Math 214 W10 - Midterm 1

15 February 2010

Answer Key

Professors Michael "Cap" Khoury and Jeffrey Brown

Problem 1 (10 points):

Find the equation of the cubic equation (general form: $f(x)=a x^{3}+b x^{2}+c x+d$) whose graph passes through the points $(-1,2),(0,3),(1,6),(2,23)$.

Answer.
These four points lead to the following linear system.

$$
\begin{aligned}
-a+b-c+d & =2 \\
d & =3 \\
a+b+c+d & =6 \\
8 a+4 b+2 c+d & =23
\end{aligned}
$$

This has the unique solution $a=2, b=1, c=0, d=3$.

$$
f(t)=2 t^{3}+t^{2}+3
$$

Problem 2 (10 points):

Let L be the line spanned by the vector $\left(\begin{array}{c}1 \\ -1 \\ 1 \\ -1\end{array}\right)$. Write down the matrix representing the orthogonal projection onto the line L in \mathbb{R}^{4}.

Answer.

$$
\left(\begin{array}{cccc}
1 / 4 & -1 / 4 & 1 / 4 & -1 / 4 \\
-1 / 4 & 1 / 4 & -1 / 4 & 1 / 4 \\
1 / 4 & -1 / 4 & 1 / 4 & -1 / 4 \\
-1 / 4 & 1 / 4 & -1 / 4 & 1 / 4
\end{array}\right)
$$

Problem 3 (10 points):

Is the vector $\vec{x}=\left(\begin{array}{l}3 \\ 1 \\ 5\end{array}\right)$ in the linear span of $\vec{v}=\left(\begin{array}{l}2 \\ 4 \\ 0\end{array}\right)$ and $\vec{w}=\left(\begin{array}{l}4 \\ 3 \\ 5\end{array}\right)$? If so, find real numbers a, b such that $a \vec{v}+b \vec{w}=\vec{x}$.

Answer.
By reducing the matrix $\left(\begin{array}{lll}2 & 4 & 3 \\ 4 & 3 & 1 \\ 0 & 5 & 5\end{array}\right)$ or by any other means, $\left(\begin{array}{l}3 \\ 1 \\ 5\end{array}\right)=\frac{-1}{2}\left(\begin{array}{l}2 \\ 4 \\ 0\end{array}\right)+1\left(\begin{array}{l}4 \\ 3 \\ 5\end{array}\right)$.

Problem 4 (10 points):

In geometry, the centroid of a triangle is given by a simple formula. If the vertices of a triangle are at the points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$, then the centroid of that triangle is at the point $\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)$.
We can think of this formula as defining a "centroid map" $T: \mathbb{R}^{6} \rightarrow \mathbb{R}^{2}$; let $T\left(\begin{array}{c}u \\ v \\ w \\ x \\ y \\ z\end{array}\right)=\binom{s}{t}$, where (s, t) is the centroid of the triangle whose vertices $(u, v),(w, x),(y, z)$. This T is a linear transformation.
a) Write down the matrix that represents T.
b) What is the rank of T ?

Answer.
T is represented by $\left(\begin{array}{cccccc}1 / 3 & 0 & 1 / 3 & 0 & 1 / 3 & 0 \\ 0 & 1 / 3 & 0 & 1 / 3 & 0 & 1 / 3\end{array}\right)$.
The rank is 2 .

Problem 5 (10 points):

Alice and Bob are studying a two dimensional subspace of \mathbb{R}^{100} relative to bases \mathcal{A} and \mathcal{B}. They are particularly interested in three vectors $\vec{x}, \vec{y}, \vec{z}$.

In Alice's coordinates, we have $[\vec{x}]_{\mathcal{A}}=\binom{8}{4},[\vec{y}]_{\mathcal{A}}=\binom{3}{5},[\vec{z}]_{\mathcal{A}}=\binom{1}{11}$.
In Bob's coordinates, we have $[\vec{x}]_{\mathcal{B}}=\binom{4}{0},[\vec{y}]_{\mathcal{B}}=\binom{1}{1}$.
How is \vec{z} written in \mathcal{B}-coordinates?

Answer.
Note $\binom{1}{11}=3\binom{3}{5}-\binom{8}{4}$. So $\vec{z}=3 \vec{y}-\vec{x}$, and that will be true in any coordinate system. $[\vec{z}]_{\mathcal{B}}=3\binom{1}{1}-\binom{4}{0}=\binom{-1}{3}$.
(This problem can alternately be done by computing a change-of-basis matrix.

Problem 6 (15 points):

Consider the matrix

$$
A=\left(\begin{array}{lllll}
1 & 1 & 0 & 3 & 1 \\
2 & 0 & 2 & 0 & 4 \\
1 & 0 & 1 & 0 & 7 \\
2 & 1 & 1 & 3 & 2
\end{array}\right)
$$

and let T be the transformation represented by A.
a) Write down a basis for the kernel of T.
b) Write down a basis for the image of T.
c) What is the rank (the dimension of the image) of A ?
d) What is the nullity (the dimension of the kernel) of A ?

Answer.

First, we row reduce the matrix to find rref $A=\left(\begin{array}{ccccc}1 & 0 & 1 & 0 & 0 \\ 0 & 1 & -1 & 3 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right)$.
A basis of ker T is $\left\{\left(\begin{array}{c}-1 \\ 1 \\ 1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{c}0 \\ -3 \\ 0 \\ 1 \\ 0\end{array}\right)\right\}$.
A basis of $\operatorname{im} T$ is $\left\{\left(\begin{array}{l}1 \\ 2 \\ 1 \\ 2\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 4 \\ 7 \\ 2\end{array}\right)\right\}$.
The rank is 3 .
The nullity is 2 .

Problem 7 (15 points):

Consider the following matrices.

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right) \quad B=\left(\begin{array}{ccc}
1 & 0 & 0 \\
3 & 1 & 0 \\
-1 & -1 & 1
\end{array}\right)
$$

a) Compute $C=A B$.
b) Compute A^{-1} or explain why A is not invertible.
c) Compute B^{-1} or explain why B is not invertible.
d) Compute C^{-1} or explain why C is not invertible. (Hint: there is more than one way to do this part.)

Answer.

$$
\begin{aligned}
& C=\left(\begin{array}{ccc}
4 & -1 & 3 \\
1 & -1 & 2 \\
-1 & -1 & 1
\end{array}\right) . A^{-1}=\left(\begin{array}{ccc}
1 & -2 & 1 \\
0 & 1 & -2 \\
0 & 0 & 1
\end{array}\right) . B^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-3 & 1 & 0 \\
-2 & 1 & 1
\end{array}\right) . \\
& C^{-1}=B^{-1} A^{-1}=\left(\begin{array}{ccc}
1 & -2 & 1 \\
-3 & 7 & -5 \\
-2 & 5 & -3
\end{array}\right) .
\end{aligned}
$$

Problem 8 (20 points):

Indicate whether each item is true or false. Each item is worth 2 points. No explanation necessary, no partial credit possible.
a) If A and B are invertible matrices and $A B=B A$, then also $A^{-1} B^{-1}=B^{-1} A^{-1}$.

TRUE

b) If \vec{v} and \vec{w} are in the kernel of a linear transformation T, then $\vec{v}+\vec{w}$ is also in the kernel of T.

TRUE

c) If two matrices have the same rref, then they have the same kernel.

TRUE

d) If V and W are 2-dimensional subspaces of \mathbb{R}^{3} and $V \neq W$, then the set of vectors in both V and W is a 1-dimensional subspace of \mathbb{R}^{3}.

TRUE
e) If a linear transformation is invertible, then the inverse is linear.

TRUE
f) There exists a system of three equations in four variables what has a unique solution.

FALSE

g) There exists a system of three equations in four variables which has no solutions.

TRUE

h) The kernel of $\left(\begin{array}{llll}2 & 1 & 0 & 2 \\ 1 & 0 & 0 & 3 \\ 7 & 3 & 0 & 4 \\ 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 3\end{array}\right)$ is a subspace of \mathbb{R}^{4}.

TRUE

i) If $\vec{u}, \vec{v}, \vec{w}, \vec{x}$ are linearly independent vectors in \mathbb{R}^{n}, then $n \geq 4$.

TRUE

j) If $\left\{\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}, \ldots, \vec{a}_{k}\right\}$ and $\left\{\vec{b}_{1}, \vec{b}_{2}, \vec{b}_{3}, \ldots, \vec{b}_{\ell}\right\}$ are bases of the same vector space, then $k=\ell$. TRUE

