Math 214 - Midterm 2
 (Blue Version)

This is an 80 -minute exam, but you have the full $110-$ minute class period to complete it. There are a total of 100 points possible; the value of each problem is marked. Partial credit may be given for significant progress toward the solution to a problem. Except where otherwise indicated, you must show sufficient work to make it clear to me what you are doing and why in order to obtain full credit.

Problem 1 (10 pts)

Compute the determinant of the following matrix by whatever method seems best to you.

$$
\left(\begin{array}{cccc}
1 & 2 & 0 & 0 \\
4 & -1 & 4 & 1 \\
3 & 5 & 0 & 0 \\
-7 & 3 & -1 & 2
\end{array}\right)
$$

Problem 2 (10 pts)

The set of points in $x y z$-space with $x+y+z=0$ forms a plane V. Find the matrix which represents orthogonal projection onto V.

Problem 3 (10 pts)

Consider the following matrix.

$$
A=\left(\begin{array}{ccc}
2 & -1 & 2 \\
1 & 3 & 5 \\
2 & 0 & 3
\end{array}\right)
$$

a) Compute adj A.
b) It turns out that $\operatorname{det} A=-1$. (You don't have to verify this fact.) Compute A^{-1}.

Problem 4 (10 pts)

Consider the following linear system.

$$
\begin{aligned}
2 x+y & =5 \\
x-y & =3 \\
x & =3
\end{aligned}
$$

Write down the corresponding normal equation. (You don't need to solve it.)

Problem 5 (10 pts)

Fill in the missing entries so that the matrix is orthogonal.

$$
\left(\begin{array}{ccc}
3 / 13 & 4 / 13 & \\
4 / 13 & -12 / 13 & \\
12 / 13 & & -4 / 13
\end{array}\right)
$$

Problem 6 (15 pts)

Let V be the subspace of \mathbb{R}^{5} with a basis $\mathcal{A}=\left\{\left(\begin{array}{l}2 \\ 2 \\ 2 \\ 2 \\ 3\end{array}\right),\left(\begin{array}{l}7 \\ 1 \\ 7 \\ 1 \\ 6\end{array}\right)\right\}$.
a) Compute the $Q R$ decomposition of $\left(\begin{array}{ll}2 & 7 \\ 2 & 1 \\ 2 & 7 \\ 2 & 1 \\ 3 & 6\end{array}\right)$.
b) Write down an orthonormal basis \mathcal{B} of V.
c) Consider the vectors \vec{v}, \vec{w} whose \mathcal{A}-coordinates are $\binom{2}{3}$ and $\binom{1}{-1}$. Express these vectors in \mathcal{B}-coordinates.
d) What is the cosine of the angle between \vec{v} and \vec{w} ?

Problem 7 (15 pts)

Consider the linear transformation $T: P_{2} \rightarrow P_{2}$ defined by $T(f(t))=f(2 t+1)-f(t+1)$.
a) Write the matrix representation of T, relative to the basis $\left\{t^{2}, t, 1\right\}$.
b) Write down a basis for the kernel of T.
c) Write down a basis for the image of T.
d) What is the nullity (the dimension of the kernel) of T ?
e) What is the rank (the dimension of the image) of T ?
f) What is the determinant of T ?

Problem 8 (20 pts)

Indicate whether each item is true or false. Each item is worth 2 points. No explanation necessary, no partial credit possible.
a) \mathbf{T} / \mathbf{F} ? If a 2×2 matrix P represents the orthogonal projection onto a line in \mathbb{R}^{2}, then P is similar to $\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$.
b) \mathbf{T} / \mathbf{F} ? There exists an isomorphism from P_{4} to the space of 2×2 matrices.
c) \mathbf{T} / \mathbf{F} ? The invertible 5×5 matrices form a subspace of the space of 5×5 matrices.
d) \mathbf{T} / \mathbf{F} ? If A and B are any linear transformations from a linear space V to itself, then $\operatorname{ker}(A B)$ contains $\operatorname{ker} B$.
e) \mathbf{T} / \mathbf{F} ? A matrix is orthogonal if and only if it has orthogonal columns.
f) \mathbf{T} / \mathbf{F} ? Every system of linear equations has a (not-necessarily unique) least-squares solution.
g) \mathbf{T} / \mathbf{F} ? If A, B, C are symmetric $n \times n$ matrices, then $A B A C A B A$ is also a symmetric matrix.
h) \mathbf{T} / \mathbf{F} ? The matrices $\left(\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right)$ and $\left(\begin{array}{cc}3 & -4 \\ 4 & 6\end{array}\right)$ are similar.
i) \mathbf{T} / \mathbf{F} ? If ($\left.\vec{v}_{1} \vec{v}_{2} \vec{v}_{3} \vec{v}_{4}\right)$ is a 4×4 matrix with determinant 10 , then the matrix $\left(\vec{v}_{3} 2 \vec{v}_{2} \vec{v}_{1} \vec{v}_{4}+3 \vec{v}_{2}\right)$ has determinant -60 .
j) \mathbf{T} / \mathbf{F} ? A 3×3 matrix has determinant zero if and only if its rows are linearly dependent.

