Solutions to the True/False questions for the midterm

(a) If a (2×2)-matrix A has determinant 5 , then A can not be a matrix for othogonal projection onto a line L. True
(b) Let $f: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be a linear transformation. If there exists a basis \mathcal{B} of \mathbf{R}^{2} such that the \mathcal{B}-matrix of f is $\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)_{\mathcal{B}}$, then $f(x)=-x$ for all vectors x. True
(c) If u, v, and w are non-zero vectors in \mathbf{R}^{2}, then w is a linear combination of u and v. False
(d) Let V be a subspace of \mathbf{R}^{n}. If the orthogonal projection map $\operatorname{proj}_{V}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is invertible, then $V=\mathbf{R}^{n}$. True
(e) There is a (2×3)-matrix A and a (3×2)-matrix B such that $A \cdot B$ is the identity matrix. True
(f) There is a (2×3)-matrix A and a (3×2)-matrix B such that $B \cdot A$ is the identity matrix. False
(g) Let A, B, and C be $(n \times n)$-matrices. If A is similar to B, and B is similar to C, then A is similar to C. True
(h) Every matrix is similar to a diagonal matrix. False
(i) Let V be a subspace of \mathbf{R}^{n}. Then there is an $(n \times n)$-matrix A with $\operatorname{ker}(A)=V$. True
(j) Let V be a subspace of \mathbf{R}^{n}. Then there is an $(n \times n)$-matrix A with $\operatorname{im}(A)=V$. True

