Homological algebra (Math 613): Problem set 1

Bhargav Bhatt

- 1. Let C be a category that admits finite products and coproducts, as well as a zero object 0.
 - (a) For $X, Y \in \mathcal{C}$, using 0, construct a natural map $X \sqcup Y \to X \times Y$ such that the induced composition $X \to X \sqcup Y \to X \times Y \to X$ is the identity (and similarly for Y).

Assume now that finite coproducts and products coincide, i.e., the map in (a) is an isomorphism for all X, Y.

(b) Given maps $f, g: X \to Y$, define a new map $f \oplus g: X \to Y$ through the following diagram:

$$X \stackrel{\Delta}{\hookrightarrow} X \times X \stackrel{\simeq}{\leftarrow} X \sqcup X \stackrel{f \sqcup g}{\to} Y \sqcup Y \stackrel{\mathrm{can}}{\to} Y.$$

Here the second map is the isomorphism coming from (a) by the assumption on C, and the other maps are the usual ones.

- (c) Show that the association $(f,g) \mapsto f \oplus g$ in (b) determines a commutative monoid structure on Hom(X,Y) for $X, Y \in \mathbb{C}$ that is bilinear with respect to composition. In other words, \mathbb{C} is *semiadditive*.
- (d) Assume now that \mathcal{C} has the structure of an additive category. Then show that the group law on $\operatorname{Hom}(X, Y)$ coming from the additive structure must coincide with the one in (c). In other words, being additive is a *property* of a category, not an extra piece of structure.
- 2. Recall that a category is complete if it admits all limits. Show that a category is complete if it admits arbitrary products and fibre products.
- 3. Is the category of torsion abelian groups complete? Is it an abelian category?
- 4. Prove the snake lemma in an abelian category (no elements!).

Let Ab be the category of abelian groups, and $Ab^{fg} \subset Ab$ the full subcategory of finitely generated ones.

- 5. Classify all full thick¹ abelian subcategories $\mathcal{C} \subset Ab^{fg}$, as follows:
 - (a) For any $A \in \mathcal{C}$, show that A_{tors} and A/A_{tors} are both in \mathcal{C} .
 - (b) If $\mathbf{Z}^r \in \mathcal{C}$ for some r > 0, then $\mathcal{C} = Ab^{fg}$.
 - (c) If $\mathbf{Z}/n \in \mathbb{C}$, then $A \in \mathbb{C}$ for any $A \in Ab^{fg}$ such that $n^k \cdot A = 0$ for $k \gg 0$.
 - (d) For each set S of primes, let $\mathcal{C}_S \subset \operatorname{Ab}^{fg}$ be the subcategory of all A such that $A \otimes \mathbf{Z}[\frac{1}{S}] = 0$; this means $n \cdot A = 0$ for some integer n whose prime factors lie in S. Show that \mathcal{C}_S is abelian.
 - (e) Conclude that either $\mathcal{C} = \mathrm{Ab}^{fg}$ or $\mathcal{C} = \mathcal{C}_S$ for some S.
 - (f) (*) Find an analogue of this result for Mod_R^{fg} , where R is noetherian. (Gabriel)
- 6. Give an example of a non-thick abelian subcategory of Ab^{fg}
- 7. Let C be the category of *divisible* abelian groups, i.e., those $A \in Ab$ such that $A = n \cdot A$ for all $n \in \mathbb{Z} \{0\}$.
 - (a) Show that C is additive, and admits all colimits and limits. In particular, C admits kernels and cokernels.

¹An abelian subcatgory \mathcal{C} is thick if for any short exact sequence $0 \rightarrow M_1 \rightarrow N \rightarrow M_2 \rightarrow 0$ in the ambient category, if $M_i \in \mathcal{C}$, then $N \in \mathcal{C}$.

- (b) Prove that the natural map $\mathbf{Q} \to \mathbf{Q}/\mathbf{Z}$ has no kernel or cokernel in C. Conclude that C is not abelian.
- 8. Show that injective objects in Ab are exactly the divisible abelian groups. Conclude that for any $A \in Ab$ and $a \in A$, there is a linear map $g : A \to \mathbf{Q}/\mathbf{Z}$ with $g(a) \neq 0$.
- 9. Fix an associative ring R, an R-module $M \in Mod_R$.
 - (a) Let $F(M) := \bigoplus_{m \in M} R$ be the free *R*-module with basis *M*. Show that there is a functorial epimorphism $\mu_M : F(M) \to M$.
 - (b) Let M[∨] := Hom_Z(M, Q/Z). Using the injectivity of Q/Z as an abelian group, show that there is a functorial injective "evaluation" map η_M : M → (M[∨])[∨].
 - (c) If M is free, show that M^{\vee} is an injective R-module.
 - (d) Set $I(M) := (F(M^{\vee}))^{\vee}$. Show that I(M) is injective. Moreover, using η_M and $(\mu_{M^{\vee}})^{\vee}$, construct a functorial monomorphism $M \to I(M)$. Conclude that Mod_R has enough injectives.

The functoriality of the embedding $M \hookrightarrow I(M)$ is quite useful in practice!

10. Let K be a field, and fix $K \in Ch(Mod_K)$. Construct a quasi-isomorphism $K \to \bigoplus_i H_i(K)[i]$. (Given $M \in Mod_K$, we write M[j] for the chain complex whose only non-zero term is M placed in homological degree j.)