Solutions to the True/False questions for the midterm

- (a) If a (2×2) -matrix A has determinant 5, then A can not be a matrix for othogonal projection onto a line L. **True**
- (b) Let $f : \mathbf{R}^2 \to \mathbf{R}^2$ be a linear transformation. If there exists a basis \mathcal{B} of \mathbf{R}^2 such that the \mathcal{B} -matrix of f is $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}_{\mathcal{B}}$, then f(x) = -x for all vectors x. True
- (c) If u, v, and w are non-zero vectors in \mathbb{R}^2 , then w is a linear combination of u and v. False
- (d) Let V be a subspace of \mathbb{R}^n . If the orthogonal projection map $\operatorname{proj}_V : \mathbb{R}^n \to \mathbb{R}^n$ is invertible, then $V = \mathbb{R}^n$. True
- (e) There is a (2×3) -matrix A and a (3×2) -matrix B such that $A \cdot B$ is the identity matrix. True
- (f) There is a (2×3) -matrix A and a (3×2) -matrix B such that $B \cdot A$ is the identity matrix. False
- (g) Let A, B, and C be $(n \times n)$ -matrices. If A is similar to B, and B is similar to C, then A is similar to C. True
- (h) Every matrix is similar to a diagonal matrix. False
- (i) Let V be a subspace of \mathbb{R}^n . Then there is an $(n \times n)$ -matrix A with ker(A) = V. True
- (j) Let V be a subspace of \mathbb{R}^n . Then there is an $(n \times n)$ -matrix A with im(A) = V. True