Homological algebra (Math 613): Problem set 2

Bhargav Bhatt

1. Let $f: K \rightarrow L$ be a map of chain complex over an abelian category \mathcal{A}. Construct a homotopy-equivalence $\operatorname{cone}(L \rightarrow \operatorname{cone}(f)) \simeq K[1]$.
2. Check that any acyclic chain complex $K \in \operatorname{Mod}_{R}$ with K_{i} free and 0 for $i \ll 0$ is split.
3. Check that the assumption $K_{i}=0$ for $i \ll 0$ above can be dropped when $R=\mathbf{Z}$.
4. Show that $K \in \mathrm{Ch}\left(\operatorname{Mod}_{R}\right)$ is a projective object if and only if K is split and acyclic with each K_{i} projective.
5. Show that the homotopy category $K(\mathrm{Ab})$ of abelian groups is not abelian.

Fix a cocomplete category \mathcal{A}. An object $X \in \mathcal{A}$ is called compact if $\operatorname{Hom}(X,-)$ commutes with filtered colimits, i.e., the natural map $\operatorname{Hom}\left(X, \operatorname{colim} Y_{i}\right) \leftarrow \operatorname{colim} \operatorname{Hom}\left(X, Y_{i}\right)$ is a bijection for any filtered system $\left\{Y_{i}\right\}$ of objects of \mathcal{A}. Write $\mathcal{A}^{c} \subset \mathcal{A}$ for the full subcategory of all compact objects. We say that \mathcal{A} is compactly generated if all objects in \mathcal{A} are filtered colimits of objects in \mathcal{A}^{c}.
6. Show that \mathcal{A}^{c} is closed under finite colimits in \mathcal{A}.
7. For the following cocomplete categories \mathcal{A}, describe \mathcal{A}^{c}, and determine if the category compactly generated:
(a) Sets.
(b) Groups.
(c) Rings.
(d) Commutative rings.
(e) Open subsets of a toppological space X (with morphisms being inclusion).
(f) Mod_{R} for a ring R.
(g) $\mathrm{Ab}^{\mathrm{opp}}$.
8. Given a set of rings $\left\{R_{i}\right\}$, let $R=\prod_{i} R_{i}$. Describe the compact objects in Mod_{R} in terms of compact objects in each $\operatorname{Mod}_{R_{i}}$.
9. For any small category \mathcal{C}, let $\operatorname{Ind}(\mathcal{C})$ be the category ind-objects in \mathcal{C}, i.e., objects are diagrams $\left\{A_{i}\right\}$, indexed by filtered categories I, and maps are given by $\operatorname{Hom}\left(\left\{A_{i}\right\},\left\{B_{j}\right\}\right)=\operatorname{colim}_{j} \lim _{i} \operatorname{Hom}\left(A_{i}, B_{j}\right)$. Show that if \mathcal{A} is a compactly generated cocomplete category, then $\operatorname{Ind}\left(\mathcal{A}^{c}\right) \simeq \mathcal{A}$.
10. Determine whether the following functors $\mathrm{Ab} \rightarrow \mathrm{Ab}$ are exact, left exact, right exact, exact in the middle, or neither:
(a) $F_{1}(A)=A / 2 A$.
(b) $F_{2}(A)=\{x \in A \mid 4 \cdot x=0\}$.
(c) $F_{2} \circ F_{1}$ and $F_{1} \circ F_{2}$, with F_{1} and F_{2} as above.
(d) $F(A)=A \otimes B$ for a fixed abelian group B.
(e) $F(A)=A^{\otimes n}$.
(f) $F(A)=$ free abelian group on the set A.
(g) $F(A)=A_{\text {tors }}$.
(h) $F(A)=\operatorname{Hom}\left(A_{\text {tors }}, \mathbf{Q} / \mathbf{Z}\right)$.
(i) Fix a topological space X and $n \in \mathbf{Z}_{\geq 0}$, and let $F(A)=H^{n}(X, A)$.
(j) Fix an manifold X of dimension n, and let $F(A)=H^{n}(X, A)$.
11. Let \mathcal{A} be an abelian category, fix $X, Y \in \mathcal{A}$, and $n \geq 1$. A degree n Yoneda extension of X by Y is an exact sequence

$$
Z_{\bullet}:=0 \rightarrow Y \rightarrow Z_{1} \rightarrow \cdots \rightarrow Z_{n} \rightarrow X \rightarrow 0
$$

A map $Z_{\bullet} \rightarrow Z_{\bullet}^{\prime}$ of such extensions is a map of exact sequences which is the identity on the Y and X terms. Two such extensions Z_{\bullet}^{\prime} and $Z_{\bullet}^{\prime \prime}$ are declared to be equivalent if there are maps $Z_{\bullet}^{\prime} \leftarrow Z_{\bullet} \rightarrow Z_{\bullet}^{\prime \prime}$ of extensions.
(a) Show that equivalence of extensions is an equivalence relation on the set of all degree n Yoneda extensions of X by Y. The quotient set is denoted $\operatorname{Ext}_{\mathcal{A}}^{n}(X, Y)$.
(b) Show that $\operatorname{Ext}_{\mathcal{A}}^{n}(X, Y)$ is covariantly functorial in Y, and contravariantly functorial in X by considering pushouts and pullbacks of extensions.
(c) Show that there is a natural binary operation $+\operatorname{on~}_{\operatorname{Ext}_{\mathcal{A}}}^{n}(X, Y)$ given by setting $\left[Z_{\bullet}\right]+\left[Z_{\mathbf{\bullet}}^{\prime}\right]$ to be the degree n extension obtained by taking the direct sum $W_{\bullet}:=Z_{\bullet} \oplus Z_{\bullet}^{\prime}$, which is an element in $\operatorname{Ext}_{\mathcal{A}}^{n}(X \oplus Y, Y \oplus Y)$, and composing with the "fold" map $Y \oplus Y \rightarrow Y$ and the diagonal map $X \rightarrow X \oplus X$.
(d) Let $e_{X, Y}$ be the degree n extension obtained as follows: $Z_{1}=Y, Z_{n}=X$ and $Z_{i}=0$ for $i \neq 1, n$ if $n \geq 2$, and $Z_{1}=X \oplus Y$ if $n=1$ (and the maps are the obvious ones in both cases). Show that $e_{X, Y}$ is a unit for the operation + defined above.
(e) By tweaking signs, show that $\operatorname{Ext}_{\mathcal{A}}^{n}(X, Y)$ is an abelian group under + .
(f) For $X, Y, W \in \mathcal{A}$, and $m, n \in \mathbf{Z}_{\geq 0}$, construct a natural map $\operatorname{Ext}_{\mathcal{A}}^{n}(X, Y) \times \operatorname{Ext}_{\mathcal{A}}^{m}(Y, W) \rightarrow \operatorname{Ext}_{\mathcal{A}}^{n+m}(X, W)$ by splicing extensions together. Show that this operation is bilinear with respect to + , and associative.
(g) Now assume $\mathcal{A}=\operatorname{Mod}_{R}$. Show that $\operatorname{Ext}_{\mathcal{A}}^{n}(X,-)=0$ for all $n \geq 1$ if and only if X is projective. Dually, show that $\operatorname{Ext}_{\mathcal{A}}^{n}(-, Y)=0$ for all $n \geq 1$ if and only if Y is injective.
(h) Given a short exact sequence $0 \rightarrow X \rightarrow Y \rightarrow Z \rightarrow 0$ in \mathcal{A}, and $W \in \mathcal{A}$, construct a natural map $\operatorname{Ext}_{\mathcal{A}}^{n}(X, W) \rightarrow \operatorname{Ext}_{\mathcal{A}}^{n+1}(Z, W)$. Using this, show that the family $\left\{\operatorname{Ext}_{\mathcal{A}}^{n}(-, W)\right\}$, together with these "boundary" maps, gives a δ-functor $\mathcal{A}^{\text {opp }} \rightarrow \mathcal{A}$.
(i) Now assume $\mathcal{A}=\mathrm{Ab}$. Calculate $\operatorname{Ext}_{\mathcal{A}}^{i}(X, \mathbf{Z})$ using the exact sequence $0 \rightarrow \mathbf{Z} \rightarrow \mathbf{Q} \rightarrow \mathbf{Q} / \mathbf{Z} \rightarrow 0$.

