
LECTURE II: δ-RINGS

Fix a prime p. In this lecture, we discuss some aspects of the theory of δ-rings. This theory
provides a good language to talk about rings with a lift of Frobenius modulo p. Some of the material
discussed below can be found in [1, 2, 3].

1. Definition and examples

To motivate the definition of a δ-ring, note that if A is a commutative ring equipped with a map
φ : A → A that is a lift for Frobenius on A/p, then for each element f ∈ A, we have an equation
of the form

φ(f) = fp + pδ

in A. If A is p-torsion free, then δ = δ(f) is uniquely determined by the preceding formula, so we can
regard δ(−) as an endomorphism of the set A. Moreover, the fact that φ(−) is a ring homomorphism
can be encoded in terms of the behaviour of δ(−) under addition and multiplication. If A is not
necessarily p-torsionfree, it is better record δ(−) instead of φ(−) as δ(−) records why φ(−) is a lift
of Frobenius. This motivates the following:

Definition 1.1 (Joyal). A δ-ring is a pair (A, δ) where A is a commutative ring δ : A → A is a
map of sets with δ(0) = δ(1) = 0, and satisfying the following two identities

δ(xy) = xpδ(y) + ypδ(x) + pδ(x)δ(y)

and

δ(x+ y) = δ(x) + δ(y) +
xp + yp − (x+ y)p

p
= δ(x) + δ(y)−

p−1∑
i=1

1

p

(
p

i

)
xiyp−i.

There is an evident category of δ-rings. If the δ-structure on a ring A is clear from context, we
often suppress it from the notation and simply call A a δ-ring. In the literature, a δ-structure is
often called a p-derivation.

Before giving examples, let us give the obligatory lemma justifying the previous discussion.

Lemma 1.2. Let A be a commutative ring.

(1) If δ : A→ A provides a δ-structure on A, then the map φ : A→ A given by φ(f) = fp+pδ(f)
defines an endomorphism of A that is a lift of the Frobenius on A/p.

(2) When A is p-torsionfree, the construction in (1) gives a bijective correspondence between
δ-structures on A and Frobenius lifts on A.

From now on, given a δ-ring A, we usually write φ : A → A for the associated Frobenius map.
Note that the multiplicative identity for δ can be written asymmetrically as

δ(xy) = φ(x)δ(y) + ypδ(x). (1)

This form is often convenient in computations.

Proof. It is elementary to prove (1), i.e., to check φ is a ring homomorphism. Let us give the proof
for additivity.

φ(f + g) = (f + g)p + pδ(f + g) = (f + g)p + pδ(f) + pδ(g) + fp + gp − (f + g)p = φ(f) + φ(g).
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For (2), as A is p-torsionfree, the formula φ(f) = fp + pδ uniquely defines δ = δ(f) given φ, so
it suffices to show that the function δ(−) defined this way satisfies the relevant identities, which is
easy to do by hand. �

The following lemma is very useful in computations.

Lemma 1.3. Let A be a δ-ring. Then φ : A → A is a δ-map, i.e., φ(δ(x)) = δ(φ(x)) for any
x ∈ A.

Proof. We give the proof in the p-torsionfree case; the general case can be reduced to this one by

Lemma 2.5 below. When A is p-torsionfree, we have δ(x) = φ(x)−xp
p , so writing out δ(φ(x)) and

using that φ is a ring homomorphism gives the required identity. �

Example 1.4. As a p-torsionfree ring A with a lift φ of Frobenius is a δ-ring, we obtain many easy
examples such as:

(1) The ring Z with φ being the identity map. Explicitly, we have δ(n) = n−np

p . In fact, it is

not difficult to see that this is the initial object in the category of δ-rings: the identities on
δ in a δ-ring A force the map Z→ A to be compatible with δ.

(2) The ring Z[x] with φ determined by φ(x) = xp + pg(x) for any g(x) ∈ Z[x].

(3) For any perfect field k of characteristic p, the ring W (k) of Witt vectors of k with φ being
the standard lift of Frobenius. In this case, note that there is a unique lift of Frobenius, so
W (k) admits only one δ-structure.

(4) If A is a Z[1/p]-algebra, then any endomorphism φ of A provides a δ structure on A as the
condition that φ lift Frobenius on A/p is vacuously true.

It is slightly non-trivial to give examples of δ-rings with p-torsion, but they do exist. We shall later
give a systematic source of examples via the Witt vector construction. For now, we simply mention
one example:

(5) There is a unique δ-structure on the ring Z[x]/(xp, px) such that δ(x) = 0.

The next lemma shows that there are no p-power torsion δ-rings and its proof justifies the
terminology “p-derivation” for the δ operator: it lowers p-adic order of vanishing by 1.

Lemma 1.5. There is no nonzero δ-ring A such that pn = 0 in A for some n ≥ 1.

Proof. Assume such a δ-ring A exists. Then A is a Z(p)-algebra. We shall check the following:

(∗) For any u ∈ Z∗(p) and m ≥ 1, we have δ(pmu) = pm−1v for some v ∈ Z∗(p).

This implies the lemma by induction: if pm = 0 in A, then δm(pm), which is a unit in A by (∗), is
also δm(0) = 0, whence A = 0.

To prove (∗), we first observe that (∗) holds true when u = 1 simply because φ is identity on Z:

δ(pm) =
φ(pm)− pmp

p
=
pm − pmp

p
= pm−1(1− pmp−m),

which has the required form. For the general form of (∗), using (1) and the fact that φ must be
the identity on powers of p, we get

δ(pmu) = pmδ(u) + upδ(pm) = pmδ(u) + pm−1upw,

where w is a unit in Z∗(p) by the previous case. Simplifying, this gives

δ(pmu) = pm−1(upw + pδ(u)).

So we must show that v = upw + pδ(u) is in Z∗(p). But this is clear: up and w are units by

construction, while pδ(u) lies in the Jacobson radical. �
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Remark 1.6. Specifying a δ-structure on a ring A is the same as specifying the structure of a
p-typical λ-ring. We do not elaborate on this here, but it motivates the following terminology: an
element x ∈ A has rank 1 if δ(x) = 0. In this case, we have φ(x) = xp.

2. The category of δ-rings

We want to explain some basic constructions with δ-rings. For this, it is useful to have an
alternate perspective on the δ-ring structure.

Construction 2.1 (The truncated Witt vector functor). For any ring A, the ring W2(A) of p-
typical length 2 Witt vectors is defined as follows: we have W2(A) = A × A as sets, and addition
and multiplication are defined via

(x, y) + (z, w) := (x+ z, y+w+
xp + zp − (x+ z)p

p
) and (x, y) · (z, w) = (xz, xpw+ zpy+ pyw).

Ignoring the second component gives a ring homomorphism ε : W2(A) → A. It is immediate from
the definitions that specifying a δ-structure on A is the same as specifying a ring map w : A →
W2(A) such that ε ◦w = id: the correspondence attaches the map w(x) = (x, δ(x)) to a δ-structure
δ : A→ A on A.

Remark 2.2. If A is a p-torsionfree ring, then W2(A) can also be defined as the fibre product

of the canonical map A
can−−→ A/p with the map A

can−−→ A/p
φ−→ A/p, where φ is the Frobenius.

Explicitly, this identification is given by sending (x, y) ∈ W2(A) to the pair (xp + py, x) ∈ A × A,
noting that xp+py and φ(x) agree in A/p. We may thus view Spec(W2(A)) as obtained by glueing
two copies of Spec(A) using the Frobenius on Spec(A/p) ⊂ Spec(A). Note that it is evident from
this interpretation that specifying a map A → W2(A) splitting the projection down to A is the
same as specifying a Frobenius lift on A.

Lemma 2.3 (Limits and colimits). The category of δ-rings has all limits and colimits, and these
commute with the forgetful functor to commutative rings.

Proof. Fix a diagram {Ai} of δ-rings. It is easy to see that there is a unique δ-structure on
limiAi compatible with the δ-structures on each Ai via the projection. For colimits, we use the
description via the truncated Witt vectors. Given a diagram {Ai} as before, the maps Ai →W2(Ai)
from Construction 2.1 encoding the δ-structure are compatible in i. Taking colimits, we get a
map colimAi → colimiW2(Ai). Composing with the natural map colimiW2(Ai) → W2(colimiA)
coming from functoriality of W2(−), we get a map colimiAi → W2(colimiAi). It is easy to see
that composing this map with the projection W2(colimiAi)→ colimiAi gives the identity map, so
colimiAi acquires a δ-structure. One checks that this construction provides the desired colimit. �

Remark 2.4. Combining Lemma 2.3 with the adjoint functor theorem, we learn that the forgetful
functor from δ-rings to commutative rings has both a left adjoint and a right adjoint. The left adjoint
provides a notion of a “free δ-ring” Z{S} on a set S: apply the left adjoint to the polynomial ring
Z[{xs}s∈S ]. The right adjoint is given by the Witt vector functor [3] (but we won’t be using this
fact in any essential way). In particular, for any commutative ring A, the ring W (A) of Witt vectors
of A is naturally a δ-ring; this provides many examples of δ-rings containing p-torsion elements as
W (A) for any non-reduced ring A of characteristic p contains p-torsion.

Lemma 2.5 (Free δ-rings). The free δ-ring Z{x} on a variable x is the polynomial ring Z[x0, x1, x2, ...]
with x = x0 and δ(xi) = xi+1. In particular, for any set S, the δ-ring Z{S} is p-torsionfree.

Proof. Consider the ring A := Z[x0, x1, x2, ...]. This ring admits a Frobenius lift φ given by φ(xi) =
xpi +pxi+1. As A is p-torsionfree, this Frobenius lift has a unique associated δ-structure determined
by δ(xi) = xi+1. This shows that the object in the statement of the lemma is well-defined. To
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identify A with the free δ-ring on x = x0, we check the universal property. Fix a δ-ring S with some
f ∈ S. Then there is a unique map A→ S of commutative rings determined by xi 7→ δi(f). Using
the identities describing the behaviour of δ under multiplication and addition on both A and S, it
follows that A→ S is a map of δ-rings. This map carries x to f by construction, and is clearly the
unique map with this property. �

Remark 2.6. Using the existence of pushouts and free δ-rings, one can construct more δ-rings
using “generators and relations”. For example, there exists a free δ-ring Z{x, y}/(x2 +y3 +xy)δ on
two variables x and y satisfying the equation x2 + y3 + xy = 0. It can be constructed as a pushout

Z{z}
z 7→x2+y3+xy //

z 7→0

��

Z{x, y}

��
Z // Z{x, y}/(x2 + y3 + xy)δ,

where we recall that pushouts in δ-rings are computed on underlying rings. As free δ-rings are
large, it can be rather tricky to analyse these pushouts. For example, is the pushout above the 0
ring modulo p?

Let us next record the stability of δ-structures under some natural ring-theoretic operations.

Lemma 2.7 (Localizations of δ-rings). Fix a δ-ring A and S ⊂ A a multiplicative subset with
φ(S) ⊂ S. There is a unique δ-structure on the localization S−1A compatible with the one on A.

Proof. Assume first that A is p-torsionfree. Then S−1A is also p-torsionfree. Since φ(S) ⊂ S, the
map φ : A → A extends uniquely to a map ψ : S−1A → S−1A. As φ lifts Frobenius on A/p, ψ
must lift Frobenius on S−1A/p, so it follows that ψ is associated to a δ-structure on S−1A. The
uniqueness of this structure and compatibility with the one on A is clear.

In general, one chooses a surjection F → A where F is free δ-ring. The preimage T ⊂ F of
S ⊂ A is a multiplicative subset such that φ(T ) ⊂ T . The preceding paragraph then gives a unique
δ-structure on T−1F compatible with the one on F . Base changing along F → A then gives the
desired δ-structure on S−1A ' T−1A as pushouts of δ-rings are computed on underlying rings. �

Exercise 2.8. Let A be a δ-ring.

(1) Assume that x ∈ A admits a pn-th root. Then δ(x) ∈ pnA. Deduce that if A is p-adically
separated, then any element x that admits pn-th roots for all n ≥ 1 must have rank 1.
(Hint: reduce to the free case and translate to a question about φ(x)).)

(2) (Completions) Fix a finitely generated ideal I ⊂ A that contains p. Then the I-adic
completion of A admits a unique δ-structure.

It follows that Zp with the δ-structure prescribed by requiring φ = id is the initial object in the
category of p-adically complete δ-rings.

Lemma 2.9 (Étale extensions of δ-rings). Fix a map A → B of p-adically complete and p-
torsionfree rings. Assume A is equipped with a δ-structure and that A → B is étale modulo p.
Then B has a unique δ-structure compatible with the one on A.

Using the étale localization property of the Witt vectors (which is not too difficult in the p-
adically nilpotent or complete cases) and the interpretation of δ-structures in Construction 2.1, one
can drop the p-torsionfreeness hypothesis in the above lemma (Rezk).

Proof. As both A and B are p-torsionfree, it suffices to show that B admits a unique Frobenius
lift compatible with the one on A. By p-adic completeness, it suffices to do this modulo pn for all
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n. For n = 1, this is simply the well-known statement that the pushout of Frobenius on A is the
Frobenius on B via the relative Frobenius B(1) := B ⊗A,F A → B for A → B. For larger n, one
argues using the topological invariance of the étale site. �

Lemma 2.10 (Quotients of δ-rings). Fix a δ-ring A. Let I ⊂ A be an ideal such that δ(I) ⊂ I.
Then A/I admits a unique δ-structure compatible with the one on A.

Proof. It suffices to show that for x ∈ A and ε ∈ I, we have δ(x + ε) ≡ δ(x) mod I. This follows
from the additivity formula for δ. �

3. Perfect δ-rings

The following class of δ-rings will be important for relating δ-rings to perfectoid rings.

Definition 3.1. A δ-ring A is called perfect if the Frobenius φ : A→ A is an isomorphism.

Our goal is to classify such rings as follows.

Proposition 3.2 (Perfect δ-rings = perfect rings). The following categories are equivalent:

(1) The category of perfect δ-rings that are p-adically complete.

(2) The category of p-adically complete and p-torsionfree rings that are perfect modulo p.

(3) The category of perfect rings of characteristic p.

The functor from (1) to (2) is the forgetful functor; the functor from (2) to (3) is A 7→ A/p; the
functor from (3) to (1) is A 7→W (A).

In other words, every p-adically complete perfect δ-ring has the form W (R) (with its natural
Frobenius) for a perfect Fp-algebra R. In fact, the proof below does not use the definition of the
Witt vector functor W (−), and provides an alternative way to think about it on perfect rings. One
of the two main ingredients in the proof of Proposition 3.2 is the following.

Lemma 3.3. Let A be a δ-ring and let x ∈ A with px = 0. Then φ(x) = 0. In particular, if φ is
injective, then A is p-torsionfree.

Proof. We trivially have φ(x) = 0 in A[1/p], so we may assume that A is a Z(p)-algebra. Applying
δ to px = 0 shows that ppδ(x) + φ(x)δ(p) = 0. As δ(p) is a unit in Z(p), it suffices to show that
ppδ(x) = 0. But we have

ppδ(x) = pp−1 · pδ(x) = pp−1 · (φ(x)− xp) = pp−2
(
φ(px)− (px)xp−1) = 0,

where the last equality follows as px = 0. �

Remark 3.4. One can show that specifying a δ-structure on a ring A is the same as specifying
a derived Frobenius lift on A, i.e., if A := A ⊗LZ Z/p denotes the derived mod p reduction on A,
then specifying a δ-structure on A is equivalent to giving an endomorphism φ : A → A together

with a homotopy between the composite A
φ−→ A

can−−→ A and the composite A
can−−→ A

Frob−−−→ A. To

see this, one must show that W2(A) can be described as the fibre product of A
can−−→ A

Frob◦can←−−−−− A.
This holds true (Remark 2.2) when A is p-torsionfree, and the general case follows by left Kan
extensions. (Details omitted)

Using this interpretation, Lemma 3.3 has a slightly more conceptual interpretation: as the p-
torsion of A identifies with π1(A), the lemma follows from the fact that Frobenius acts trivially on
the higher homotopy groups of a simplicial commutative ring.

The other ingredient is the following well-known lemma.

Lemma 3.5. Let A be a perfect Fp-algebra. Then the cotangent complex LA/Fp
vanishes. Conse-

quently, the following categories are equivalent:
5



(1) Perfect Fp-algebras.

(2) For fixed n ≥ 1, the category of flat Z/pn-algebras Ã with Ã/p being perfect.

(3) p-adically complete and p-torsionfree Zp-algebras Ã with Ã/p perfect.

There are obvious functors in the direction (3)⇒ (2) and (2)⇒ (1). To go from (1) to (3), one may
explicitly use the Witt vector functor A 7→W (A), though we shall not need its precise structure.

Proof. The Frobenius endomorphism of any Fp-algebra A induces the 0 map on its cotangent
complex: this is clear for polynomial Fp-algebras, and thus follows in general as Frobenius is
functorial (and because there is a functorial simplicial resolution of any Fp-algebra by polynomial
algebras). On the other hand, if A is perfect, then Frobenius is an isomorphism, so it must act as
an isomorphism on the cotangent complex as well. Combining these two observations shows that
LA/Fp

' 0. The equivalence of (1) and (2) follows from standard relations between the cotangent
complex and deformation theory. The equivalence of (2) and (3) follows as the category of p-adically
complete and p-torsionfree Zp-algebras can be described as the inverse limit of the categories of flat
Z/pn-algebras. �

Proof of Proposition 3.2. Lemma 3.3 ensures that the forgetful functor goes from (1) to (2). The
equivalence of (2) and (3) comes from Lemma 3.5. To get from (3) to (1), fix a perfect ring A,

and let Ã denote the corresponding object in (2), so Ã is a p-adically complete and p-torsionfree

ring. As A 7→ Ã is a functor, the Frobenius on A lifts to a unique automorphism of Ã, so Ã comes

equipped with a Frobenius lift. As Ã is p-torsionfree, this defines the δ-structure on Ã, giving an
object in (1). Using the uniqueness of lifts, it is easy to check that these constructions provide
mutually inverse equivalences. �

Using Proposition 3.2, we can give a conceptual construction of the Teichmuller map R→W (R)
and the Teichmuller expansion of an element f ∈W (R) for R perfect.

Construction 3.6 (The Teichmuller expansion). Let R be a perfect Fp-algebra, and let W (R) be
its ring of Witt vectors. Using the characterization of the latter as the unique p-adically complete
and p-torsionfree ring lifting R, let us describe a “normal form” for elements of W (R).

First, we show that the projection W (R) → R has a unique multiplicative section R → W (R)
denoted x 7→ [x]. It is enough to define such a section for W (R)/pn → R. For this, given x ∈ R,

choose y ∈W (R)/pn lifting x1/p
n ∈ R. Using the elementary observation that if a = b mod pk then

ap = bp mod pk+1 (in any commutative ring), it follows that yp
n ∈ W (R)/pn is well-defined (i.e.,

independent of choices) and lifts x ∈ R. We set [x] = y; the multiplicativity of x 7→ [x] is immediate
from the construction. For uniqueness, consider two multiplicative lifts [·], [·]′ : R → W (R)/pn.
Then for any a ∈ W (R), we can write [a] = [a]′ + pb for some b ∈ W (R)/pn. Raising to the pn-th
power and using multiplicativity then shows that [ap

n
] = [ap

n
]′ in W (R)/pn. As the p-power map

on R is bijective, it follows that [x] = [x]′ for all x ∈ R, as wanted.
Now given any f ∈W (R), if we write f ∈ R for its image, then f = [f ] mod p, so we can write

f = [f ] +pf1 for a unique f1 ∈W (R) (where uniqueness of f1 is due to p-torsionfreeness of W (R)).
Applying the same reasoning to f1 and continuing, we find that f admits a unique p-adic expansion∑∞

i=0[ai]p
i, called the Teichmuller expansion of f .

Exercise 3.7. Let R be a perfect Fp-algebra. Show that f ∈ W (R) has rank 1 exactly when
f = [a] for some a ∈ R. (Hint: first show that the Frobenius lift φ : W (R)→W (R) is simply given
by
∑∞

i=0[ai]p
i 7→

∑∞
i=0[a

p
i ]p

i.)
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