Homological algebra (Math 613): Problem set 2

Bhargav Bhatt

- 1. Let $f : K \to L$ be a map of chain complex over an abelian category \mathcal{A} . Construct a homotopy-equivalence $\operatorname{cone}(L \to \operatorname{cone}(f)) \simeq K[1]$.
- 2. Check that any acyclic chain complex $K \in Mod_R$ with K_i free and 0 for $i \ll 0$ is split.
- 3. Check that the assumption $K_i = 0$ for $i \ll 0$ above can be dropped when $R = \mathbb{Z}$.
- 4. Show that $K \in Ch(Mod_R)$ is a projective object if and only if K is split and acyclic with each K_i projective.
- 5. Show that the homotopy category K(Ab) of abelian groups is not abelian.

Fix a cocomplete category \mathcal{A} . An object $X \in \mathcal{A}$ is called *compact* if $\operatorname{Hom}(X, -)$ commutes with filtered colimits, i.e., the natural map $\operatorname{Hom}(X, \operatorname{colim} Y_i) \leftarrow \operatorname{colim} \operatorname{Hom}(X, Y_i)$ is a bijection for any filtered system $\{Y_i\}$ of objects of \mathcal{A} . Write $\mathcal{A}^c \subset \mathcal{A}$ for the full subcategory of all compact objects. We say that \mathcal{A} is *compactly generated* if all objects in \mathcal{A} are filtered colimits of objects in \mathcal{A}^c .

- 6. Show that \mathcal{A}^c is closed under finite colimits in \mathcal{A} .
- 7. For the following cocomplete categories A, describe A^c , and determine if the category compactly generated:
 - (a) Sets.
 - (b) Groups.
 - (c) Rings.
 - (d) Commutative rings.
 - (e) Open subsets of a toppological space X (with morphisms being inclusion).
 - (f) Mod_R for a ring R.
 - (g) Ab^{opp}.
- 8. Given a set of rings $\{R_i\}$, let $R = \prod_i R_i$. Describe the compact objects in Mod_R in terms of compact objects in each Mod_{R_i} .
- 9. For any small category C, let Ind(C) be the category *ind-objects* in C, i.e., objects are diagrams {A_i}, indexed by filtered categories I, and maps are given by Hom({A_i}, {B_j}) = colim_j lim_i Hom(A_i, B_j). Show that if A is a compactly generated cocomplete category, then Ind(A^c) ≃ A.
- 10. Determine whether the following functors $Ab \rightarrow Ab$ are exact, left exact, right exact, exact in the middle, or neither:
 - (a) $F_1(A) = A/2A$.
 - (b) $F_2(A) = \{x \in A \mid 4 \cdot x = 0\}.$
 - (c) $F_2 \circ F_1$ and $F_1 \circ F_2$, with F_1 and F_2 as above.
 - (d) $F(A) = A \otimes B$ for a fixed abelian group B.
 - (e) $F(A) = A^{\otimes n}$.

- (f) F(A) = free abelian group on the set A.
- (g) $F(A) = A_{\text{tors}}$.
- (h) $F(A) = \operatorname{Hom}(A_{\operatorname{tors}}, \mathbf{Q}/\mathbf{Z}).$
- (i) Fix a topological space X and $n \in \mathbb{Z}_{\geq 0}$, and let $F(A) = H^n(X, A)$.
- (j) Fix an manifold X of dimension n, and let $F(A) = H^n(X, A)$.
- 11. Let \mathcal{A} be an abelian category, fix $X, Y \in \mathcal{A}$, and $n \ge 1$. A *degree* n *Yoneda extension* of X by Y is an exact sequence

$$Z_{\bullet} := 0 \to Y \to Z_1 \to \dots \to Z_n \to X \to 0.$$

A map $Z_{\bullet} \to Z'_{\bullet}$ of such extensions is a map of exact sequences which is the identity on the Y and X terms. Two such extensions Z'_{\bullet} and Z''_{\bullet} are declared to be equivalent if there are maps $Z'_{\bullet} \leftarrow Z_{\bullet} \to Z''_{\bullet}$ of extensions.

- (a) Show that equivalence of extensions is an equivalence relation on the set of all degree n Yoneda extensions of X by Y. The quotient set is denoted $\operatorname{Ext}_{\mathcal{A}}^{n}(X, Y)$.
- (b) Show that $\operatorname{Ext}_{\mathcal{A}}^{n}(X, Y)$ is covariantly functorial in Y, and contravariantly functorial in X by considering pushouts and pullbacks of extensions.
- (c) Show that there is a natural binary operation + on $\operatorname{Ext}_{\mathcal{A}}^{n}(X, Y)$ given by setting $[Z_{\bullet}] + [Z'_{\bullet}]$ to be the degree n extension obtained by taking the direct sum $W_{\bullet} := Z_{\bullet} \oplus Z'_{\bullet}$, which is an element in $\operatorname{Ext}_{\mathcal{A}}^{n}(X \oplus Y, Y \oplus Y)$, and composing with the "fold" map $Y \oplus Y \to Y$ and the diagonal map $X \to X \oplus X$.
- (d) Let e_{X,Y} be the degree n extension obtained as follows: Z₁ = Y, Z_n = X and Z_i = 0 for i ≠ 1, n if n ≥ 2, and Z₁ = X ⊕ Y if n = 1 (and the maps are the obvious ones in both cases). Show that e_{X,Y} is a unit for the operation + defined above.
- (e) By tweaking signs, show that $\operatorname{Ext}_{\mathcal{A}}^{n}(X, Y)$ is an abelian group under +.
- (f) For $X, Y, W \in \mathcal{A}$, and $m, n \in \mathbb{Z}_{\geq 0}$, construct a natural map $\operatorname{Ext}^{n}_{\mathcal{A}}(X, Y) \times \operatorname{Ext}^{m}_{\mathcal{A}}(Y, W) \to \operatorname{Ext}^{n+m}_{\mathcal{A}}(X, W)$ by splicing extensions together. Show that this operation is bilinear with respect to +, and associative.
- (g) Now assume $\mathcal{A} = \operatorname{Mod}_R$. Show that $\operatorname{Ext}_{\mathcal{A}}^n(X, -) = 0$ for all $n \ge 1$ if and only if X is projective. Dually, show that $\operatorname{Ext}_{\mathcal{A}}^n(-, Y) = 0$ for all $n \ge 1$ if and only if Y is injective.
- (h) Given a short exact sequence $0 \to X \to Y \to Z \to 0$ in \mathcal{A} , and $W \in \mathcal{A}$, construct a natural map $\operatorname{Ext}^n_{\mathcal{A}}(X,W) \to \operatorname{Ext}^{n+1}_{\mathcal{A}}(Z,W)$. Using this, show that the family $\{\operatorname{Ext}^n_{\mathcal{A}}(-,W)\}$, together with these "boundary" maps, gives a δ -functor $\mathcal{A}^{\operatorname{opp}} \to \mathcal{A}$.
- (i) Now assume $\mathcal{A} = Ab$. Calculate $\operatorname{Ext}^{i}_{\mathcal{A}}(X, \mathbb{Z})$ using the exact sequence $0 \to \mathbb{Z} \to \mathbb{Q} \to \mathbb{Q}/\mathbb{Z} \to 0$.