Name: \qquad

Math 214-001/002 W09 Exam 2

This is an 80 -minute exam, but you have the full 110 minute class period to complete it. There are a total of 100 points possible; the value of each problem is marked. Partial credit may be given for significant progress toward the solution to a problem. Except where otherwise indicated, you must show sufficient work to make it clear to me what you are doing and why.

Problem 1: (10 points)

Compute the determinant of following matrix by whatever method seems best to you.
$\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 \\ 1 & 2 & 3 & 3 \\ 1 & 2 & 3 & 4\end{array}\right]$

Problem 2: (10 points)

Consider the subspace of \mathbb{R}^{5} spanned by $\left[\begin{array}{l}2 \\ 2 \\ 3 \\ 2 \\ 2\end{array}\right]$ and $\left[\begin{array}{l}2 \\ 4 \\ 0 \\ 4 \\ 2\end{array}\right]$. Compute an orthonor-
mal basis of this space.

Problem 3: (10 points)

Consider the three-dimensional subspace V of \mathbb{R}^{4} defined by $w+x+y+z=0$,
which has a basis $\mathcal{B}=\left\{\vec{u}_{1}=\left[\begin{array}{c}1 / 2 \\ 1 / 2 \\ -1 / 2 \\ -1 / 2\end{array}\right], \vec{u}_{2}=\left[\begin{array}{c}1 / 2 \\ -1 / 2 \\ 1 / 2 \\ -1 / 2\end{array}\right], \vec{u}_{3}=\left[\begin{array}{c}1 / 2 \\ -1 / 2 \\ -1 / 2 \\ 1 / 2\end{array}\right]\right\}$.
(a) The vector $\vec{v}=\left[\begin{array}{c}-3 \\ 1 \\ -2 \\ 4\end{array}\right]$ is in the plane V. Give the \mathcal{B}-coordinates of \vec{v}.
(b) The vector $\vec{w}=\left[\begin{array}{c}1 \\ -2 \\ 2 \\ 3\end{array}\right]$ is NOT in the space V. Compute $\operatorname{proj}_{V} \vec{w}$.

Problem 4: (10 points)

Consider the following linear system in three variables x, y, z.

$$
\begin{array}{r}
3 x+y+2 z=1 \\
4 x+3 y+\lambda z=0 \\
\lambda x+z=0
\end{array}
$$

The coefficient λ varies, so we want to solve for x, y, z in terms of λ.
(a) This system has a unique solution, except for two values of λ. Which two values are these?
(b) Solve the system, assuming λ is not one of the values from the previous part (some or all your answers may involve λ).

Problem 5: (10 points)

Compute the least-squares solution to the following inconsistent system of equations. Please clearly indicate the normal equation.

$$
\begin{aligned}
x+y & =1 \\
2 x+8 y & =-2 \\
x+5 y & =3
\end{aligned}
$$

Problem 6: (15 points)

Let V be the plane in \mathbb{R}^{4} spanned by $\vec{v}_{1}=\left[\begin{array}{l}2 \\ 3 \\ 6 \\ 0\end{array}\right]$ and $\vec{v}_{2}=\left[\begin{array}{c}7 \\ 4 \\ 12 \\ 6\end{array}\right]$. It turns out that the $Q R$ decomposition of $\left[\begin{array}{cc}2 & 7 \\ 3 & 4 \\ 6 & 12 \\ 0 & 6\end{array}\right]$ is

$$
Q=\left[\begin{array}{cc}
2 / 7 & 3 / 7 \\
3 / 7 & -2 / 7 \\
6 / 7 & 0 \\
0 & 6 / 7
\end{array}\right] \quad R=\left[\begin{array}{cc}
7 & 14 \\
0 & 7
\end{array}\right] .
$$

(You don't need to compute this for yourself.) Let \mathcal{A} be the basis \vec{v}_{1}, \vec{v}_{2} and let \mathcal{B} be the basis given by the columns of Q.
(a) Consider the vector \vec{w}, which has \mathcal{A}-coordinates $\left[\begin{array}{l}2 \\ 3\end{array}\right]$. Give the \mathcal{B}-coordinates of \vec{w}.
(b) Compute the length of \vec{w}.
(c) Compute the volume of the parallelepiped generated by \vec{v}_{1} and \vec{v}_{2}.

Problem 7: (15 points)

Consider the map $T: U^{2 \times 2} \rightarrow U^{2 \times 2}$ defined by $T(M)=M\left[\begin{array}{ll}1 & 3 \\ 0 & 2\end{array}\right]+\left[\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right] M$.
(a) Write the matrix representation of T, relative to the basis $\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\}$ of $U^{2 \times 2}$.
(b) Write down a basis for the kernel of T.
(c) Write down a basis for the image of T.
(d) What is the rank of T ?
(e) What is the nullity of T ?
(f) What is the determinant of T ?

Problem 8: (20 points)

Each item is worth 2 points. No explanation necessary, no partial credit possible.
(a) If A and B are similar matrices, then A and B have the same rank.

True False
(b) P_{4}, the space of all polynomial of degree at most 4 , has a basis consisting entirely of fourth-degree polynomials.

True
 False

(c) A linear map $T: V \rightarrow W$ is an isomorphism if and only if it is represented by an invertible matrix (relative to some choice of coordinates).

True

False

(d) If $T: V \rightarrow V$ is a linear map from a linear space to itself, $\operatorname{ker} T$ and $\operatorname{im} T$ have nothing in common except the zero element of V.

True
 False

(e) If V is a 3 -dimensional subspace of $\mathbb{R}^{5}, V^{\perp}$ is a plane.

True
 False

(f) If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ has the property that the angle between $T(\vec{v})$ and $T(\vec{w})$ is always the same as the angle between \vec{v} and \vec{w}, then T is an orthogonal transformation.

True False

(g) If a matrix has orthonormal rows, it also has orthonormal columns.
True
False
(h) If A, B are $n \times n$ matrices, $\operatorname{det} A=7$ and $\operatorname{det} B=3$, then $\operatorname{det}(A B)=21$.

True
 False

(i) If A is invertible, A^{T} is also invertible.

$$
\text { True } \quad \text { False }
$$

(j) If A, B are $n \times n$ matrices, $\operatorname{det} A=7$ and $\operatorname{det} B=3$, then $\operatorname{det}(A+B)=10$.
True
False

