
Problem set 1

Review

Recall that for a variety X over a finite field k = Fq, the zeta function is defined as

Z(X, t) := exp(
∞∑
r=1

#X(Fqr) ·
tr

r
) ∈ QJtK

This function satisfies

t · d
dt

log(Z(X, t)) =
∞∑
r=1

#X(Fqr) · tr.

Two useful identities in the game are the following:

• If α1, . . . , αn ∈ C, and ar =
∑r

i=1 α
r
i , then

n∑
i=1

αi · t
1− αi · t

=

∞∑
r=1

ar · tr.

• The power series expansion for log:

log(1− x) = −1 ·
∞∑
r=1

xr

r
.

Problems

The hints (in gray) are provided for your benefit, but please try doing the problem yourself first!

1. Do Exercise 5.5 in Appendix C of Hartshorne.

2. Let k be a finite field of characteristic different from 2. Let X = V (x2 + y2 + z2) ⊂ P2
k be the

smooth conic. Compute the zeta function of X .

Hint: Show first that X is a smooth genus 0 curve. Next, show that once X has a k-rational point x ∈ X(k), then projection from x

defines an isomorphism X ' P1 (how many points can a line and a conic meet at?). Finally, show that X always has a k-rational point

by contemplating whether or not −1 is a square. In the case −1 is not a square, what does the lack of solutions to x2 + y2 = −z2 mean

for the set of squares in k∗?.
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3. Let k be a finite field. Compute the zeta function of the variety Flagn parametrising complete flags in
an n-dimensional vector space.

Hint: Let G = GLn be the general linear group over k, and let B ⊂ G be the algebraic subgroup of upper triangular matrices. Compute

#G(Fq) and #B(Fq) by hand. Then show that Flagn(Fq) ' G(Fq)/B(Fq), and use the preceding computations.

4. Let k = Fq be a finite field. Let X/k be a variety, and let X0 be the set of closed points of the
underlying scheme. Then show that

Z(X, t) =
∏
x∈X0

1

1− tdeg(κ(x))/k
.

Hint: First show that #X(Fqr ) =
∑
e|r e ·#{x ∈ X0 | deg(κ(x)/Fq) = e}, and then use that.

5. Let k = Fq be a finite field. Let X/k be a variety. Then show that

Z(X ×Fq Fqe , t
e) =

e−1∏
i=0

Z(X, ζi · t)

where ζ is a primitive e-th root of 1.

6. Let k = Fq be a finite field, and let X be a smooth, projective, geometrically connected curve of
genus g over k. The goal of the following series of exercises is to lead you through a proof of all the
Weil conjectures for X .

(a) Choose e ∈ N be such that deg : Pic(X) → Z maps onto eZ. Show e|(2g − 2), and that for
any n ∈ eZ, #Picn(X) = #Pic0(X).

(b) (*) Show directly Z(X, t) is rational of the form b(te)
(1−te)(1−qte) with b(t) a polynomial of degree

≤ 2g.
Hint: First show using one of the previous exercises that

Z(X, t) =
∏
x∈X0

∞∑
j=0

tj·deg(κ(x)/k).

Next, using the correspondence between N-linear combinations of points, effective divisors, and line bundles equipped with a
section (up to scaling), reinterpret the above sum to be

Z(X, t) =
∑

D,D≥0

tdeg(D) =
∑

L∈Pic(X)

#P(H0(X,L)) · tdeg(L) =
∑

L∈Pic(X)

qh
0(L) − 1

q − 1
· tdeg(L).

Note that there is no contribution from line bundles without a section, and hence none from L with deg(L) < 0. Now break up the

sum on the right as g1 + g2, with g1 recording contributions of terms corresponding to line bundles L with deg(L) ≤ 2g− 2, and

g2 the rest. Using that Pic0(X) is finite, show that g1 is a polynomial. Using Riemann-Roch, compute g2, and make conclusions.

(c) Show that Z(X, t) has a pole at t = 1.

(d) Compare the poles at t = 1 of Z(X, t) with Z(X ×Fq Fqe) to show that e = 1. Conclude that
Z(X, t) = b(t)

(1−t)(1−qt) with deg(b(t)) = 2g.
Note that this already shows that any genus 0 curve over k has to be isomorphic to P1 (since it has a degree 1 line bundle), and

any genus 1 curve over k has to have a k-rational point (since C ' Pic1(C) for such curves by the obvious map). Both these

consequences generalise, as we will see later.

2



(e) Prove the functional equation

Z(X,
1

qt
) = q1−g · t2−2g · Z(X, t).

Hint: follow the method used to prove rationality above, and use Serre duality.

(f) Conclude using the functional equation that the set {α1, . . . , α2g} of roots of b(t) (with multi-
plicity) is invariant under the operation α 7→ q

α .

(g) Show that RH for X , i.e., the assertion that |αi| = q
1
2 , is equivalent to the assertion that ar ≤

2g · q
r
2 where ar =

∑2g
i=1 α

r
i .

Hint: follow the proof shown in class for elliptic curves. Specifically, use the functional equation to show that it suffices to show
|αi| ≤ q

1
2 , and then study the formula

2g∑
i=1

αi · t
1− αi · t

=
∞∑
r=1

ar · tr,

especially its poles in the region |t| < q
1
2 .

(h) Using the fixed point formula (which we know now for X), show that RH for X is equivalent to
showing that #X(Fqr) = qr +O(q

r
2 ). Now do exercise 1.10 in chapter V of Hartshorne.

7. (This exercise requires some familiarity with abelian varieties). Let k be an arbitrary field. Let (A, e)
be an abelian variety over k, and let X be a torsor for A, i.e., X is a proper smooth k-variety, and
there is an A-action act : A × X → X such that for any k-scheme L and a point x ∈ X(L), the
induced “orbit” map AL → XL given by a 7→ a + x is an isomorphism. The goal of this exercise is
to show that when k = Fq is a finite field, X always has a k-rational point, and thus A ' X .

(a) Show that the assertion is true for X = Picn(C) and A = Pic0(C) for some smooth, projective
and geometrically connected curve C.
Hint: use the previous exercise.

(b) Show that X is projective.
Hint: Use the finite surjective map XL → X for a suitable field L and use that abelian varieties are projective.

(c) (*) Show that there is a natural map sub : X ×X → A given by at the level points by (x, y) 7→
x−y. Show also that for each integer d ≥ 0, there is a natural map Symd+1(X)×Symd(X)→
X which is given, at the level points, by (x1, . . . , xd+1), (y1, . . . , yd) 7→ (

∑d
i=1 xi−yi)+xd+1.

Hint: Consider the “universal point” L = X
id→ X to get sub. Get the map Xd+1 ×Xd → X using sub. Now show it factors

through appropriate quotients.

(d) (*) Show that there exists a smooth, projective, geometrically connected curve C/k and a map
Picn(C)→ X for some n. Conclude that X must have a k-rational point.
Hint: Choose a general smooth curveC ⊂ X by intersecting general hyperplane sections for a sufficiently big projective embedding

(one can always do this thanks to theorems of Poonen and Gabber). Consider the composite map Symd+1(C) × Symd(C) →
Symd+1(X)× Symd(X)→ X . Show that X admits no maps from P1. Conclude that for d sufficiently large, this map factors

through a map Picd+1(C)× Picd(C)→ X . Now use that Picn(C) always has a rational point for every n sufficiently large.
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