the action in Fact D.1.1(5), we only need to check the similar claim at any \(C_P \in T^*_{ad, C_P}\). But this is obvious.

Similarly, it is easy to see the map \(\tilde{G}_{C_P}\) induces isomorphisms between fibers at any closed point of \(T^*_{ad, C_P}\). To prove (2), we only need to show \(P^- \times G \times T^*_{ad, C_P}\) is smooth over \(T^*_{ad, C_P}\).

We claim \(P^- \times G \times T^*_{ad, C_P}\) and \(\tilde{G}_{C_P}\) are transversal in \(G \times G \times T^*_{ad, C_P}\). Indeed, by the last paragraph, the dimension of any irreducible component of their intersection is at most \(\dim(P^-) + \dim(T^*_{ad, C_P})\). But this number is equal to

\[
\dim(P^-) + \dim(\tilde{G}_{C_P}) - \dim(G \times G \times T^*_{ad, C_P}).
\]

This proves the transversity. In particular, we obtain that \(P^- \times G \times T^*_{ad, C_P}\) is smooth.

It remains to show \(f : P^- \times G \times T^*_{ad, C_P} \rightarrow T^*_{ad, C_P}\) induces surjections between tangent spaces. Note that the fibers of this map is smooth and of dimension \(\dim(P^-)\). Hence at any closed point \(x\) of the source, we have

\[
\dim(\ker(df_x)) = \dim(P^-) = \dim(P^- \times \tilde{G} \times T^*_{ad, C_P}) - \dim(T^*_{ad, C_P}).
\]

This implies \(df_x\) is surjective.

\[\square\text{Lemma D.1.5}\]

Lemma D.1.7. Consider the \((P^- \times G)\)-action on \(Vin_{G, C_P}\). Its stabilizer for the canonical section is \((P^- \times G)\-\tilde{G}_{C_P}\). Then the map

\[
(P^- \times G \times T^*_{ad, C_P})/(P^- \times \tilde{G}_{C_P}) \rightarrow Vin_{G, C_P}
\]

is an open embedding.

Proof. We claim the LHS is a smooth scheme. By Lemma D.1.5 there is an isomorphism (D.3)

\[
P^- \times \tilde{G}_{C_P} \simeq P^- \times T^*_{ad, C_P}
\]

between group schemes over \(T^*_{ad, C_P}\). Moreover, the projection map \(P^- \times G \times T^*_{ad, C_P} \rightarrow G \times T^*_{ad, C_P}\) intertwines the actions of (D.3). Hence we obtain a map

\[
(P^- \times G \times T^*_{ad, C_P})/(P^- \times \tilde{G}_{C_P}) \rightarrow (G \times T^*_{ad, C_P})/(P^- \times T^*_{ad, C_P}) \simeq G/P^- \times T^*_{ad, C_P}.
\]

Since \(P^- \times G \times T^*_{ad, C_P} \rightarrow G \times T^*_{ad, C_P}\) is affine and smooth, the above map is also affine and smooth. This proves the claim on smoothness. Then the lemma follows from the fact that both sides of (D.3) have the same dimension and that this map is injective on the level of closed points.

\[\square\text{Lemma D.1.7}\]
Corollary D.1.8. The map \(B(P^* \times G) \to B P^* \times B \tilde{G} \) is a schematic open embedding.

Proof. Follows from Lemma [D.1.7] by taking quotients for the \((P^* \times G)\)-actions. \[\square\]