Problem set 5

Notation 0.1. When talking about coherent sheaves, we use f^{-1} to denote the set-theoretic inverse image functor associated a map $f: X \to Y$ of schemes.

- 1. The goal of this exercise is prove a theorem of Nagata showing that henselizations of noetherian local rings are also noetherian. Let (R, \mathfrak{m}, k) be a noetherian local ring.
 - (a) Show that $R/\mathfrak{m}^n \simeq R^h/\mathfrak{m}^n$, and hence $\widehat{R} \simeq \widehat{R^h}$.
 - (b) Using the criterion formulated in terms of the base-change behaviour of finitely generated ideals, show that $R^h \to \widehat{R^h}$ is faithfully flat.
 - (c) Show that R^h is noetherian.
 - (d) (*) Show that R^{sh} is noetherian (or read EGA III, Chapter 0, Lemma 10.3.1.3).
- 2. (*) Let (R, \mathfrak{m}, k) be a henselian local ring. Show that reduction modulo \mathfrak{m} defines an equivalence of categories between finite étale covers of R, \hat{R} , and k.
- 3. (Topological description of henselian rings) Let (R, \mathfrak{m}, k) be a henselian ring.
 - (a) Given a finite separable extension $i : k \to k'$, show that there is a unique henselian ring (R', \mathfrak{m}', k') finite étale over (R, \mathfrak{m}, k) such that $R \to R'$ reduces to *i* modulo \mathfrak{m} .
 - (b) Show that the association $k' \mapsto R'$ (from the previous exercise) extends to a sheaf on $\text{Spec}(k)_{\text{ét}}$.
 - (c) Given a pointed scheme (X, x) with $i : \operatorname{Spec}(\kappa(x)) \to X$ denoting the residue field, show that $\Gamma(\operatorname{Spec}(\kappa(x))_{\mathrm{\acute{e}t}}, i^{-1}\mathcal{O}_{X_{\mathrm{\acute{e}t}}}) \simeq \mathcal{O}_{X,x}^h$.
- 4. Let (R, \mathfrak{m}, k) be a local normal domain with fraction field K. Assume that K is separably closed. Please do not assume R is noetherian for this exercise.
 - (a) Let $A \to B$ be a faithfully flat ring map of domains. If there is a factorisation $A \to B \to Frac(A)$ with $B \to Frac(A)$ injective, then show that A = B.
 - (b) Show that any $R \to S$ étale can be written as $S = \prod_{i=1}^{k} S_i$ with each $R \to S_i$ an open immersion, and at least one $R \to S_i$ an isomorphism.
 - (c) Show that R is strictly henselian.
- 5. (The Nisnevich topology) Let X be a noetherian scheme, and fix n ∈ Z. Define the small Nisnevich site X_{Nis} as follows: objects are étale maps U → X, and a family {U_i → U} is a Nisnevich covering if it is an étale covering with the additional property that any field valued point Spec(k) → U lifts to some U_i. We use the subscript _{Nis} to denote cohomology in the Nisnevich topology.

- (a) Show that descent and cohomology for quasi-coherent sheaves work as expected, i.e., quasicoherent \mathcal{O}_X -modules define Nisnevich sheaves, and the Nisnevich cohomology of the resulting sheaves agrees with Zariski cohomology.
- (b) Given a point $x \in X$, let $i : \operatorname{Spec}(\kappa(x)) \to X$ denote the corresponding map. Show that $\Gamma(\operatorname{Spec}(k)_{\operatorname{Nis}}, i^{-1}\mathcal{O}_{X_{\operatorname{Nis}}}) \simeq \mathcal{O}_{X,x}^{h}$.
- (c) Show that exactness of a sequence of Nisnevich sheaves can be detected by pullbacks along all maps of the form $i : \text{Spec}(\kappa(x)) \to X$, where $x \in X$ is a point.
- (d) Let X be a normal connected scheme. Show that $H^1_{Nis}(X, \mathbf{Z}/n) = 0$. This shows that Nisnevich cohomology does not agree with étale cohomology in general.
- (e) Let X be a normal connected scheme. By analysing the Leray spectral sequence for $X_{\text{\acute{e}t}} \rightarrow X_{\text{Nis}}$, show that the presheaf $U \mapsto H^1_{\acute{e}t}(U, \mathbf{Z}/n)$ defines a *sheaf* for the Nisnevich topology.
- (f) Let $X \subset \mathbf{P}^2$ be an irreducible nodal cubic. Show that $H^1_{\text{Nis}}(X, \mathbf{Z}/2) \simeq \mathbf{Z}/2$ while $H^1_{\text{Zar}}(X, \mathbf{Z}/2) \simeq 0$. This shows that Nisnevich cohomology does not agree with Zariski cohomology in general.
- 6. (Finite morphisms, following Morel-Voevodsky) We will see that finite morphisms are acyclic for the Nisnevich topology (like étale), but not for the Zariski topology.
 - (a) Let $f: X \to Y$ be a morphism of schemes. Show that there is a morphism of sites $f: X_{\text{Nis}} \to Y_{\text{Nis}}$. Moreover, if f is finite, show that f_* is exact.
 - (b) Let f : X → Y be a morphism of schemes, with Y the spectrum of a local ring. Show that the functor f : X_{Zar} → Y_{Zar} induces an exact functor f_{*} if and only if Hⁱ(X_{Zar}, F) = 0 for all F ∈ Ab(X_{Zar}) and i > 0.

Let X be the spectrum of the semilocal ring of \mathbf{A}^2 at two fixed points x_0 and x_1 . Choose two irreducible curves $C_1, C_2 \subset \mathbf{A}^2$ such that $C_1 \cap C_2 = \{x_0, x_1\}$. Let $U \xrightarrow{j_1} V \xrightarrow{j_2} X$ be the sequence of open immersions defined by $V = X - \{x_0, x_1\}$, and $U = X - (C_1 \cup C_2)$; let $j = j_2 \circ j_1$.

- (c) Using the Mayer-Vietoris sequence for the open cover $V = (V (C_1 \cap V)) \cup (V (C_2 \cap V))$, show that $H^1(V_{\text{Zar}}, j_{1,!}\mathbf{Z}))$ is non-zero.
- (d) Using the Mayer-Vietoris sequence for the open cover $X = (X \{x_0\}) \cup (X \{x_1\})$, show that $H^2(X_{\text{Zar}}, j_!(\mathbf{Z}))$ is non-zero.
- (e) Show that there is a finite morphism $X \to \operatorname{Spec}(R)$ for a local ring R. Conclude that finite morphisms need not be acyclic for the Zariski topology.
- 7. (Transfers) The goal of this exercise is to discuss the existence of norm maps in étale cohomology with coefficients in \mathbf{G}_m .
 - (a) Let $f : R \to S$ be a finite locally free map of algebras. Given $s \in S$, show that multiplication by s action of s on S gives a well-defined characteristic polynomial $\phi_s \in R[t]$ of degree deg(f). In particular, show that there is a well-defined element $Nm(s) \in R$ such that $Nm(f(r)) = r^{deg(f)}$.
 - (b) Let f : Y → X be a finite locally free map of schemes with X connected. Prove that there is a natural "norm" map Nm_f : f_{*}G_m → G_m in Ab(Sch_{/X,fppf}) such that the composite G_m ^{f*}→ f_{*}f^{*}G_m ^{Nm_f}→ G_m is x ↦ x^{deg(f)}.

(c) Let $f: Y \to X$ be a finite locally free map of schemes with X connected. Show that there is a natural map $H^i(\operatorname{Nm}_f): H^i_{\operatorname{fppf}}(Y, \mathbf{G}_m) \to H^i_{\operatorname{fppf}}(X, \mathbf{G}_m)$ such that the composite

$$H^{i}_{\mathrm{fppf}}(X, \mathbf{G}_{m}) \xrightarrow{f^{*}} H^{i}_{\mathrm{fppf}}(Y, \mathbf{G}_{m}) \xrightarrow{H^{i}(\mathrm{Nm}_{f})} H^{i}_{\mathrm{fppf}}(X, \mathbf{G}_{m})$$

is multiplication by deg(f), and similarly for étale cohomology.

- (d) Show that for X = Spec(R) with R henselian local, the groups $H^i_{\text{\acute{e}t}}(k, \mathbf{G}_m)$ are torsion for i > 0. Can you give an example of a henselian ring R for which the torsion orders of $H^2_{\text{\acute{e}t}}(\text{Spec}(R), \mathbf{G}_m)$ can be arbitrarily large?
- 8. (More transfers) The goal of this exercise is to show norm maps exist for constant coefficients as well. As a corollary, we will see that étale cohomology with Q-coefficients is typically uninteresting. Fix a scheme X. Let A abusively denote the constant sheaf on $X_{\text{ét}}$ associated to an abelian group A.
 - (a) Let $f: Y \to X$ be a finite étale map. Show that there is a norm map $\operatorname{Nm}_f : f_*f^*A \to A$ in $\operatorname{Shv}(X_{\text{\acute{e}t}})$ such that the composite $A \xrightarrow{f^*} f_*f^*A \xrightarrow{\operatorname{Nm}_f} A$ is multiplication by $\operatorname{deg}(f)$.
 - (b) Assume that X is a henselian local scheme. Show that $H^i_{\text{ét}}(X, A)$ is torsion for i > 0.
 - (c) Assume that X is a henselian local scheme. Show that $H^i_{\text{ét}}(X, \mathbf{Q}) = 0$ for i > 0. Deduce that $H^1_{\text{ét}}(X, \mathbf{Z}) = 0$ for X henselian.
 - (d) By contemplating singular curves, give an example of a local ring R such that $H^1_{\text{\acute{e}t}}(\text{Spec}(R), \mathbb{Z})$ is non-zero.