Problem set 1

Review

Recall that for a variety X over a finite field $k=\mathbf{F}_{q}$, the zeta function is defined as

$$
Z(X, t):=\exp \left(\sum_{r=1}^{\infty} \# X\left(\mathbf{F}_{q^{r}}\right) \cdot \frac{t^{r}}{r}\right) \in \mathbf{Q} \llbracket t \rrbracket
$$

This function satisfies

$$
t \cdot \frac{d}{d t} \log (Z(X, t))=\sum_{r=1}^{\infty} \# X\left(\mathbf{F}_{q^{r}}\right) \cdot t^{r}
$$

Two useful identities in the game are the following:

- If $\alpha_{1}, \ldots, \alpha_{n} \in \mathbf{C}$, and $a_{r}=\sum_{i=1}^{r} \alpha_{i}^{r}$, then

$$
\sum_{i=1}^{n} \frac{\alpha_{i} \cdot t}{1-\alpha_{i} \cdot t}=\sum_{r=1}^{\infty} a_{r} \cdot t^{r}
$$

- The power series expansion for log:

$$
\log (1-x)=-1 \cdot \sum_{r=1}^{\infty} \frac{x^{r}}{r}
$$

Problems

The hints (in gray) are provided for your benefit, but please try doing the problem yourself first!

1. Do Exercise 5.5 in Appendix C of Hartshorne.
2. Let k be a finite field of characteristic different from 2. Let $X=V\left(x^{2}+y^{2}+z^{2}\right) \subset \mathbf{P}_{k}^{2}$ be the smooth conic. Compute the zeta function of X.

[^0]3. Let k be a finite field. Compute the zeta function of the variety Flag_{n} parametrising complete flags in an n-dimensional vector space.

Hint: Let $G=\mathrm{GL}_{n}$ be the general linear group over k, and let $B \subset G$ be the algebraic subgroup of upper triangular matrices. Compute $\# G\left(\mathbf{F}_{q}\right)$ and $\# B\left(\mathbf{F}_{q}\right)$ by hand. Then show that $\operatorname{Flag}_{n}\left(\mathbf{F}_{q}\right) \simeq G\left(\mathbf{F}_{q}\right) / B\left(\mathbf{F}_{q}\right)$, and use the preceding computations.
4. Let $k=\mathbf{F}_{q}$ be a finite field. Let X / k be a variety, and let X^{0} be the set of closed points of the underlying scheme. Then show that

$$
Z(X, t)=\prod_{x \in X^{0}} \frac{1}{1-t^{\operatorname{deg}(\kappa(x)) / k}} .
$$

Hint: First show that $\# X\left(\mathbf{F}_{q^{r}}\right)=\sum_{e \mid r} e \cdot \#\left\{x \in X^{0} \mid \operatorname{deg}\left(\kappa(x) / \mathbf{F}_{q}\right)=e\right\}$, and then use that.
5. Let $k=\mathbf{F}_{q}$ be a finite field. Let X / k be a variety. Then show that

$$
Z\left(X \times \mathbf{F}_{q} \mathbf{F}_{q^{e}}, t^{e}\right)=\prod_{i=0}^{e-1} Z\left(X, \zeta^{i} \cdot t\right)
$$

where ζ is a primitive e-th root of 1 .
6. Let $k=\mathbf{F}_{q}$ be a finite field, and let X be a smooth, projective, geometrically connected curve of genus g over k. The goal of the following series of exercises is to lead you through a proof of all the Weil conjectures for X.
(a) Choose $e \in \mathbf{N}$ be such that deg : $\operatorname{Pic}(X) \rightarrow \mathbf{Z}$ maps onto $e \mathbf{Z}$. Show $e \mid(2 g-2)$, and that for any $n \in e \mathbf{Z}, \# \operatorname{Pic}^{n}(X)=\# \operatorname{Pic}^{0}(X)$.
(b) (*) Show directly $Z(X, t)$ is rational of the form $\frac{b\left(t^{e}\right)}{\left(1-t^{e}\right)\left(1-q t^{e}\right)}$ with $b(t)$ a polynomial of degree $\leq 2 g$.
Hint: First show using one of the previous exercises that

$$
Z(X, t)=\prod_{x \in X^{0}} \sum_{j=0}^{\infty} t^{j \cdot \operatorname{deg}(\kappa(x) / k)}
$$

Next, using the correspondence between \mathbf{N}-linear combinations of points, effective divisors, and line bundles equipped with a section (up to scaling), reinterpret the above sum to be

$$
Z(X, t)=\sum_{D, D \geq 0} t^{\operatorname{deg}(D)}=\sum_{\mathcal{L} \in \operatorname{Pic}(X)} \# \mathbf{P}\left(H^{0}(X, \mathcal{L})\right) \cdot t^{\operatorname{deg}(\mathcal{L})}=\sum_{\mathcal{L} \in \operatorname{Pic}(X)} \frac{q^{h^{0}(\mathcal{L})}-1}{q-1} \cdot t^{\operatorname{deg}(\mathcal{L})} .
$$

Note that there is no contribution from line bundles without a section, and hence none from \mathcal{L} with $\operatorname{deg}(\mathcal{L})<0$. Now break up the sum on the right as $g_{1}+g_{2}$, with g_{1} recording contributions of terms corresponding to line bundles \mathcal{L} with $\operatorname{deg}(\mathcal{L}) \leq 2 g-2$, and g_{2} the rest. Using that $\operatorname{Pic}^{0}(X)$ is finite, show that g_{1} is a polynomial. Using Riemann-Roch, compute g_{2}, and make conclusions.
(c) Show that $Z(X, t)$ has a pole at $t=1$.
(d) Compare the poles at $t=1$ of $Z(X, t)$ with $Z\left(X \times_{\mathbf{F}_{q}} \mathbf{F}_{q^{e}}\right)$ to show that $e=1$. Conclude that $Z(X, t)=\frac{b(t)}{(1-t)(1-q t)}$ with $\operatorname{deg}(b(t))=2 g$.
Note that this already shows that any genus 0 curve over k has to be isomorphic to \mathbf{P}^{1} (since it has a degree 1 line bundle), and any genus 1 curve over k has to have a k-rational point (since $C \simeq \operatorname{Pic}^{1}(C)$ for such curves by the obvious map). Both these consequences generalise, as we will see later.
(e) Prove the functional equation

$$
Z\left(X, \frac{1}{q t}\right)=q^{1-g} \cdot t^{2-2 g} \cdot Z(X, t) .
$$

Hint: follow the method used to prove rationality above, and use Serre duality.
(f) Conclude using the functional equation that the set $\left\{\alpha_{1}, \ldots, \alpha_{2 g}\right\}$ of roots of $b(t)$ (with multiplicity) is invariant under the operation $\alpha \mapsto \frac{q}{\alpha}$.
(g) Show that RH for X, i.e., the assertion that $\left|\alpha_{i}\right|=q^{\frac{1}{2}}$, is equivalent to the assertion that $a_{r} \leq$ $2 g \cdot q^{\frac{r}{2}}$ where $a_{r}=\sum_{i=1}^{2 g} \alpha_{i}^{r}$.
Hint: follow the proof shown in class for elliptic curves. Specifically, use the functional equation to show that it suffices to show $\left|\alpha_{i}\right| \leq q^{\frac{1}{2}}$, and then study the formula

$$
\sum_{i=1}^{2 g} \frac{\alpha_{i} \cdot t}{1-\alpha_{i} \cdot t}=\sum_{r=1}^{\infty} a_{r} \cdot t^{r},
$$

especially its poles in the region $|t|<q^{\frac{1}{2}}$.
(h) Using the fixed point formula (which we know now for X), show that RH for X is equivalent to showing that $\# X\left(\mathbf{F}_{q^{r}}\right)=q^{r}+O\left(q^{\frac{r}{2}}\right)$. Now do exercise 1.10 in chapter V of Hartshorne.
7. (This exercise requires some familiarity with abelian varieties). Let k be an arbitrary field. Let (A, e) be an abelian variety over k, and let X be a torsor for A, i.e., X is a proper smooth k-variety, and there is an A-action act : $A \times X \rightarrow X$ such that for any k-scheme L and a point $x \in X(L)$, the induced "orbit" map $A_{L} \rightarrow X_{L}$ given by $a \mapsto a+x$ is an isomorphism. The goal of this exercise is to show that when $k=\mathbf{F}_{q}$ is a finite field, X always has a k-rational point, and thus $A \simeq X$.
(a) Show that the assertion is true for $X=\operatorname{Pic}^{n}(C)$ and $A=\operatorname{Pic}^{0}(C)$ for some smooth, projective and geometrically connected curve C.

Hint: use the previous exercise.
(b) Show that X is projective.

Hint: Use the finite surjective map $X_{L} \rightarrow X$ for a suitable field L and use that abelian varieties are projective.
(c) $\left(^{*}\right.$) Show that there is a natural map sub: $X \times X \rightarrow A$ given by at the level points by $(x, y) \mapsto$ $x-y$. Show also that for each integer $d \geq 0$, there is a natural map $\operatorname{Sym}^{d+1}(X) \times \operatorname{Sym}^{d}(X) \rightarrow$ X which is given, at the level points, by $\left(x_{1}, \ldots, x_{d+1}\right),\left(y_{1}, \ldots, y_{d}\right) \mapsto\left(\sum_{i=1}^{d} x_{i}-y_{i}\right)+x_{d+1}$. Hint: Consider the "universal point" $L=X \xrightarrow{\text { id }} X$ to get sub. Get the map $X^{d+1} \times X^{d} \rightarrow X$ using sub. Now show it factors through appropriate quotients.
(d) (*) Show that there exists a smooth, projective, geometrically connected curve C / k and a map $\operatorname{Pic}^{n}(C) \rightarrow X$ for some n. Conclude that X must have a k-rational point.

Hint: Choose a general smooth curve $C \subset X$ by intersecting general hyperplane sections for a sufficiently big projective embedding (one can always do this thanks to theorems of Poonen and Gabber). Consider the composite map $\operatorname{Sym}^{d+1}(C) \times \operatorname{Sym}^{d}(C) \rightarrow$ $\operatorname{Sym}^{d+1}(X) \times \operatorname{Sym}^{d}(X) \rightarrow X$. Show that X admits no maps from \mathbf{P}^{1}. Conclude that for d sufficiently large, this map factors through a map $\operatorname{Pic}^{d+1}(C) \times \operatorname{Pic}^{d}(C) \rightarrow X$. Now use that $\operatorname{Pic}^{n}(C)$ always has a rational point for every n sufficiently large.

[^0]: Hint: Show first that X is a smooth genus 0 curve. Next, show that once X has a k-rational point $x \in X(k)$, then projection from x defines an isomorphism $X \simeq \mathbf{P}^{1}$ (how many points can a line and a conic meet at?). Finally, show that X always has a k-rational point by contemplating whether or not -1 is a square. In the case -1 is not a square, what does the lack of solutions to $x^{2}+y^{2}=-z^{2}$ mean for the set of squares in k^{*} ?.

