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Let D : Db(x, ~ ) be the usual derived category of ~-sheaves 

on a certain scheme X, and M = M{X)c D be the category of perverse 

sheaves for middle perversity. Now consider the derived category Db(M) 

of an abelian category M; we have the natural exact functor Db(M) --~ 

D. The aim of this note is to show that this functor is an equivalen- 

ce of categories. The same result result holds for M = the category 

of algebraic holonomic ~-modules and D = the derived category of com- 

plexes of ~-modules with holonomic cohomology. 

One may look at this from two complementary points of view. First 

we see that Yoneda-type Ext's in M are computable by easy topologi- 

cal means (since they coincide with Ext's in D). Secondly, the niche 

D where M dwells, may be recovered from M (note, that a priori D 

is quite transcendental with respect to M); this may be of use in a 

future motivic sheaf theory. 

I would like to thank P. Deligne for useful discussions. 

§I. Notation and statement of the main theorem 

1.1. Fix a base field k; in what follows the base schemes will be 

separated of finite type over k. For a scheme X denote D(X) (i) , 

i = I,...,5, the following triangulated categories:- 

(i) D(X) (I) : b = Dc (X,R) = the derived category of complexes of eta- 

le R-sheaves having bounded constructible cohomology; here R is a 

finite ring of characteristic prime to char k. 

(ii) D(X) (2) :: D~(X, ~ ). Here ~ ~ char k and k is assumed 

to be algebraically closed; see e.g. [I] (2.2.18). 

(iii) D(X) (3) := D~(X(~), R) = the derived category of complex- 

es of R-sheaves on the classical topology of X, having algebraically 

constructible cohomology; here k = C and R is any field, see e.g. 

[ I ]  ( 2 . 2 , 1 , ) .  
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(iv) D(X) (4) = D~(X, ~) = the derived category of mixed sheaves, 

see e.g. [I] (5.1.5.). 
(5) 

(v) D(X) = DHol(X) = the derived category of complexes of ~-mo- 

dules having bounded holonomic cohomology, see e.g. [3] §4 (here char k: 

O). 
(i) 

Each of these triangulated categories D(X) has a canonical fil- 

tered counterpart - the f-category DF(X) (i) over D(X) (i) (for f-catego- 

ries see the appendix). In the cases i = 1,3 this is the derived cate- 

gory of complexes of sheaves with finite decreasing filtration such that 

each graded quotient belongs to D(x)(i); in the other cases D(X) (i) is 

the corresponding ~ - or ~-module analogue. 
{±) 

There are various standard functors between D(X) such as ~ , 

Hom, the direct and inverse image functors f!, f,, f', f (more precise- 

ly, in case i = I ® and Hom may take values in unbounded complexes); 
(i) 

all these functors have a canonical f-lifting to DF(X) . We will con- 

sider D(X) (i) as t-categories with a t-structure defined by the middle 

perversity for i = I,...,4 and with the obvious t-structure for i = 5. 

The hearts M(X) (i) of this t-structures are categories of constructible 

perverse sheaves in the cases i = I,...,4 and the category of holono- 

mic modules MHoI(X) in the case i = 5. 

1.2. Assume that for any scheme X over k we are given a strict- 

ly full t-subcategory D(X) in D(X) (i) above (i = I,...,5 is fixed) clo- 
, 

sed under ~ , Ho_._~m and f,, ft, f , fw (i.e. for any morphism f : X -- Y 

of schemes one should have f,, f! : D(X) -- D(Y); f ,f! : D(Y) --~ D(X)). 

Examples. Clearly, we may take D(X) ~ D(X) (i) or D(X) ~ 0. In 

the case i : I this are the only possibilities. In the cases i = 2,3 

we may take for D(X) the subcategories generated by quasiunipotent 

local systems (according to Kashiwara and Gabber, see [5]), or by lo- 

cal systems having geometric origin ([I] (6.2.4.)). In the case i = 5 

we may take D(X) : DRs{X) = the subcategory generated by lisse holo- 

nomic modules having regular singularities at ~ (see [3] §4), or, 

more generally, D(X) : DRsA(X) ([3] (4.8)). In what follows assume 

that D(X) is not identically zero. 

Remark 1.2.1. a). In case k = ~ we have the canonical t-exact 

functor DR : D(X) (5) = (X) , D(X) (3) DHo I : D (X({), $), whose rest- 

riction on DRS(X) C DHoI(X) is an equivalenCeof categories commut- 

ing with any standard functor (see [3] §5). 

b) c~early D (spec k) contains all the Tate modules R(j) (cases 

i : 1,3,5), or ~ (j) (cases i = 2,4); hence the functors ~ f, ~ f, 
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f {see [2])preserve D(X). 

1.3. Let M(X) c D{X) be the heart of D(X). Clearly, D(X) coin- 
(i) 

cides with the full subcategory in D(X) of complexes having all 
(i) 

t-cohomology in M(X). Let DF(X) ~ DF(X) be the full subcategory 

of objects having each a graded quotient in D(X). Clearly, DF(X) is 

an f-category over D(X). It defines a canonical t-exact functor 

real X : Db(M(X)) --~ D(X) that induces the identity functor between 

hearts M(X) (see appendix; in holonomic case real is obvious fun- 

ctor). Now we may formulate 

Main theorem 1.3. This functor is an equivalence of categories. 

Remarks. a) The corresponding statement for the category of shea- 

ves lisse along a fixed stratification is usually false. 

b) I don't know whether the analogous fact remains true for per- 

verse sheaves of other perversities different from the middle one, say, 

for ordinary constructible ~ -sheaves. Also I am ignorant of the ana- 

lytic cases, both constructible and holonomic. 

1.4. Note that the main theorem just claims that Yoneda-type Ext's 

between the objects of M(X) (i.e. Ext's computed in Db(M(X)) coin- 

cide with usual Ext's computed in D(X). Namely, the following simple 

general lemma holds (proof is similar to ~I] (3.1.16)). 

Lemma 1.4. Let F : D I --~ D 2 be a t-exact functor between t-ca- 

tegories. D i with hearts C i~ D i. Assume that Fit : C I --~ C 2 is 

an equivalence of categories, and D 2 = D2b. Then the following sta- 

tements are equivalent: 

(i) F is an equivalence of categories; 

(ii) For any M,N ~ Ob C I and i > 0 the map Hom~ (M,N) , 

i 
Hom~ (F(M), F(N)) is an isomorphism; 

(iii) Assume that D I = Db(cI ) . For any M,N ~ Ob CI, i > 0 and 

i (F(M) F(N)) there exists an injection N ¢-~N' in C I such x e Hom~ 
& 

i (F(M) F(N')) is zero that the image of x in Hom~ , 

Clearly 1.3. falls into this situation, so it suffices to prove 

for F : real X either 1.4. (ii) or 1.4 (iii). For M,NE ~ (X) put 

i i Ext~ ~ )(M,N) : i ExtM(x)(M , N) ~= HOmD~(N~M, N), (X = HomD(x)(M,N). So to 

prove 1.3. we have to show that these Ext's coincide. 

§2. Proofs 

The proof of the theorem 1.3 is divided into two steps: first we 

show that it is valid at the generic point of X (lemma 2.1.1.}, and 
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then by means of glueing (see [2]) we use this to reduce the problem 

to lower dimensions. 

2.1. Let ~ ~ X be a generic point; D(~ ) = 2-1i_~ D(U) the 2- 

limit of t-categories D(U), U runs the Zaris!'~ open sets contain- 

ing ~ . Clearly D(~) is t-category with the heart M ( ~ ) = 

2-1im M (U); we also have our t-exact functor real :Db(M (~}) = 

2-1ira Db(M (U)) --~ D(~ ). 

Lemma 2.1.1. real : Db(M(?)) --~ D(~ ) is an equivalence of ca- 

tegories. 

Proof. First notice that in case D(X) = D (X) (I) (see 1.1.) the 

lemma is trivial since here M (~) = finite Galois R-modules, D( ~ ) 

= derived category of complexes of arbitrary Galois R-modules with fi- 

nite bounded cohomology groups. Therefore we assume that we are in one 

of the situations (ii)-(v) of 1.1; in particular the coefficient ring 

is a field. Assume also that X is reduced; this changes nothing. 

According to 1.4. (iii) it suffices to show the following. Let 

U C X be a Zarisk~ open set, ~ U, and MU, N U are in M (U). 

Then for some open set V ~ U, ~ V, there exists 0 V in M (V) and 

an injection~NuIvC-~Ov such that for any i > 0 the induced arrow 

i i ExtD(u) (Mu,  N U) ~ ExtD(v) (Mv,  0 V) i s  z e r o .  

The proof will be carried by induction in dim X; clearly 2.1.1. 

holds for X of dimension zero, so assume that we have 2.1.1. for any 

Y of dimension less then X. 

Shrinking U if necessary we may assume that MU, N U are lisse , 

that U is irreducible and there exists a smooth affine ¶ : U --~ Z 

with l-dimensional fibers such that Z is regular and L q - 

Rq¶.Hom{M U, N U) Rq¶,(Mu* = ® N U) are lisse sheaves on Z. Clearly 

L q = 0 unless q = O, I, so the Leray spectral sequence E~ q~ = 

HP(z, L q) ~ ~" ~P+q (M U N U) becomes degenerate at E 3 
-~D(U) ' 

Remark. Certainly, L q are usual lisse constructible sheaves in 

constructible situation; in ~-moduie situation they are lisse holono- 

mic modules placed in degree dim Z in D(Z). 

We will need the following lemma {here for an open Y ~ Z we put 

-I 
¶y : Uy :: ¶ (Y) ~ Y): 

Lemma 2.1.2. a) There exists an open Y ~ Z, a lisse PUy in ~(~y) 

and an injection NUy ~ PUy such that the corresponding arrow 

R l ¶ y ,  Hom(Muy , N~ ) ~ Rl¶y* H°m(Muy ' PUy ) i s  z e r o .  
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b) There exists an open Y' ~ Z, a lisse OUy, in M(Qy,) and an 

injection NUy, e ~ QUy, SUch that the corresponding arrows 

HP(Z, R°¶,Hom(Mu, NU)) , HP(y ' , R°¶y,,('Hom(Muy,, OUy,)) are zero 

for p > O. 

Lemma 2.1 .2. --~ Lemma 2.1 .I" first choose NUy ~ PUy as in 

2.1.2. a). Then the Leray spectral sequence shows that the image of 

i 
ExtIxu)(M U N U) in Ext D (.M. , PU¥) is contained in the image of 

' (U~) uy 

Hi(y, R°¶.Hom(Mu¥, PUy)). Now apply 2.1.2. b)to Z replace~by Y, 

and sheaves MUy and PUy . We get Y' c Y and PU¥, , QUy, SUch that 

Hi(y, R°¶.Hom(Muy, puy)) ~ H~Y,,R°¶.Hom(Muy,, QUy I )) is zero for 

i > O. This shows that for the composite map NU¥,¢ ~ QUy, on V = Uy, 

i Ext D (Mv, 0 V) are zero for i > O, all the arrows ExtD(u)(Mu' NU) --" ('V') 

Q .E .D .  U 

Proof of 2.1 .2. a) First notice that we may easily construct such 

P along each closed fiber. Namely, consider the canonical element 

a(( H°{Z, L TM ~ L I ) = H°(Z, R1¶.Hom(¶WL I ~ M, N)). If this K came 

from the global extension ~e Ext1(¶eL I ® M, N) we are done: just ta- 

ke Y : Z and define PTFy from the extension 0 --~ N ~ P1~y~ ¶'LiM--~(~ 

of class ~ . If not,consider the obstruction to existense of ~ : 

the Leray spectral sequence defines the exact sequence 

* I * I ~-~ H2(Z om * Ext1(¶ L ~M,N) --~ H°(Z,RI¶.Hom(¶ L ~M,N)) ,R°¶.H (7 LI~M,N)) 

11 i! 

H°(Z,LI*~ L I } H2{Z, L I ~ ® L 0) 

I 
so the obstruction is ~(~). To kill this obstruction we replace L 

by a certain extension. To construct this extension we will use the 

inductive hypothesis applied to L °* and L I*. They say that there 

exist an open set Y ¢ Z, a lisse sheaf Ky on Y and an injective 

arrow ~: L1*yC-~ Ky such that the induced arrow H2(Z,L I* ® L °) ~ r- 

H2(y, Ky ~ L~) is zero. In particular ~ (3~) is zero. Now consider 

1¶y,Hom * I) : Ho(y, R (¶ Ky ~ My Ny)). the element ~ ( ~ ) G H°(Y, Ky ~ Ly 

This element comes from certain global ~(~ ) ~ Ext1(¶ Ky ~ MUy, NUy 

since the corresponding obstruction is ~ ~( ~ ) = ~(~ ) : O. Now 

define P'u~ from the extension 0 ~ NUy --- PUy --~ ¶.Ky ~ MUy----~ 0 

of class ~(~ ). It satisfies all the needed properties, since fiber- 
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wise it came from the class of ~ . D 

Proof of 2.1.2. b. Apply the inductive hypothesis to Z, a cons- 

tant sheaf and L °. We get Y' ~ Z, a lisse Qy, on Y' and an in- 
0 

jection Ly,C-~ Qy, such that the corresponding arrow HI(Z, L °) 

Hi(y ' , Qy,) is zero for i > O. Define Oy, by means of the cocarte- 

sian square 

¶ 

¶ 

Qy, (9 MUy, ~ OUy, 

J 
o NUy 

Ly, ~) MUy, ~ , 

0 
where ¶ Ly, ~ MUy ' ~ NUy ' 

commutative diagram 

is the canonical arrow. The obvious 

R°¶.Hom(Muy ' , NUy ' ) ~- R°¶.Hom(Muy, ' OUy, ) 

II l 
0 

Ly, ~- QY ' 

shows that our NUy, c ~ OUy, is what we need. [~ 

So 2.1.1. is proven, and we may pass to the 

2.2. Proof of Theorem I .3. We will also use the induction in 

dim X; so assume that we have I .3. for any variety of dimension less 

then dim X. 

First note that the statement of I .3. is Zaris ki local: let us 

consider 1.3. in the form 1.4. (iii); assume that M,N are in •(X) 

and we have found an affine Zariski covering IUi} of X .t°gether 

', such that all the maps Ext~(~o{Mui,_ with injections NU. ~ NU. 
l i 

J(~)(M U ' ) for j > O; then the injection NU.) --~ Ext , N U are zero any 
1 i I 

N C ~L AI~: e j{,N~j kills all ExtJf×~M, N) (note that j[.N~ ~ Ob M~X] 
t i i 

since Ji[Ui ~ X is affine) o 

So we may assume X to be affine. Let us prove I .3. in the form 

1.4. (ii): we have to show that for any M,N ~ M(~') one has Extllm{M,N) 

E x tD~( M ,N ) l 

2.2.1. First assume that the dimensions of supports of M,N are 

less than dim X. Then for certain f ~ ~ (X) this supports lie in 

y = f-1 (0), dim Y < dim X. We have Ext~,..~i (M,N) = Ext i ~(M,N) : 
~{Y ~J 



33 

i M = Ext tl,)( ,N) (the first equality follows from adjunction of i. and 
, 

i , and the second one is the inductive hypothesis). So it remains to 

prove that the embedding M(~Ie--~X) induces the isomorphism 

I : Ext I (M,N) tv Ext I (M,N). Let us construct the inverse map to 
~(Y) M(X) 

I. Consider the vanishing cycles functor ~ f : M{~)--~)(see 1.2.1. 

E b). Since ~f is exact, it defines the map ~f. : xtM(~](P, Q) 

Ext~}(~f {P), ~ f (0)). But ~ f I~(i() is identity functor, so 

for M,N~ ~(y)we get the arrow ~f. : ExL~)(M,N)---~ExtiN{yI(M'N) 

left-inverse to I. It remains to show that it is also right-inverse, 

i.e. that I ~f. : idExt~M~ ~ 

At this point it is convenient to use Yoneda's construction of 

Ext i . Let me recall it briefly. Namely, let E i (M,N) be the rate- 

,X) ~} I . ~ C i 
gory of acyclic complexes in ~ of type 0 ~ N --~ C --~.. = 

M --~ O, the morphisms in E i (M,N) being morphisms of complexes 

~(×) i 
that induce identity maps on the ends M,N. Then Ext (M,N) is just 

i MO0 
the set of connected components of E (M,N), i.e. Ext ~ is the set of 

equivalence classes of objects of E , where two objects are equivalent 

if you may connect them by a sequence of morphisms. 

So for M,NE M{Y)let C" = (N ~ C I . .--~ C i --~. --~ M) be an object 

in E i. (M,N) . We have to show that C" is equivalent to ~f(C') = 
M~ 

= (N ~ ~mf[C I ) --~...--~ @f(C i) --~ M). Here is the sequence of mor- 

phisms in E 1 (M,N) that connects them (it comes from [2]~%(~)): 
.~x~ 

~ " . c" -~ c- ~ ~ f(c , ) -~ c" e ~ f(c~ I/j!(c~ >+- ~Pf:c I. 

2.2.2. We will use the following remark. Let j : U ~--~ X be an 

affine embedding. Then the functors j , j, and j, between ~(~)and 
* * • 

M(~) are exact and pairs (j!, j ), (j , j,) are adjoint. This impli- 

es that for any A~M{~} , B~ M{~} one has 

• ° 

ExtM~I(j,A,B) : Ext (A,Bv) , Ext (B,j.A) = Ext (Bu, A). 
• ~I ~xl ~I 

2.2.3. Consider now the case when dim supp N < dim X. Choose an 
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open affine j : U ~ X such that dim(X-U) < dim X and X-U ~supp N. 

The exact sequence of Ext's shows that it suffices to consider the ca- 

se when M is irreducible. We may also assume that supp M ~ U ~ 

(otherwise see 2.2.1). Then the canonical map j!j M --~ M is epimor- 

phism; let K be its kernel. We have supp K ~ X-U, Hence Ext (K,N)= 

= ExtD(X)(K,N) by 2.2.1. Also ExL&)(j!MN) -- ExtD(~J!MD. , N) since 

by 2.2.2. both parts are zero• Now the exact sequence of Ext's shows 

that Ext" (M,N) = ExtD(x)(M,N). 

2.2.4. Now let we show that Ext" = Ext" for an irreducible N 

supported at a generic point ; then the exact sequence of Ext's plus 

2.2.3. prove the result for general N. For any open affine j~; : Ua-~X, ~ U, 

we have canonical injection N ~ j.(Nu) ; put L U = j,(Nu)/N, clearly 

supp L%fC ~-U. Consider the morphism between the long exact sequences of 

ExtM(x) and EXtD([f ) for 0 --~ N ~ j.(N U) --~ L If -- O• By 2.2.3. this 

morphism is an isomorphism on Ext'(M, L~) , hence ~er'(M,N) := 
• • . 

Ker (EXt(x)(M,N) --~ ExtD{u)(M,N)] : Ker (ExtM(x)(M,j,N U) --~ ExtD(x}(M , J,Nu)) , 

the same with Coker. According to 2.2.2., one has Ext (M,j,N U) = 

= Ext' (Mu,N U) for both ExtH(x) , ExtD(X) , therefore Ker' (M,N) = 

Ker'(Mu, NU). Shrinking U to ~ we get Ker'(M,N) = Ker'(M~, N~) = 

0 by 2.1 .; the same with Coker. This proves Theorem I .3. 

§3. Direct images as derived functors 

3.1. Recall that all the standard functors between categories D(X) 

come naturally together with their~liftings. So we may use the construc- 

tion from A 7. In particular, A 7.1 implies 

Lemma 3.1. Let F be a t-exact standard functor between D(X), 

say, F is Verdier's duality, or F is the near~y c~cles functor, or 

F is the vanishing cycles functor; let F H = HFIH be corresponding 

exact functor between hearts M (X) and ~H the functor between 

Db(M(X)) induced by F M. Then F H = F via the identification estab- 

lished by the main theorem. D 

3.2. Now let us pass to the direct image functors. Let f : X --P Y 

be a morphism of schemes• It determines, under the identification of 

the main theorem, the exact functors f., f! : Db(M (X)) --~ Db(M (Y)). 

Assume that f is affine (for a non-affine case, see n o 3.4). Then 

f! is left t-exact, and f. is right t-exact; let f!M = Hf!~H(X); 
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f,~ : ~(X) ---+ M (Y) be corresponding functors between M~. According 

to A ~ we have natural morphisms Rf! M --~ f!' f* --~ Lf*M " 

Theorem 3.2. This morphisms are isomorphisms. 

Proof. It suffices to treat the case of f., the case of f! fol- 

lows by duality. The theorem would follow if we show that for any 

M~ M (X) there exists N ~ M such that H lf,(N) = 0 for any i < 0 

{hence for any i ~ 0). This fact is a particular case of the follow- 

ing more general lemma, valid for arbitrary f (not necessary affine; 

in full generality this will be needed later; for the aimes of 3.2. you 

may assume that U. = X) 
i 

Lemma 3.3. Let f : X --~ Y be any morphism of schemes, r~ : ~--- 

--~ X a finite set of affine open embeddings, and M ~ Ob ~(X). Then 

there exists N ~ M such that the perverse sheaves HifIu~.(NUe ) on 

Y are zero for any U~ and i < O. 

Proof. 3.3.1. First assume that × is quasiprojective. Our N will 

be of the form j! (M V) for a certain affine open embedding j : V ¢-- 

---+ X. Consider a diagram X ~ ~ , where kX is an affine open em- 

bedding and ~ is projective. Then k e := kxr e : U~ ~--~ ~ are also af- 

fine, therefore M := kX~M , M~ := k~(Mu ) belong to M (~). Find a 

hyperplane section H c ~ such that the following conditions hold 

(here V := X ~ H ~ ~ ). 

2 ev . Jke 

a H. The canonical arrow j!(Mv ) = j!j M --~ M is surjective 

b H. The canonical arrows j! (Mew) = j,. ~F,(Mv~ ) ~ k~,Jei(Mv~) are 

isomorphisms: 

Suppose we have found such an H; then set N = kx J! MV = Jx!Mvx 

(here JX : VX := V n X c--~ X); the condition a H shows that the cano- 

nical arrow N ~ M is surjective, and condition b H implies that 

Hi(f]ui~NU~ )) : H i(f,k~,j~!- MUe )y : Hi(~.j! (M~)V)y : Hi((~°j) ! (M~)v)y 

are zero for i < 0 (since foj is affine). Thus 3.~. in our case 

is proved. 

To find . H let us rewrite the conditions a H and b~ as follows 

(here H r ~ ~ ): 

Hu c~e~ > u~ 
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a*- 
a' H. The objects H ~H(M) E ~ (H) are zero for a ~ -I 

b' H. The canonical arrows iHke,(Mue ) • k~.igH(Mue ) are iso- 

morphisms. 

( To see that b <=> b' use the octahedron of the commutative diag- 

w "~ ~i H k e, (M~) 

ram kelMue ~ i l l*  ~ H  (M~} 

NOw l e t  us c o n s i d e r  a l l  t h e  h y p e r p l a n e  s e c t i o n s  H s i m u l t a n e o u s -  

l y :  t h e y  a r e  p a r a m e t r i z e d  by a p r o j e c t i v e  s p a c e  ~ , and t h e  a b o v e  p i c t u -  

res for different H's are the fibers of the global picture over the 

scheme ~. For example we have canonical closed hyperplane section sub- 

space i : H~ * ~ := ~ x~ D , the object M~ := Px(M)[dim ~ ] i~ 

M(~) and so on. 

The statements a' H and b' H have obvious analogues a~, b~ in 

this situation, which are clearly true, since the projection H~ --~ X 

is smooth. So a H and b H for a particular H would follow if we 

know that the objects from a H and b H coincide with the restriction 

of objects from ag, b9 to the fiber over the closed point "H" of ~ . 

But this is true over some Zarisk{ open subset of ~ (see [4] th. 1.9. 

for the constructible case, the holonomic case is quite easy), so we 

are done (in fact, if the base field is finite, this Zarisk{ open may 

have no points over our field, so first one has to pass to a certain 

finite extension, and then use the trace). 

3.3.2. To get Lemma 3.3. without quasiprojectivity assumption on 

X, one proceeds as follows. First, you may assume that for a certain 

open r : U c--~ X such that U is affine one has M = r!M U (to see 

this choose an affine open covering {U~} of X; then the canonical ar- 

row • ~,Mu~. ~=M is surjective, so if N 9 • ~! M.U~ satisf~ 3.3, 

then N = ~ N~ --~ M also fits 3.3.). Now take ~ ~ $ ¶ , where 

u "-:~-X 
¶ is proper, ~ is quasiprojective and ~ is an open embedding. Ap- 

y, : :¶-I 
3.3.1. to fo¶ : X M ~!M U and ~e (U~) . We get an ply 

affine ~ : ~ c-->X such that N = ]!M V = (~.j)!(M V) -- M (here j : V := 

~ U =--~ U) is surjective and Hi(fo¶), (Noe) are zero for i < O. 

Consider N := (r.j)!(M V) --+ M : clearly this arrow is surjective (it 

coincides with ~ --~ M on U and r! is exact) and f,(Nue ) = 

(f ¶).(N~¢ ) (since ¶,N = ¶!N = N) are acyclic in negative degrees. 

So we are done. Q 

3.4. If f : X --~ Y is an arbitrary morphism of schemes, then f, 
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may be neither left, nor right t-exact. To recover f, (or f!) from 

f~ one may proceed as follows. Fix some open covering {Ui~ ,UU i = X~ 

such that every ~i is affine• We get the functor f{~ .: ~(~)---~ M(~ ~ 

(= the category of cosimplicial objects in ~(~)) by the formula 

fo fo { ~  ( M)n : 0 ,(Mu~..~V~ ) with obvious face and degeneracy 

o 
maps (this is f, applied to the Ceeh complex of M) Clearly, f o 

• (~]. 

is right exact and 3.3 implies that f. = Tot L f{~]~ • , where Tot : 

Db(M~ A) -- Db(M~) is passing to the total complex functor. One may 

say this in a more invariant way, without fixing ~i~ " Consider the 

category Shx, Y of M(~-valued sheaves on Xzar; we have the global 

section functor ~ : Shx, Y --~(~)and its right-derived functor R ~ : 

Db(Shx,y) ---~Db(M(Z)). For M~ M (X) let f[(M) be the sheaf that cor- 

responds to the presheaf ~ ~--+ f~(Mu); clearly f~ :M(~) ---~ Shx, Y 

is a right-exact functor of finite cohomology dimension, and 3.3. shows 

that f. = RPo Lf~. 

Appendix. Filtered categories and realization 

functor 

What follows is a variation on theme [I] (3.1). We deal with the 

following problem: given a t-category D with the heart ~ ; construct 

the t-exact functor real : Db(~ ) --~ D that induces the identity fun- 

ctor on ~ . To do this one needs some extra structure on D: namely one 

should fix a filtered category over D. Here are convenient definitions. 

Definition A I. a) A filtered triangulated category, or f-cate- 

gory for short, is a triangulated category together with two strictly 

full triangulated subcategories DF (~ O) and DF (> 0), an exact auto- 

morphism s : DF --+ DF (called"shift of filtration"), and morphism of 

functors ~ : IdDF ~ s. The following axioms should hold (here 

DF($ n) := snDF(~ 0), DF(} n):= snDF(> 0)): 

(i) DF(~ I) c DF(~ 0), DF($ I) ~ DF(~ 0), ~DF(~ n) = ~DF(~n)=DF 

(ii) For any X in DF one has ~ X : s(~dX )' 

(iii) For any X in DF(~ I), Y in DF($ O) one has Hom(X,Y) = 0 

and ~ induces isomorphisms Hom(Y,X) = Hom(Y, s "I X) = Hom(sY,X). 

(iv) For any X in DF there exists a distinguished triangle 

A --~ X --~ B with A in D(~ I) and B in D(~ 0 ). 
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b) An f-functor between f-categories is an exact functor that com- 

mutes with s and ~ and conserves DF(~ 0), DF(~ 0). 

c) Let D be a triangulated category. An f-category over D is 

an f-category DF together with equivalence of triangulated categori- 

es i : D ~ DF(~ O) n DF(~ 0). If ~$~ : D I -~ D 2 is an exact func- 

tot between triangulated categories, and DF. is an f-categor9 over 
l 

D. (i = 1,2) then an f-lifting of ~ is an f-functor ~F : 
l 

DF I --~ DF 2 such that io~ = dPF-i. 

Example A 2. Let A be ab abelian category, D~A its derived ca- 

tegory, and DF{A) the filtered derived category of complexes with finite de- 

creasing filtration. Then ~F{A) is an f-category over D'(A): take 
i 

D'F(A)(~ n) = {(C" , F ) : grF(C') = 0 for i < n}, D'F(A)(4 n) = 

i • 
= {(C" , F ) : grF(C ) = 0 for i > n~; s(C', F ) = (C , F'-I); 

~(C',F) = id C. : (C" , F ) ~ (C', F'-I); i(C') = (C~ Tr), where Tr is 

i 
the trivial filtration : grTr = 0 for i ~ O. If T : AI--~ A 2 is a 

D ~ ) , left exact functor between abelian categories, and RT : (A I 

D (A2), RFT : DF(A I ) --~ DF(A) are corresponding right derived func- 

tors, then RFT is an f-lifting of RT; same for left derived func- 

tors. 

Note that we have canonical exact functors ~ ~ : DF(A) ~ DF(A)(~); 

4n : DF(A) --~ DF(A)(@ n) defined by formulas ~ ~n(C] F ) = 

Fn(c " ) with the induced filtration, ~ (C', F ) = C'/Fn+I(c ' ) with 
4n 

the induced filtration, and also the forgetting of filtration functor 

: DF(A) ~ D(A). One may define them for arbitrary f-categories 

as follows. 

Proposition A 3. Let DF,D be as in A I.C. Then 

(i) The inclusion of DF(~ n) in DF has ~ adjoint ~n: DF--~ 

DF() n), and the inclusion of DF({ n) in DF has ~{ adjoint 

~n : DF --~ DF(@ n). The functors ~ £n' g )n are exact; they pre- 

serve subcategories DF(4 a), DF(~ a); there is the unique isomorphism 

ff4a ~2b ~ ~ 2 b ~ 4 a  such tha t  the diagram 

n -I -n 
commutes. Put gr F := i s ~ 4n ~n : DF ~ D. 

(ii) For any X in DF there exists unique morphism 

d ~ Horn1( ~gO X, ~ ~i X) such that the triangle ~IX --~ X ---~oX ... 
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is distinguished; this is the only, up to unique isomorphism, triangle 

(A,X,B) with A in DF (3 I) and B in DF (~ 0). 

(iii) There exists the only, up to unique isomorphism, exact func- 

tor ~ : DF --~ D such that 

I). ~IDF(~O) : DF(~ O) --~ D is right adjoint to i : D --~ DF(~O) 

2) ~DF(~O) : DF ~ O) --~ D is left adjoint to i : D --~ DF(~ O) 

3) For any X in DF the arrow ~ (~%) : ~(X) ~ ~ (SX) is an 

isomorphism. 

4) For any A in DF(~ 0), B in DF(~ O) we have ~ : Hom{A,B) -~ 

Hom( ~ A, ~B). 

In fact, ~ is unlquely determined by properties 1,3 or: 2~3. D 

One may see that all the standard constructions in usual filtered 

derived categories may be carried over in the f-category framework. 

Exercise: do this for [I] (3.1.2.6). 

Definition A ~. Let D, DF be as in 1.5.1., and assume that we 

are given t-structures on D and DF. Say that they are compatible 

if i : D --~ DF is t-exact, and s(DF 60) = DF &-1 

Proposition A 5. a) Given a t-structure on D, there exists unique 

t-structure on DF compatible with it, namely DF &O = {X : gr~(X)~ 

Dgi~, DF)O = IX : gr~(X)~ D~i~ 

b) Assume we are given compatible t-structures on D, DF with he- 

arts ~ , ~F respectively; let H : D --+ ~ be corresponding cohomolo- 
b 

gy functor. Define the cohomology functor H F : DF ~ C ( ~ ) by the 

formula HF(X)i i i --~ HF(X = H grF(X) , the differential HF(X) i )i+I 

comes from the distinguished triangle ~ ( ~4i~i~--~ ~(i+I ~ ~i 

~i 6~i )(X) in D. Then HFI~F : ~F --~ cb( ~ ) is an equivalence 

of categories, and, via this equivalence, H F becomes a canonical coho- 

mology functor of our t-structure on DF. 

"~ C b C b A 6. Let real : ( ~ ) --~ D be the composition (~) ~ ~Fc 

-I ~ cb( DF ~ D, where ~ : HFI~F One may see that Horeal : ~) 

is a usual cohomology functor, and real factors (uniquely) through the 

t-exact functor real : Db( ~ ) --~ D, real I = id . This is the func- 

tor we looked for. 

A 7. This construction has the following functorial properties. 

Let Di, i : 1,2, be triangulated categories, and DF i some f-catego- 

ries over D i. Let ~ : D I --~ D 2 be an exact functor, and ~ :  DF I -- 

--~ DF2 an f-lifting of ~. Assume that we are given compatible t- 



40 

structures on Di, DF i- 

If dp is t-exact, then it induces an exact functor ~ : ~I ---*~2, 

hence the t-exact functor Db( ~ i ) D---+~eDb( ~2 ) . Since, by 5.a, 

F is also t-exact, we get 

Lemma A 7.1. In this situation real ~ :  ~ real. 

More generally, suppose that ~ is left t-exact. Consider the left 

~b : : ~I --~ ~2 and the corresponding graded fun- exact functor H~i 

ctor ~b~ : cb( ~i ) ~ cb(~2 ) . Clearly, ~F is also left t-exact, and 

d~= H Fo~o~ , so for any C ° in cb( ~ I ) we have the canonical arrow 

~ ~(C') = ~ ~OCP~(C ' ) ---~ ~ ~(C' ). Applying ~ we get the morphism 

r~al~ --~ ~ re~'~l of D2-valued functors on cb( ~ i ) , or, passing 

to the derived functor R~: Db( ~i ) --~ lim~ Db( ~2 ) , the morphism 

real-R~$ ---*~° real. This construction has an obvious analogue for 

the right t-exact functors. 

References 

I. A. Beilinson, J. Bernstein, P. Deligne. Faisceaux pervers , Astg- 
risque 100, 1982. 

2. A. Beilinson. ~o~ ~ peF¥~se ~e~ve~ th~s volume 
3. J. Bernstein Algebraic theory of D-modules, to appear in Aste- 

risque. 
4. P. Deligne. Theoremes de finitude en cohomologie l-adique, dans 

SGA 4½, Lect. notes in math. 569 (1977). 

5. Le D.-T. Faisceaux constructibles quasiunipotents, Sem. Bourbaki 
exp. 581 (1981). 

Complement to §3. 

Here we will see how a variant of 3.3.1. gives a very concrete 

chain complexes that compute ~ (:= direct image to a point) of perverse 

sheaves on projective variety. 
be 

These chain complexes willAconstructed by means of a pair 

of transversal flags (F, F') on IP n. Clearly, such pairs are the 

same as systems of coordinate axes; they are parametrized by GL(n+1)/ 

diagonal matrices. We put F: (FnC ... cF o : Ipn) , F' : (F'~ c... cF~: iPn), 

ik: ~kc~ IP n, i~ : ~ ~_~ ip ~. 

Let M be a perverse sheaf on IP n. Say that (F,F'} is in a 

generic position with respect to M if for any pair (a,b) of indices 
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(we may assume 0$ a, bSn, a+b 4~ ) the following holds: 

a . .,.,.,~ ~q .,{j,~ {I • 

(i) The objects Mb::t~¢~[~-~H~={~ ~ ~,~[~-~] of D( IP n) (sup- 

F' ) are perverse sheaves ported on F a b 

a a is isomorphism. (ii) The natural arrow M~ --~ M~ 

One may see, as in 3.3.1.,that a generic (F,F') Satisfies this 

conditions. Assume that our (F,F') is of such kind. Then for any (a,b) 

we have canonical commentative diagram of perverse sheaves, supported 

o n  F n F' 
a 

b 

where i: Ipn~ Hc~IPn' 

that H a F ~ F' = 
b 

, with exact rows and columns: 
o ~ 0 

o ~ • I, a ~ , 

f f~  

't t 1 ~ 
o o o 

j': IPnx H'c-~P n , H, H' are hyperplanes such 

~F' = F ~F' ~ Fa+ I ~ F'b, H' ~ F b Q b+1, and (M):= 

Jl J'* J* j* M = J* J* Jl j'* M~ (the property (ii) guarantees 

that these are the same objects). So the sheaves ~ (M) form a bicom- 

plex with differentials d= ~ , d' = ~' . Clearly it is d-acyclic if 

b~O, and d'-acyclic if a~O. Let ~'(M) be the corresponding total comp- 

lex ( n ~ a 
=a-b=n ~ ~ ~ The diagram also shows that it is canonically 

quasiisomorphic to M (i.e. one has H i ~" (M) =0 for i~O, H ° ~'(M)= ~): 

the quasiisomorphism is H= M~ --~ ( j,j* M~ ~> j.j*M~ ~ ...)4-- 

~'(M) (you may also use the O's column to get the same quis). Now 

J ~(M) =0 (see 3.3 1 ) So note that for i~O and any (a,b) H i ~ ~ • • • 

~°~'(M) is chain complex that represents ]M. 


