Math 214 — Final Exam

Blue Version

BY MICHAEL CAP KHOURY

DIRECTIONS: You have 110 minutes to complete this exam. You may not use a calculator, computer, or other electronic device. There are nine problems which are worth 15 points each. Partial credit is possible. For full credit, clear and relevant work must be shown. You choose *eight* of the nine problems to complete. Indicate which problem you are skipping by marking the appropriate box in the upper-right hand corner of that page. If you do not mark any skip box, or if you mark more than one skip box, I will choose a problem to be skipped at random. This is not what you want. There are also ten true/false questions. Each is worth 2 points, just as on the midterms. This exam is worth 140 points, representing 35% of the 400 total points possible in the course.

Problem 1.

Consider the matrix $A = \begin{pmatrix} 1 & 1 & 2 & 1 \\ 0 & 2 & 0 & 2 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & 0 & 4 \end{pmatrix}$.

- a) Compute the characteristic polynomial of A.
- b) Compute the eigenvalues of A.
- c) Compute an invertible matrix S and a diagonal matrix D such that $S^{-1}AS = D$.

Problem 2.

Consider the plane in \mathbb{R}^3 spanned by $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$ and $\begin{pmatrix} 5\\-3\\1 \end{pmatrix}$.

- a) Compute an orthonormal basis of this plane.
- b) Compute the matrix representation of the projection onto this plane.

Problem 3.

Solve the following linear system by whatever method seems best to you.

$$w + x + y = 8$$
$$w + x + z = 5$$
$$w + y + z = 19$$
$$x + y + z = 10$$

Problem 4.

Consider the matrix $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$.

a) Find an orthogonal matrix S such that $S^T A S$ is diagonal.

b) Is the quadratic form Q(x, y, z) = 2xy + 2yz + 2zx definite, semidefinite, or indefinite?

Problem 5.

Find a 2×2 matrix A such that $A^3 = \begin{pmatrix} -10 & -18 \\ 9 & 17 \end{pmatrix}$.

Problem 6.

Consider the map $T: P_4 \to P_4$ defined by T(f(x)) = x f'(x).

- a) Find an eigenbasis of T, and indicate the eigenvalue attached to each eigenpolynomial in the basis.
- b) Compute $\det T$.

Problem 7.

Consider the parallelepiped with the following vertices.

A(0,0,0), B(2,3,5), C(1,0,-1), D(3,3,4), E(2,-1,-1), F(4,2,4), G(3,-1,-2), H(5,2,3)

- a) Compute the length AB.
- b) The four points A, B, C, D are the vertices of a parallelogram. What is its area?
- c) What is the volume of ABCDEFGH? (Hint: the parallelepiped is "generated" by \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{AE} .)

Problem 8.

Consider the function $T: P_3 \to P_2$ defined by T(f(x)) = f'(x) - (x+1)f''(x).

- a) Compute the matrix representation of T, relative to the customary bases $\{x^3, x^2, x, 1\}$ for P_3 and $\{x^2, x, 1\}$ for P_2 .
- b) Compute a basis for ker T.
- c) Compute a basis for $\operatorname{im} T$.
- d) Compute the rank of T.
- e) Compute the nullity of T.

Problem 9.

Once again, Alice and Bob are studying one of those linear transformations $T: V \to V$. This time V is a plane in \mathbb{R}^{42} , but it is not known to me which plane precisely. Alice is using a basis \mathcal{A} , and Bob is using a different basis \mathcal{B} . They are especially interested in two vectors \vec{v} and \vec{w} .

$$[\vec{v}]_{\mathcal{A}} = \begin{pmatrix} 2\\0 \end{pmatrix}; [\vec{w}]_{\mathcal{A}} = \begin{pmatrix} -2\\1 \end{pmatrix}; [\vec{v}]_{\mathcal{B}} = \begin{pmatrix} 4\\2 \end{pmatrix}; [\vec{w}]_{\mathcal{B}} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

a) Compute the change of basis matrix $S_{\mathcal{A}\to\mathcal{B}}$.

- b) Compute the change of basis matrix $S_{\mathcal{B}\to\mathcal{A}}$.
- c) In Bob's coordinates, T is represented by $\begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}$. What matrix represents T in Alice's coordinates?
- d) Either Alice or Bob has the good sense to be using orthonormal coordinates. If we know that $\|\vec{v}\| < \|\vec{w}\|$, then what is the cosine of the angle between \vec{v} and \vec{w} ?

True or False?

Indicate whether the following statements are true or false. Each is worth two points. No explanation is necessary, no partial credit is possible.

a) If $T: \mathbb{R}^4 \to \mathbb{R}^5$ is a linear map and the image of T is a plane, the kernel of T is also a plane.

TRUE or FALSE

b) If the reduced row echelon form of a matrix A is the identity, then A is invertible.

TRUE or FALSE

c) For any two square matrices A, B of the same size, AB = BA.

d) The map $f\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x+y-2 \\ 3x-2y+1 \end{pmatrix}$ is a linear function (in the linear algebra sense).

TRUE or FALSE

e) The image of a 3×4 matrix is a subspace of \mathbb{R}^4 .

TRUE or FALSE

f) If \vec{x} is any vector in \mathbb{R}^n and V is any subspace of \mathbb{R}^n , then $\|\operatorname{proj}_V \vec{x}\| \leq \|\vec{x}\|$

TRUE or FALSE

g) The determinant of any orthogonal matrix is 1.

TRUE or FALSE

h) If A is a 4×4 matrix, then det $2A = 8 \det A$.

TRUE or FALSE

i) If \vec{v} is an eigenvector of A, then \vec{v} is also an eigenvector of A^3 .

TRUE or FALSE

j) Every symmetric matrix is diagonalizable.

TRUE or FALSE